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ABSTRACT Joint detection and tracking weak target is a challenging problem whose complexity is
intensified when there are multiple targets present at the same time. Some Probability Hypothesis Den-
sity (PHD) based track-before-detect (TBD) particle filters (PHD-TBD) are proposed to solve this issue;
however, the performance is unsatisfactory especially when the number of targets is large because some
assumptions in PHD are violated. We propose to modify the general PHD-TBD filter in two aspects to make
the PHD processing available for TBD scenarios. First, the distribution of false alarms is approximated as
the Poisson distribution through a threshold method, and then a clustering technique is proposed to solve the
overestimation of the target number. A typical TBD scenario is used to test the effectiveness of the proposed
method. Simulation results indicate that the proposed method outperforms the general method in terms of
estimation accuracy and computational complexity.

INDEX TERMS Multitarget tracking, track-before-detect (TBD), particle filter, probability hypothesis
density (PHD).

I. INTRODUCTION
Joint detection and tracking a low signal-to-noise ratio (SNR)
target, also referred to as weak, dim or stealthy target, is a
thorny problem based on the traditional threshold detection
method. If the detection threshold is set high, it is easy to
lose weak targets, in reverse, a low detection threshold gives a
high rate of false alarms. An alternative approach, referred to
as track-before-detect (TBD) [1]–[3], is to supply the tracker
with all of the raw sensor data and accumulate target informa-
tion in successive observation data, which is proved effective
in detecting and tracking weak targets. There are many algo-
rithms that are proposed to realize the TBD approach. These
algorithms can be mainly divided into two categories: the
batch methods and the recursive methods. The batch meth-
ods, including the Hough Transform [4] and the dynamic
programming algorithm [5]–[8], integrate target informa-
tion by processing multiple scans of raw data at the same
time, while the recursive methods update the target infor-
mation recursively. Particle filter based approach [9]–[12]
is a typical recursive method. As is studied in the survey [13],
the batch methods require large computational resources and
are inefficient, while particle filter based approach has been
proven to be efficient in nonlinear and multitarget scenarios;
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thus, we will focus on the particle filter based approach in
this paper.

In many practical scenarios, we have to monitor multiple
targets simultaneously, i.e., jointly estimate the number of
the targets and their states. The random finite set (RFS)
theory [14], [15] has drawn wide attention and has been
applied to many fields [16], [17]. It provides a systematic and
rigorous procedure to solve the multitarget tracking problem.
However, it involves multiple integrals and is computation-
ally intractable. Probability Hypothesis Density (PHD) fil-
ter [18]–[20], which is the first-order statistical moment of the
RFS, is developed to alleviate the computational intractabil-
ity. The PHD filter operates on the single-target state space
and avoids the combinatorial problems that arise from data
association. These significant advantagesmake the PHDfilter
extremely attractive. The application of PHD filter has been
extended to many fields. For example, the work in [21], [22]
used a PHD filter to track a variable number of human groups
in video, the work in [23] extended the PHD filter to accom-
modate nonstandard targets.

Thus, it is intuitively promising to combine the PHD and
TBD approach (PHD-TBD) to solve the problem of joint
detection and estimation of multiple weak targets. However,
the PHD filter is designed for point measurements and cannot
be applied to image observations directly. There are two
assumptions that have to be satisfied when the PHD filter
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is used. First, no target generates more than one measure-
ment, which cannot be guaranteed by general image obser-
vations. Some researchers solve this problem by limiting
the response of target in only one resolution cell in the
image observation [24], [25], but this method is demand-
ing and makes the filter unavailable for nonstandard point
observations. Second, false alarms have to be Poisson dis-
tribution, which is also violated in a typical TBD scenario.
In [26], K. Punithakumar et al. proposed a sequence Monte
Carlo (SMC) PHD-TBD approach for general image obser-
vations. Although the proposed method is shown to be a
computationally efficient solution to the multitarget tracking
problems with the varying number of targets, it assumes the
false alarms to be a constant number, which is violated with
the second assumption above, and the results need to be
checked in more detail.

In the present work, to approximate the false alarms as
Poisson distribution, we view the measurements whose inten-
sities are above a predefined threshold as the measurements
that generated by targets, while the other measurements as
false alarms. As can be proved as follows, in this way,
the distribution of false alarms can be approximated as Pois-
son distribution. To solve the overestimation of target num-
ber caused by one target generating multiple measurements,
instead of limiting the response of target in one cell, we use a
clustering technique to extract the multitarget state and the
target number from all the particles after resampling. The
rest of the paper is organized as follows. Section 2 con-
structs the multitarget state transition model and observation
model based on RFS, Section 3 gives an overview on general
PHD-TBD approach. In Section 4, we have made two signif-
icant changes to general PHD-TBD approach and proposed a
new PHD-TBD method. In Section 5, some simulations are
carried out and the conclusions are given in Section 6.

II. MULTITARGET TBD RFS MODLE
A. STATE OF THE RFS MODEL
The target state transition model describes the motion of the
target and is one of the key factors that decide the perfor-
mance of the tracking system. For simplicity of the repre-
sentations, we use the capital X to represent the multitarget
state and the lowercase x to represent the single target state.
In multitarget system, the multitarget state at time k can be
naturally represented as a finite subset Xk . If there are N (k)
targets at time k with state xk,1, · · · , xk,N (k), then,

Xk =
{
xk,1, · · · , xk,t , · · · xk,N (k)

}
(1)

is the multitarget state. The tth target state is represented as
xk,t , the single target state is represented as xk if without
special indication. Each single target state contains the target
position

(
xk , yk

)
and velocity

(
ẋk , ẏk

)
as

xk =
[
xk , ẋk , yk , ẏk

]T (2)

For target motion, given multitarget state set Xk−1 at time
k − 1, each xk−1 ∈ Xk−1 survives at time k with probability

ek|k−1 (xk−1) and its transition probability density from xk−1
to xk is denoted as fk|k−1 (xk |xk−1). The surviving target
motion is denoted as a RFS Sk|k−1 (xk−1), the RFS of target
birth at time k is denoted as0k , and the RFS of targets spawn-
ing from the target with xk−1 is represented by Bk|k−1 (xk−1),
therefore the multitarget state Xk is modelled by the union of
RFSs as

Xk =
[
∪

xk−1∈Xk−1
Sk|k−1 (xk−1)

]
∪

[
∪

xk−1∈Xk−1
Bk|k−1 (xk−1)

]
∪ 0k (3)

B. OBSERVATION OF THE RFS MODEL
In this paper, the observation is assumed to be a two-
dimensional image consisting of l ×m resolution cells. Each
cell corresponds to a rectangular region of dimensions and
the center of each ceil (i, j) is defined to be at

(
i1x , j1y

)
for i = 1, · · · , l, j = 1, · · · ,m, the 1x and 1y represent
the length of resolution cell in x-axis direction and y-axis
direction respectively. The image data is the power intensity
information in each resolution cell and can be expressed as

zk = {z
(i,j)
k : i = 1, . . . , l, j = 1, . . . ,m} (4)

in which

z(i,j)k =


∑N (k)

t=1
h(i,j)k (xk,t )+ v

(i,j)
k H1 : if there are

N (k) targets

v(i,j)k H0 : if there is no target
(5)

in which ν(i,j)k is the zero-mean white Gaussian noise with
variance σ 2 and is assumed to be independent from cell to
cell and from image to image, h(i,j)k (xk,t ) represents the degree
of the tth target influence on adjacent image cells, and can be
further expanded as

h(i,j)k (xk,t )=
1x1yI t0
2π62 exp

{
−
(i1x − xk,t )2+(j1y − yk,t )

2

262

}
(6)

where 6 stands for the amount of blurring introduced by the
sensor, xk,t and yk,t represent the position of the tth target, I

t
0

is the tth target intensity and we assume the target intensity is
constant. H0 and H1 are the hypotheses about the absence or
presence of target, respectively.

As we assume the intensity information in each cell is
independent of each other under the condition that the target
state is given, the multitarget posterior probability density
function (PDF) p (zk |Xk) can be expressed as the product of
marginal PDFs

p (zk |Xk ,H) =



l∏
i=1

m∏
j=1

p1
(
z(i,j)k |Xk

)
under H1

l∏
i=1

m∏
j=1

p0
(
z(i,j)k

)
under H0

(7)
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As the noise is assumed to be Gaussian distribution,
the marginal PDFs can be further expressed as

p0
(
z(i,j)k |H0

)
= N

(
z(i,j)k ; 0, σ

2
)

(8)

p1
(
z(i,j)k |H1

)
= N

(
z(i,j)k ;

∑N (k)

t=1
h(i,j)k

(
xk,t

)
, σ 2

)
(9)

where the Gaussian distribution is represented as ‘‘N ’’.
Considering that one single target only has a significant

influence on the adjacent image cells, the posterior PDF of
the single target p (zk |xk) can be approximated as

p (zk |xk ,H1)

≈

∏
i∈Ci(xk )

∏
j∈Cj(xk )

p1
(
z(i,j)k |xk

) ∏
i/∈Ci(xk )

∏
j/∈Cj(xk )

p0
(
z(i,j)k

)
(10)

where Ci (xk) and Cj (xk) are the sets of subscripts i and j,
respectively, corresponding to pixels affected by the target
with state xk .

III. THE GENERAL PHD FILTER FOR TBD
In Section 2, we have modelled the multitarget TBD obser-
vations and collection of states as RFS, and a PHD-TBD
approach can be formulated. As proposed in [18], the pre-
diction and update equations of the PHD filter are presented
as follows:

Dk|k−1 (x|z1:k−1)

=

∫
ek|k−1 (ς)fk (x|ς)Dk−1|k−1 (ς |z1:k−1) dς

+

∫
bk|k−1 (x|ς)Dk−1|k−1 (ς |z1:k−1) dς+γk (x) (11)

Dk|k (x|z1:k)

= [1− pD (x)]Dk|k−1 (x)

+

∑
z∈zk

pD (x) gk (z|x)Dk|k−1 (x)
κk (z)+

∫
pD (ς) gk (z|ς)Dk|k−1 (ς) dς

(12)

where Dk|k (x|z1:k) is the PHD density whose integral∫
S Dk|k (x|z1:k) dx on any region S of state space is the cardi-
nality

n̂k (S) =
∫
|X ∩ S| pk (Xk |z1:k) δX (13)

where the definition of set integral is∫
f (X) δX =

∞∑
i=0

1
i!

∫
f ({x1, · · · , xi}) dx1 · · · dxi (14)

bk|k−1 (xk |xk−1) and γk (xk) denote the intensity of
Bk|k−1 (xk−1) and 0k at time k , κk (z) = λk ·c (z) is the inten-
sity of false alarms, λk is the number of average false alarms,
c (z) is the distribution of false alarms; z1:k = {z1, · · · , zk}
is the time-sequence of observation sets, z is one of the
measurements in zk , pD (x) is the state dependent probability
of detection, gk (z|x) is the likelihood of themeasurement that
generated by targets. As there is no detection process before
the update step, we assume that the observations contain

all the target information; thus, pD (x) ≡ 1. Therefore,
the update equation (12) becomes

Dk|k (x|z1:k)=
∑
z∈zk

gk (z|x)Dk|k−1 (x)
κk (z)+

∫
gk (z|ς)Dk|k−1 (ς) dς

(15)

Because the PHD propagation equations involve multiple
integrals that have no computationally tractable closed-form
expression, the sequential Monte Carlo (SMC) methods are
used to approximate the PHD in [13]. Let the PHD density
Dk−1|k−1 (x|z1:k−1) at time k − 1 be represented by a set of

particles
{
w(r)k−1, x

(r)
k−1

}Lk−1
r=1

where w(r)k−1 is the weight of the
corresponding rth particle, Lk−1 is the total number of surviv-
ing particles, and thus the PHD density can be represented as

Dk−1|k−1 (x|z1:k) =
∑Lk−1

r=1
w(r)k−1δ

(
x − x(r)k−1

)
(16)

The predicted particles are generated by

x(r)k|k−1 ∼

{
qk
(
·|x(r)k−1

)
r = 1, · · · ,Lk−1

vk (·) r = Lk−1 + 1, · · · ,Lk−1 + Jk
(17)

where qk
(
·|x(r)k−1

)
and vk (·) are the proposal density of the

surviving particles and the new-born particles respectively, Jk
is the number of the new-born particles at time k .
The predicted PHD density can be denoted as

Dk|k−1 (x|z1:k−1) =
∑Lk−1+Jk

r=1
w(r)k|k−1δ

(
x − x(r)k|k−1

)
(18)

where

w(r)k|k−1

=



ek|k−1
(
x(r)k−1

)
fk
(
x(r)k|k−1|x

(r)
k−1

)
+bk|k−1

(
x(r)k|k−1|x

(r)
k−1

)
qk
(
x(r)k|k−1|x

(r)
k−1

)
r = 1, · · · ,Lk−1

γk

(
x(r)k|k−1

)
vk
(
x(r)k|k−1

) r = Lk−1 + 1, · · · ,Lk−1 + Jk

(19)

The update PHD density can be represented as

Dk|k (x|z1:k) =
∑Lk−1+Jk

r=1
w(r)k δ

(
x − x(r)k|k−1

)
(20)

where

w(r)k =
∑
z∈zk

gk
(
z|x(r)k|k−1

)
w(r)k|k−1

κk (z)+
∑Lk−1+Jk

r=1 gk
(
z|x(r)k|k−1

)
w(r)k|k−1

(21)

The target number is approximated as

n̂k =
∑Lk−1+Jk

r=1
w(r)k (22)

According to the standard treatment of particle filter,

we resample
{
w(r)k /n̂k , x

(r)
k|k−1

}Lk−1+Jk
r=1

to get the new particle

set
{
w∗(r)k , x(r)k

}Lk
r=1

.
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IV. THE PROPOSED PHD FILTER FOR TBD
A. THE FALSE ALARMS
In the PHD assumptions, the distribution of false alarms is
assumed to be the Poisson distribution and the number of false
alarms is random. However, in the TBD scenario, the obser-
vation data provided by sensor is composed of a constant
number, i.e., l×mmeasurements at a certain time. As a result,
the general PHD-TBD algorithm needs to be modified. The
measurements can be divided into two categories, namely
measurements generated by targets and false alarms. When
the number of measurements generated by targets is fixed
for a period in the observing area, the remaining measure-
ments are false alarms. Without considering computational
complexity, each measurement in the observation is affected
by the targets to a certain degree, i.e., there are no false
alarms. In this way, we have to update the PHD filter using
the entire l × m measurements, which is computationally
intractable and unnecessary, because the targets only have a
significant influence on the adjacent image cells. It is intuitive
to assume that the measurement cells defined in (10) as the
measurements generated by targets, and the other measure-
ments as false alarms. Thus, the number of false alarms is
equal to the number of total measurements minus the number
of measurements generated by targets. When the number of
measurements generated by targets is invariant, the number
of false alarms is also invariant.

Assuming that there is no target in the observation. As the
measurements are conditionally independent and obey Gaus-
sian distribution, i.e.,

f
(
z(i,j)k

)
=

1
√
2πσ

exp

−
(
z(i,j)k − µ

)2
2σ 2

 (23)

To approximate the distribution of false alarms as the
Poisson assumptions, we predefine a small threshold θ for the
observation data, and the probability that one measurement
exceeds this threshold can be calculated as

p
(
z(i,j)k ≥ θ

)
=

∫
+∞

θ

f
(
z(i,j)k

)
dz(i,j)k ≥ p∗ (24)

As we assume there is no target, all the measurements that
satisfy z(i,j)k > θ are regarded as false alarms and denoted as

T (zk) =
{
z(i,j)k |z

(i,j)
k > θ

}
; the other measurements are dis-

carded without further processing. Much care must be taken
to choose the value of θ and a shrinkage method is proposed
in [27] to find the optimal value. In this way, after introducing
the threshold θ for each observation, the probability that one
measurement exceeds this threshold is a constant, denoted as
p∗; thus, the distribution of false alarms is a binomial distribu-
tion and its expectation isMp∗. The binomial distribution can
be approximated as Poisson distribution when M is a large
number. Thus, we can approximate the false alarms as the
Poisson distribution and

κk (z) ≈
Mp∗

l ×1x × m×1y
(25)

in which p∗ < 1. As is often the case, we set the resolution
1x ,1y equal one, and thus κk (z) < 1.

B. THE OVERESTIMATE OF THE TARGET NUMBER
In the observation model of TBD scenario, one target can
affect several adjacent cells, which violates the assumption
in the PHD filter that no target generates more than one
measurement. In TBD scenario, some measurements gener-
ated by the same target are used to update the PHD filter.
However, the PHDfilter assumes onemeasurement generated
by the target is originated from one distinct target. Thus, the
overestimation of the target number is inevitable. We will
examine this problem theoretically first. Assuming that all the
measurements generated by the targets are included in T (zk),
the update equation for each particle can be rewritten as

w(r)k =
∑

z∈T (zk )

gk
(
z|x(r)k|k−1

)
w(r)k|k−1

κk (z)+
∑Lk−1+Jk

r=1 gk
(
z|x(r)k|k−1

)
w(r)k|k−1

(26)

the target number estimation becomes

n̂k =
∑

z∈T (zk )

∑Lk−1+Jk

r=1

×

gk
(
z|x(r)k|k−1

)
w(r)k|k−1

κk (z)+
∑Lk−1+Jk

r=1 gk
(
z|x(r)k|k−1

)
w(r)k|k−1

(27)

As for one measurement z ∈ T (zk), its corresponding
component in (27) is∑Lk−1+Jk

r=1 gk
(
z|x(r)k|k−1

)
w(r)k|k−1

κk (z)+
∑Lk−1+Jk

r=1 gk
(
z|x(r)k|k−1

)
w(r)k|k−1

(28)

As we generate the particles in the total observation space,
there are always some particles that will scatter around the
real target state and make the sum of weighted likelihoods∑Lk−1+Jk

r=1
gk
(
z|x(r)k|k−1

)
w(r)k|k−1 � κk (z) (29)

and thus the∑Lk−1+Jk
r=1 gk

(
z|x(r)k|k−1

)
w(r)k|k−1

κk (z)+
∑Lk−1+Jk

r=1 gk
(
z|x(r)k|k−1

)
w(r)k|k−1

≈ 1 (30)

and the estimation of target number can be approximated as

n̂k ≈ |T (zk)| (31)

where the |T (zk)| represents the number of measurements in
T (zk). The number of measurements in T (zk) is far more
than the real target number as one target can generate several
measurements. Therefore, the sum of particle weights cannot
be used to estimate the target number in TBD scenario.
Although the overestimation of the target number is

inevitable using the general PHD-TBDfilter, it does not affect
the estimation of the multitarget state. Then, the problem
changes to extract the target number and the multitarget state
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from the particles after resampling at the same time. This
turns out to be a typical clustering analysis problem and some
mature algorithms are available. In this paper, we adopt the
clustering algorithm in [28], which is proved effective and
stable in cluster analysis. There may exist some other cluster
algorithms, like the spectral clustering [29], which may have
a better performance in cluster analysis, but the choice of the
cluster algorithm is not the focus of this paper.

We view the estimation of the target number as a process of
optimization. As in the clustering algorithm, we need to find a
validity index to optimize the number of clusters. We choose
to use the Davies-Bouldin Index (DBI) in [28] as the validity
index.

Assume there are ψ targets at time k , i.e., the par-
ticles after resampling will gather around ψ clusters in
the ideal situation. We denote the total cluster set as
C =

{
C1, · · ·Cη · · · ,Cψ

}
, and define the average distance

in each cluster as

avg
(
Cη
)
=

2∣∣Cη∣∣ (∣∣Cη∣∣− 1
) ∑

1≤α<β≤|Cη|
dist

(
x(α)k , x(β)k

)
(32)

where
∣∣Cη∣∣ is the number of particles in the cluster Cη, x

(α)
k

and x(β)k are two different particles in Cη, dist
(
x(α)k , x(β)k

)
=∥∥∥x(α)k − x

(β)
k

∥∥∥
2
, is the Euler distance. Define the distance

between two clusters as

dcen
(
Cε,Cφ

)
= dist

(
�ε, �φ

)
(33)

where �ε is the centre of Cε, �φ is the centre of Cφ . The
definition of DBI is

DBI =
1
ψ

ψ∑
ε=1

max
ε 6=φ

(
avg (Cε)+ avg

(
Cφ
)

dcen
(
�ε, �φ

) )
(34)

Given the maximum target number ψmax, we just need
to calculate the DBI successively by changing the value of
ψ from 1 to ψmax. The particular ψ that minimizes DBI is
the optimal estimation and is denoted as ψopt . The ψopt is
assumed to be the estimated target number, and the centrals
of ψopt clusters are the estimated target states.

V. SIMULATIONS AND RESULTS
To test the effectiveness of the proposed PHD-TBD particle
filter, we have designed a scenario that has a time-varying
and unknown number of targets. A maximum of 5 targets are
present at any time, and there are various target births/deaths
throughout the scenario duration of K = 50s. The target
motions are modelled by a nonlinear constant turn model,
the target state has to be expanded to include the turn rate
ωk , i.e., x̃k =

[
xTk ωk

]
, and

xk = F (ωk−1) xk−1 + Gςk−1
ωk = ωk−1 +3uk−1 (35)

FIGURE 1. Ture tracks for 5 targets appearing and disappearing at
different times.

where

F (ω) =


1

sin (ω3)
ω

0 −
1− cos (ω3)

ω
0 cos (ω3) 0 sin (ω3)

0
1− cos (ω3)

ω
1

sin (ω3)
ω

0 sin (ω3) 0 cos (ω3)

 (36)

G =
[
32/2 3 0 0
0 0 32/2 3

]T
(37)

3 is the sampling interval and let 3 = 1s, G is the
input matrix, the process noise ςk is assumed to be ςk ∼
N
(
ςk ; 0, σ 2

ς I2
)
where I2 is an 2 × 2 identity matrix, uk is

assumed to be uk ∼ N
(
uk ; 0, σ 2

u
)
, and σς = 0.01m/s2,

σu =
(
π
/
180

)
rad

/
s.

The other parameter values are1x = 1y = 1, l = m = 45,
σ = 1, 6 = 1, I0 = 30. The initial states of target are set as
in Table 1.

TABLE 1. The initial states of target.

As is modelled in Section 2, the observations can be gen-
erated using (4), (5) and (6). A typical observation is given
in Fig. 2.

1000 particles are used to maintain per expected target’s
track, Jk = 3000 new-born particles are used to explore the
target space. We generate the positions of new-born particles
by uniformly sampling from T (zk), the velocities of the
birth particles are generated from the uniform distributions,
i.e., ẋk ∼ U (−1, 1) , ẏk ∼ U (−1, 1), the turning rate of
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FIGURE 2. An image observation of 5 targets at time 30.

the new-born particles are generate from uniform distribution,
i.e., ωk ∼ U

(
−π

/
90,π

/
90
)
.

Several times of the position distribution of the particles
after resampling and the targets are given in Fig. 3.

As is shown in Fig. 3, the particles gather around the target
position over different times, which means that the PHD
filter works well. Then we just need to extract the target
number and target states from the particle clusters. The
general PHD-TBD filter, the proposed PHD-TBD, and the
ideal PHD-TBD filter that assume the true target number
at different times is already known are used to estimate the
multitarget state and the target number. The results are shown
in Fig. 4 and Fig. 5.

Fig. 4 and Fig. 5 should be explained together. As is shown
in the two figures above, the general PHD-TBD filter overes-
timates the target number, which is shown in Fig. 4 as many
target states overlap around the real target states, and shown
in Fig. 5 as the estimated target number seriously deviates
from the truth. The performance of the proposed PHD-TBD
filter improves greatly, which is shown in Fig. 4 as the state
overlap phenomenon reduces greatly, and shown in Fig.5 as
the estimated target states are in accordance with the true
values. The ideal PHD-TBDfilter is designed for comparison,
which is the upper bound that a PHD-TBD filter can reach.

The optimal subpattern assignment (OSPA) [30] is a
mathematically consistent yet intuitively meaningful way to
jointly capture differences in cardinality and individual ele-
ments between two finite sets. To confirm these single run
results, 100 Monte Carlo tests are performed and averaged.
Fig. 6 shows the estimation errors in terms of theMonte Carlo
averaged OSPA distance (for c = 100m, p = 1) for the
general, the proposed and the ideal PHD-TBD filter. These
results confirm that the proposed PHD-TBD filter performs
accurately and consistently, though the performance is not
ideal at several times, is still better than the general PHD-TBD
filter. The estimation error of the general PHD-TBD filter
remains at a relatively high level because of the overestima-
tion of the target number.

To study the effect of target intensity on the performance
of the filters, we assume the multiple targets have the same
intensity which is based on various choices of the SNR

FIGURE 3. The position distribution of particles and targets over several
times. One particle is denoted as a little dot and the targets are
represented as ‘x’. (a) At time 8; (b) At time 18; (c) At time 35;
(d) At time 47.

given by

SNR = 10 log

(
I01x1y

/
2π62

σ

)2

(38)
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FIGURE 4. The multitarget states estimation given by the general
PHD-TBD filter, the proposed PHD-TBD filter, and the ideal PHD-TBD filter.
(a) The general PHD-TBD filter; (b) The proposed PHD-TBD filter; (c) The
ideal PHD-TBD filter.

We test the performance over 100 Monte Carlo runs for
3, 6, 9, 12 dB for the proposed, the general and the idea
PHD-TBD filter. The result is shown in Fig. 7.

Fig. 7 shows that the performance of the filters all gets
better with higher target intensity. The proposed PHD-TBD
filter outperforms the general PHD-TBD filter significantly
with various SNR settings.

The computational demands of the general PHD-TBD and
the proposed PHD-TBD filter are assessed by benchmarking
their processing times on a generic PCwith 2.5 GHz CPU and

FIGURE 5. The estimation of target number.

FIGURE 6. Monte Carlo averaged OSPA miss distance versus time with
c = 100m and p = 1 for the general, the proposed and the ideal
PHD-TBD filter.

FIGURE 7. Monte Carlo averaged OSPA miss distance versus SNR with
c = 100m and p = 1 for the general, the proposed and the ideal
PHD-TBD filter.

4.0 GB RAM in the Matlab environment. Though the pro-
posed PHD-TBD filter has to find optimal target number and
it seems to have increased the computation demand superfi-
cially. In fact, as the proposed method gives a much better
estimation of the target number, the computation demand for
multitarget state extraction decreases greatly. The average
single running time for the general PHD-TBD filter is 15.47s,
while the single running time for the proposed PHD-TBD
filter is 9.69s, which shows that the proposed method is more
efficient.

VI. CONCLUSION
In this paper, we have modified the TBD observations
to make it available for PHD filter and proposed a new
PHD-TBD approach. A threshold method is used to adapt
the distribution of false alarms to Poisson distribution, and
a clustering technique is used to solve the problem of over-
estimation of the target number. Simulation results indicate
that the proposedmethod is superior to the general PHD-TBD
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method in both estimation accuracy and running efficiency.
The ideal PHD-TBD filter which assumes the target num-
ber is known at different times is also set for comparison.
It indicates that if the target number has been better estimated,
i.e., using a better clustering technique, the performance can
be improved further, and such work will be carefully consid-
ered in the future study.
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