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ABSTRACT A novel plug-in electric vehicle (PEV) charging coordination scheme for smart buildings,
processed in two separate stages bridged by a load guided signal, is proposed in this study. The goal
of the proposed coordination is to minimize the overall energy cost of the building, while satisfying the
desired target and operation range of the state of charge (SoC) of each PEV. As the PEV penetration level
grows, uncoordinated charging may impact the stability of the building’s energy system by increasing the
peak demand and introducing uncertainty. Consequently, the charging decisions on the PEV fleet require
considering the uncertainty of the drivers’ behavior and the power demand pattern of the coupled building.
In this study, a customized load guided signal is introduced for PEV fleet charging. It formulated and
implemented through mixed integer linear programming in two separate stages. The first stage involves the
extraction of the electric vehicle supply equipment (EVSE) based guide signal for the benefits and physical
constraints of the building’s energy system. The load guided signals are created by jointly investigating
the charging/discharging flexibility of the EVSE using load prediction and the PEV fleet to minimize the
electricity cost in the time-of-use energy market. In the second stage, the priority weight is exploited for
distributing the charging/discharging decisions for individual PEVs. To evaluate the performance of the
proposed method, numerical evaluations were conducted at various PEV penetration levels using a pair of
energy consumption and vehicle parking datasets for the building. The case study demonstrates that the
proposed scheme provides 12% load factor improvement and 13% cost reduction at a 50% PEV penetration
level.

INDEX TERMS Plug-in electric vehicles (PEVs), vehicle-to-grid (V2G), economic charging strategies,
charge scheduling, demand response.

NOMENCLATURE
INDICES
i Index of the plug-in electric vehicle (PEV),

i ∈ {1, 2, ..., I }.

k Index of the electric vehicle supply equipment (EVSE),
k ∈ {1, 2, ...,N ch

}.

t Index of time slot, t ∈ {1, 2, ...,T }.
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PARAMETERS AND CONSTANTS

γ ch Charging rate of the multi-charger station (kW).
γ dch Discharging rate of the multi-charger station (kW).
ηch Charging efficiency of the multi-charger station.
ηdch Discharging efficiency of the multi-charger

station.
Bi Battery capacity of the ith PEV (kWh).
ψmax
i Maximum allowed battery capacity range

of the ith PEV (kWh).
ψmin
i Minimum allowed battery capacity range

of the ith PEV (kWh).
tdepi Departure time slot of the ith PEV.
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tarri Arrival time slot of the ith PEV.
ξ cht Price per kWh of electricity for purchasing from

the grid at the t th time slot (KRW/kWh).
ξdcht Price per kWh of electricity for selling the electric-

ity at the t th time slot (KRW/kWh).
Pct Contracted power of the building.
cB Demand cost per kW of the building (KRW/kW).
N ch The number of the available EVSEs in the PEV

charging station.
NPEV
t The number of PEVs in PEV charging station at

the t th time slot.
κ The duration of the unit time slot.
χdeg The battery degradation cost when the EVSE

charges a PEV or discharges from a PEV in the
unit time slot (KRW).

β The battery cost of a PEV (KRW/kWh).
l The cycle life of the PEV battery.
α The state-of-charge (SoC) level for the control of

battery management.

VARIABLES
PBt Building power without PEVs at the t th time

slot in kW.
P̂Bt Predicted building power without PEVs at the

t th time slot in kW.
Cfc Facility-related demand cost (KRW).
CToU Price for purchasing/selling electricity based

on ToU tariffs (KRW).
Cip Incentive/penalty based cost (KRW).
Cdeg Battery degradation cost based on the k th

EVSE (KRW).
eδchk,t , eδ

dch
k,t Charging and discharging indicators of the k th

EVSE, eδchk,t , eδ
dch
k,t ∈ {0, 1}.

pδchi,t , pδ
dch
i,t Charging and discharging indicators of the ith

PEV, pδchi,t , pδ
dch
i,t ∈ {0, 1}.

ψ ini
i Initial SoC for the ith PEV.
ψ
dep
i Departing SoC for the ith PEV.
λit The probability density function for the exis-

tence of the ith PEV. bit The weight for the
battery management of the ith PEV.

I. INTRODUCTION
Incresing environment concerns and fossil-fuels exhaustion
are boosting plug-in electric vehicles (PEVs) as a practi-
cal solution for sustainable transportation. The PEV market
increased sharply over the past decades as additional supports
emerge in countries with the global PEV stock expected to
reach 20 million in 2020 [1]. However, large-scale adoption
of PEVs increases the peak electricity demand, requiring
extra power plants, and degrades the stability of the power
system on the building’s energy system [2]. Furthermore,
the uncertainty of PEV charging, if uncoordinated, causes
several undesired side effects including voltage drop, power
loss, and high energy cost [3], [4]. Contrarily, PEVs provide

numerous grid services like cost minimization, peak power
reduction [5], valley filling [6], [7], and voltage manage-
ment [8] by exploiting the battery of the PEV as a distributed
energy resource (DER) with bi-directional charging. Besides,
since the idle time of most vehicles takes about 90% of a
regular day in the parking lot [9], PEV charging time is widely
shiftable and is flexible [10].

Smart integration of a PEV or PEV fleet to a building
energy system involves studies with broad perspectives
including bi-directional charging capability supporting
vehicle-to-grid (V2G) and conventional grid-to-vehicle
(G2V) [11]. Several potential grid services associated with
PEVs have been investigated in recent years [12]. Operation
modes like G2V and V2G enhance the reliability of the
power system and reduce energy costs by properly selling
and purchasing power. The PEV charging coordination for
reducing energy costs is investigated in [13]. In [13], the PEV
battery reaches the desired state-of-charge (SoC), followed
by the PEV owner incentive cost with adjustment of the
charging schedule during the time left. The application of
PEV charging schemes in vehicle-to-building (V2B) systems
require satisfaction of the PEV owner for driving since the
driving pattern is critical from the vehicle’s perspective.

Consequently, many researchers have studied driving pat-
terns and modeled the PEV battery. In [14], six driving pat-
terns of vehicles were modeled using fuzzy modeling, with
the PEV charging scheduling method implemented based on
the driving pattern models. Likewise, reference [15] ana-
lyzed the distribution of the traveling distance of PEVs and
the energy level of the battery using historical PEV driv-
ing data. However, the uncertainty of PEV mobility and
fairness assignment of the charging amount were neglected
in these studies. Since it is unreasonable to use a battery
of a particular PEV frequently due to battery degradation,
the coordinator of the PEVmanagement systemmust allocate
charging/discharging schedules between PEVs fairly. In [16],
a fairness energy scheduling algorithm is proposed by eval-
uating the charging priority of each PEV. In a residential
energy system, fair charging and discharging between PEVs
is performed to reduce peak power. Moreover, reference [17]
evaluates the charging priority to mitigate charging service
conflicts and reduce the energy cost in the office environment.

The price of a PEV is currently higher than that of a fossil-
fuel vehicle because of the battery cost [18]. Thus, the addi-
tional cost benefits to the PEV’s owner are needed to increase
the PEV market. Although PEV fleets provide a variety
of services, typical consumers including PEV and building
owners desire control of the electric devices for reduction
of the energy cost. Therefore, electric utilities manage the
power demand of the PEV fleet by appropriately adjusting
the price-signal, because the general PEV charging scheme
is dependent on the price-signal. The price-signal is divided
into the energy cost, demand cost and incentive/penalty-based
rate like demand response (DR) [19]. The positive economic
effect of V2G is reported in [20], [21], with optimal charging
strategies for energy reduction investigated by many research
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groups. In [22], the PEV charging operations of a PEV fleet
in a charging station was evaluated in the diverse electricity
market including the time of use (ToU), real time price (RTP)
and DR. In [23], a PEV charging strategy is proposed for min-
imizing the energy cost by restraining the increases in facility-
related demand cost by a PEV fleet through the reduction of
maximum peak load in the ToU market. In [24], a charging
coordination scheme is advanced for maximizing the profit
while mitigating potential overloads and minimizing the cost
to PEV owners, considering the RTP/DR market. Similarly,
reference [25] evaluates the RTP and DR based charging
strategies using the PEV and energy storage system (ESS)
in residential building. In [26], the distributed DR algorithm
is proposed to maximize the benefit to the PEV owner in the
DR market, with the convenience evaluated.

To control a large-scale PEV fleet, the PEV charging
coordination method necessitates various considerations like
uncertainty of the PEV owners’ behavior, the battery charg-
ing cost, and the energy state of the parking station. Many
researchers therefore investigated multi-level optimization
methods. In [27], a bi-level coordination model is pro-
posed, with the upper-level optimization model enabling
profit maximization for the aggregation of the power sys-
tem, while the lower-level optimization model provides profit
for the parking station. Reference [28] suggests a bi-level
PEV coordination model, where the first-level optimiza-
tion maximizes the benefits to the PEV owner through
the PEV characteristics and the second-level optimization
ensures the minimization of the system cost. Reference [29]
utilized a two-stage optimization method for power man-
agement comprising a first-level optimization for active
power management and a second-level for reactive power
management.

This study proposes an effective PEV charging coordina-
tionmethod that minimizes the energy cost while maximizing
the PEVs’ owners satisfaction by considering the electrical
equipment of the smart building. To meet these perspectives,
this study employs a two-stage optimization. In the first-stage
optimization, the load shape of the building for minimization
of the energy cost through the EVSEs’ charging operations
is handled. The energy profile based on the EVSEs in the
PEV charging station is defined as the load guided signal
for charging/discharging controls of PEVs. The load guided
signal is created by jointly investigating the price-signal, load
profile of the building, and energy flexibility of the PEV
charging station. Thereafter, the second-stage optimization
coordinates the charging schedule of each PEV to satisfy
the desired SoC of each PEV and the load guided signal.
This two-stage optimization problem is formulated in the
day-ahead scenario as a mixed integer linear programming
problem. The proposedmodel considers the uncertainty of the
PEV owners’ behaviors, and the prediction error related to the
building load. Although minimization of the energy cost and
the behavior of PEVs have been intensively studied, no previ-
ous work evaluates the flexibility of EVSEs in the PEV charg-
ing station and handles fairness of the charging amount with

the uncertainty of PEV owners behaviors. Hence, the contri-
bution of this study is summarized as follows:
• Development of a two-stage optimization model to

minimize energy cost and improve the stability of the
building’s energy system

• To model a realistic PEV charging coordination
scheme, calculation of energy flexibility on a PEV
parking station based on evaluation of the available
energy of EVSEs

• Fair assignment of the charging amount between PEVs
considering the uncertainty of PEV owners’ behaviors

A system model is introduced for the proposed scheme in
Section II, while the load guided signal based the two-
stage charging coordination is described in Sections III-IV.
Case studies are presented in Section V, and Section VI
contains conclusions.

II. SYSTEM MODEL
The operation of the scheme proposed in this study illustrated
in Fig. 1. The proposed system minimizes the energy cost
by controlling electric components in a building energy sys-
tem. The energymanagement system acquires information on
parameters like the SoC levels of the PEV fleet, the predicted
building load, and the charging/discharging prices of the
EVSEs. The data are transferred using communication meth-
ods including zigbee andWIMAX [30]. The integrity of com-
munication is assumed in the proposed model. The proposed
algorithm uses data for various parameters to initiate charging
of EVSEs as needed, saving energy cost while serving the
desired battery levels of the PEV fleet. The components of
the system model are described in subsequent sections.

A. THE PEV MOBILITY MODEL
To explain the method proposed in Section III, the mobility
of the PEV fleet is an important factor since it determines
the available energy supporting the building’s energy system.
Thus, the departure/arrival times of the PEV fleet must be
decided before applying the proposed algorithm. Modeling
of the mobility of the PEV fleet requires the vehicle in-and-
out data of parking management system, and that provided by
the C research institute in South Korea is used. The mobility
models rely on Gaussian distributions through K-means clus-
tering in Fig. 2 [23]. The PEV fleet model is defined as three
types including the full day (F), morning (M ), and afternoon
(A) based on arrival times (tarri ) and the parking duration
(di) of the PEV fleet. Since C building is a commercial-
type building, the F type represents the general mobility
model of workers and ismodeled through the bivariate normal
distribution (dF , tF ) ∼ N (µF , 6F ). Likewise,M and A types
in Fig. 2 are driving patterns of visitors modeled through
bivariate log-normal distribution like (ln(dM ), ln(tarrM )) ∼
N (µM , 6M ) and (ln(dA), ln(tarrA )) ∼ N (µA, 6A).

B. THE PEV BATTERY MODEL
The amount of flexible energy of the PEV fleet for various
grid services depends on the capacity of the PEV battery
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FIGURE 1. Overall flow of the proposed system based on two-stage optimization.

FIGURE 2. Vehicle fleet pattern modeling from the C research institute
data.

and the arrival/departure SoCs. To simulate the proposed
algorithm, PEV models with three efficiencies ε and battery
capacities B are considered (Table 1). Furthermore, the daily
driving distance is modeled as D ∼ N (µd , 6d ), where µd
and 6d are the mean and standard deviation of the driving
distance of the statistical driving data from South Korea [31].
In addition, the arrival/departure SoCs of the PEV fleet are
formulated using the daily driving distance given by

ψ ini
i = ψ

min
i + φi, ψ

dep
i =

D
2ε
+ ψ ini

i , (1)

where φi is a random value based on the normal distri-
bution for the initial SoC, that expresses the uncertainties
of the arrival times depending on the driving patterns of
PEV owners. In addition, D assumes the driving distance on
the round trip, whereas ψdep

i considers only a one-way trip.
To test more realistic scenarios, the battery stress model based
on the EVSE, χdeg, should also be exploited, indicating the

TABLE 1. Specifications of PEVs.

battery cost when the k-th EVSE charges any PEV in one-
time slot. The battery lifetime depends on the battery usage
pattern of the PEV’s owner, and it is quiet variable [32].
Hence, the battery stress model based on the charging rates of
EVSEs is evaluated by considering the battery lifetime given
below as

χdeg =
κ × γ ch × β

2× l
[KRW], (2)

where β and l are the battery cost per kWh and the cycle life
of battery, respectively, and κ is the duration of the one-time
slot, e.g., 15 min.

C. CHARGING STATION MODEL
The PEV charging station model for the smart building
involves constant charging/discharging rates including a
slow or fast charger. Thus, the two EVSE models involved
include:

(1) Slow EVSE model: the slow EVSE involves charg-
ing/discharging rates between 3 and 6kW, with the
full PEV recharging generally taking 4 to 12 hours.
The efficiency of the charging/discharging operation is
higher than that of the fast charger.

(2) Fast EVSE model: fast chargers involve charg-
ing/discharging rates between 7 and 22kW. The fast
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TABLE 2. Energy tariff for general service for the building load.

EVSE generates high load instantaneously or vice versa
in the building’s energy system.

To apply the PEV charging coordination scheme, the energy
demand of each EVSE is expressed using the charg-
ing/discharging rates given below as

PEVSEk,t = γ chηcheδchk,t + γ
dchηdcheδdchk,t , (3)

with constraints

eδchk,t + eδ
dch
k,t ≤ 1 (4)

The charging and discharging operations of PEVs involves
losses like transformer loss in the building, energy conver-
sion losses of the EVSE and PEVs, and transmission loss.
If charging/discharging operations are controlled using nom-
inal power rates without considering losses, the desired SoC
level of each PEV may be unsatisfied or the building energy
may become more unstable. Therefore, the efficiencies of
EVSEs are considered with the charging/discharging rates.
The charging/discharging rates of the PEVs assume constant
values, γ chk and γ dchk , whereas the charging/discharging rates
of the building consider the loss between batteries of PEVs
and the transformer of the building. To deliver the desired
charging energy to the PEV, the transfer of the charging
energy including the energy losses is required. Contrarily,
the energy received at the building is lower than the discharg-
ing energy of the PEV because of the energy losses. Thus,
ηchk is greater than 1 while ηdchk is lesser than 1.

D. PRICE DATA
The electricity market price modeling is based on the general
services ToU energy tariff model and the PEV charging ser-
vices ToU tariff model fromKorea electric power corporation
described in Table 2 and Table 3, respectively. The energy
tariff for general services implies the price information of
the grid providing the building with electricity. Since the two
energy tariffs are different, building operators can choose
an electricity seller including the grid and PEV owners by
comparing the price information. Also, South Korea ’s ToU
tariffs change each season as shown in Table 4 [17]. The PEV
owners and building operators coordinate to purchase or sell
energy by referring to Table 4 to minimize energy costs.

In addition to the ToU tariff, baseline costs based on
demand cost linearly dependent on the contracted power and
a 2.5 times penalty for excessive usage over the contract
also exist. Thus, the baseline cost is reduced by lowering
the contracted power, whereas the overall cost is increased

TABLE 3. Energy tariff for electric vehicle charging.

TABLE 4. Time slot for each season.

by frequent penalties of excess power utilization. There-
fore, the contracted power requires careful determination by
jointly analyzing the building load and the PEV charging/
discharging behaviors.

III. PROBLEM STATEMENT
The proposed methodology for optimizing the PEV charging
coordination described in this section is summarized in Fig. 3.
The building comprises electric components including PEVs,
workloads, and DERs. Arbitrary activation of such com-
ponents may degrade the stability of the building’s energy
system because the behaviors of users involve sufficient ran-
domness. To mitigate the impact on the stability of the energy
system while minimizing the electricity cost, the actions of
the controllable components are carefully adjusted by con-
sidering randomness and uncertainties. This paper therefore
proposes a two-stage optimization method for the efficient
management of energy by coordination of the charging of
PEVs in smart buildings. In general, individual PEV owner’s
desire the cost benefit maximization by controlling the charg-
ing/discharging operation of batteries. However, the limited
electrical resources of the building is unable to accommodate
all requirements of PEVs, and the high energy demands of
a PEV fleet is generated in a low-price timezone in [17].
Therefore, energy flexibility is defined by jointly evaluating
the electrical equipment of the building and the price informa-
tion. Given the energy flexibility of the building, the charging
decision of the EVSE is favorably coordinated for stabi-
lization of the building’s energy system. Also, centralized
optimization is required to incorporate all physical and cost
conditions. That is, the PEV owners provide their charging
control to the building operator, and the building operator
satisfies the customer charging demands, while minimizing
the electricity cost. This study assumes that the building
operator pays the usage fees for the extra battery usage
of PEVs.
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FIGURE 3. The proposed two-stage PEV charging coordination method.

IV. MATHEMATICAL MODEL
A. FIRST OPTIMIZATION: BUILDING ENERGY
MANAGEMENT
The first optimization finds the charging/discharging oper-
ating schedules of EVSE, eδchk,t and eδdchk,t , that minimizes
the overall cost function while considering the physical con-
straints as below:

min
eδchk,t ,eδ

dch
k,t

(CToU + Cip + Cfc + Cdeg) (5)

The overall cost consists of the four terms in Eq. (5) including
the electricity costs of charging/discharging in the ToU tariff,
the penalty cost based on the contracted power, the baseline
cost of the contracted power, and the battery degradation cost,
respectively.

1) ELECTRICITY COSTS BASED ON TOU TARIFF
The first term is formulated by considering the charg-
ing/discharging operation profiles of the EVSE from the
building energy system’s perspective as below:

CToU =
T∑
t=1

N ch∑
k=1

ξ costk,t , (6)

where

ξ costk,t =

{
ξ cht × P

EVSE
k,t , PEVSEk,t ≥ 0

ξdcht × P
EVSE
k,t , PEVSEk,t < 0

(7)

The charging/discharging rates of EVSEs, PEVSEk,t , in Eq. (3)
is adjusted in consideration of the electricity costs by the time
based on the ToU tariff to minimize the charging/discharging
cost. In the multi-charger station, the number of available
EVSEs equals the number of connected PEVs, if all PEVs
utilize EVSE.

2) CONTRACTED POWER BASED BASELINE COST
Since the contracted power is changed by evaluating the
maximum peak load and the average power demand of the

building, reduction of the baseline cost is possible through
control of the energy resources. For management of the peak
load, the baseline cost of the building is given by

Cfc =
cB ×max(PBt +

∑N ch

k=1 P
EVSE
k,t )

30days
, (8)

where cB is the demand cost of the building in Table 2.
Since the demand cost for contracted power is paid monthly,
the demand charge is divided by 30 to apply the day-ahead
scenario.

3) INCENTIVE/PENALTY COST BASED ON THE LOAD
PROFILE
The third term in Eq. (5) is formulated by evaluating the
excess power, and meaning the additional cost based on the
load profile like DR. In South Korea’s electricity market of
South Korea, the building operator pays the penalty fee when
the power demands of a building exceed the contracted power.
In the proposed method, the penalty cost considered without
the incentive cost, as below:

Cip =


2.5× cB × Ppty

30days
, Ppty ≥ 0

0, otherwise,
(9)

where

Ppty = max(PBt +
N ch∑
k=1

PEVSEk,t − P
ct ) (10)

In Eq. (9), Cip(t) employs the 2.5 times penalty cost for
excessive power. Increasing the Pct reduces the penalty fee,
but adds the baseline cost in the building.

4) BATTERY DEGRADATION COST
The increase in charging amounts of each PEV incurs battery
degradation cost. To reduce the battery degradation cost,
the forth term is formulated using Eq. (2), as below:

Cdeg = χdeg
T∑
t=1

N ch∑
k=1

(eδchk,t + eδ
dch
k,t ) (11)

The battery degradation costs of connected PEVs assume
a constant value since it cannot be calculated precisely in
real-time.

5) ENERGY FLEXIBILITY OF BUILDING
The available energy capacity of the building is determined
by estimating the size of the internal DER capacity in the
building. If the DERs share energy in the building, the build-
ing energy system is perceived as a unitary energy system.
To evaluate the energy flexibility of the building, that of each
DER, i.e., PEV and ESS, must be calculated preferentially.
The available energy for a PEV each hour,FPEVi,t , is calculated
using the information of the PEVs’ battery including the
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FIGURE 4. The energy flexibility for a PEV.

initial SoC, departing SoC, and maximum capacity as given
below:

FPEVi,t = F1
i,t ∩ F

2
i,t ∩ F

3
i,t

F1
i,t = {(pt , t)|pt ∈ [κγ dch, 0, κγ ch], tarri < t < tdepi }

F2
i,t = {(pt , t)|

tdepi∑
t=tarri

pt + ψ ini
i > ψ

dep
i , t ≥ tdepi }

F3
i,t = {(pt , t)|ψ

min
i <

t∑
z=tarri

pz + ψ ini
i < ψmax

i }, (12)

where pt is controllable energy of a PEV at time t . The
F1
i,t is the available energy at time t when the PEV is in

the PEV charging station. When the PEV departs the station,
the SoC level of the PEV should contain the desired energy
in its battery. This constraint is denoted as F2

i,t . Also, the
F3
i,t limits the charging amounts by considering the maximum

andminimum capacity of the PEV’s battery, with z as the time
index for the cumulative sum. The energy flexibility of the
PEV is illustrated in Fig. 4.

For the evaluation of the total available energy of the build-
ing at each hour, the information of the PEV charging station
is evaluated by jointly combining the energy flexibilities of
the PEV fleet. The FSTt is introduced as the number of the
PEVs’ charging/discharging operations, which is lower than
the number of EVSE and the number of the parked PEVs, and
given below as

FBt = (∪Ii=1F
PEV
i,t ) ∩ FSTt , (13)

where

FSTt ={(eδ
ch
k,t , eδ

dch
k,t , t)|

N ch∑
k=1

(eδdchk,t +eδ
ch
k,t )<min(NPEV

t ,N ch)}

(14)

Thus, FBt expresses the available energy boundaries of the
building by exploiting the states of the EVSE and PEVs in
the building in Fig. 5. The proposed method controls the
charging/discharging operations of the PEV fleet within the
FB to minimize the overall electricity cost, and the charg-
ing/discharging operations of EVSE defines the load guided

FIGURE 5. The energy flexibility for the building energy system for
day-ahead scenario with the PEV penetration level 40%.

signal for the control of the charging/discharging operations
of the PEV fleet.

B. SECOND OPTIMIZATION: PEV USER SATISFACTION
To efficiently control the charging/discharging operations
of the PEV fleet, the first optimization method only con-
siders the overall cost of the building, whereas the second
optimization method only evaluates the user satisfaction of
the PEV. In the first optimization, the load guided signal
is generated from the evaluation of the electricity cost, and
the charging/discharging operations of the PEVs, pδchi,t and
pδdchi,t , are controlled to satisfy ensure the summation of their
charging energies equals the load guided signal in the second
optimization. The objective function for energy management
of the PEV fleet considers the user satisfaction values, which
are defined by using the probability density function of the
parked time of the PEV and the weights for battery control
and given as below:

min
pδchi,t ,pδ

dch
i,t

I∑
i=1

tdepi∑
t=tarri

(w1λ
i
t + w2bit ), (15)

where λit and bit are the probability density functions for
the ith PEV’s existence in the PEV charging station and the
weight for battery management of the ith PEV, respectively.
Also, w1 and w2 are conditioning weights for control of the
two factors. In addition, the energy flexibility of each PEV,
FPEVi,t , is required for limitation of the charging operation
in Fig. 4.

1) PEV’S EXISTENCE PROBABILITY BASED ENERGY
ALLOCATION
Since the arrival times and the departure times of the PEV
fleet are unpredictable, the operations of EVSE of the first
optimization may be unused in the actual PEV charging
station. Thus, the allocation priorities for EVSE operations
is calculated using the probabilities of the PEVs’ existence,
as below:

λit = pchi,tθ
i
tpδ

ch
i,t + p

dch
i,t θ

i
tpδ

dch
i,t , (16)

where

pchi,t =


t − tarri

tdepi − t
arr
i

, tdepi ≥ t ≥ tarri

0, otherwise
(17)
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pdchi,t =


tdepi − t

tdepi − t
arr
i

, tdepi ≥ t ≥ tarri

0, otherwise

(18)

θ it = f (x;µi; σ 2
i ), µi =

(tdepi − t
arr
i )

2
(19)

pchi,t and p
dch
i,t are the charging and discharging weights, with

the departure time showing a strong relationship to the charg-
ing priorities. Therefore, the charging controls of the PEVs
terminate rapidly when charging weights are used, and the
PEV departs the charging station earlier than the scheduled
departure time. The θ it is the probability density function of
the ith PEV’s existence, that considers a normal distribution in
the proposedmethod. High probabilities mean that the battery
of the PEV is usable. Also, the charging/discharging amounts
of each PEV is directly proportional the parking duration,
since the charging operations are evenly distributed to each
PEV based on the probability. In addition, the θ it assumes that
the standard deviation of the normal distribution increases
linearly depending on the parking duration of each PEV.

2) ENERGY ALLOCATION USING THE BATTERY STATE
The battery degradation cost is based on the driving patterns
of PEV owners [32]. To increase the battery lifetime, a SoC
level of battery between 65%-75% of battery capacity or spe-
cific values is recommended. Thus, a SoC control factor for
battery management is formulated as below:

bit =
t∑

z=tarri

|κ × PPEVi,z + ψ
ini
i − αBi|, (20)

where

PPEVi,t = γ
chpδchi,t + γ

dchpδdchi,t (21)

pδchi,t + pδ
dch
i,t ≤ 1 (22)

z is the time index for the cumulative sum. Also, bit is the
distance between the SoC level at time t and α% SoC, and
α is specific SoC level, that is recommended for increasing
the battery lifetime. When this factor is used, the SoC of the
battery is maintained around the specific SoC level during the
parking duration by controlling the values of α.

3) LOAD GUIDED SIGNAL BASED CHARGING OPERATION
In the second optimization, the number of charging/discharging
operations depends on the load guided signal. The number of
charging operations of EVSE is equal to those of the PEVs
and given below as

N ch∑
k=1

eδchk,t =
I∑
i=1

pδchi,t , ∀t

N ch∑
k=1

eδdchk,t =

I∑
i=1

pδdchi,t , ∀t (23)

FIGURE 6. The standard deviation and the average value of energy
prediction errors.

The second optimization satisfies the load guided signal,
minimizing the electricity cost, and jointly considering user
satisfaction.

V. NUMERICAL EVALUATION
Numerical evaluation of the performance of the proposed
PEV charging coordination is based on the system model
in Section II. To create the mobility model of the PEV
fleet for the day-ahead scenario, the vehicle information
randomly selects actual fossil-fuel vehicle entry-exit mon-
itored data in the test period considering the penetration
level. Also, the PEV multi-charger station with ±7kW
charging/discharging rate is considered, and the charging/
discharging efficiency parameters of EVSEs are set
to ηch = 1.05 and ηdch = 0.85. In addition, the battery cost
and battery lifetime are assumed as β = 150,000 KRW
and l = 10,000 cycles. To analyze the grid effects of PEV
fleet, the penetration level is set to 30%, 40%, and 50%.
The ratios of the three-vehicle model, including the Niro
EV, IONIQ, and Soul EV, are set to 30%, 30%, 40% of
the entire vehicle counts. To minimize the overall cost of
the ToU tariff, the charging cost of the PEV fleet utilizes
the electricity cost in Table 3, and the discharging cost of
the PEV fleet considers the electricity cost for providing
electricity from the PEV to the building using Table 2.
The average and standard deviations of the driving distance
models is considered asµd = 60 km and6d = 18.22. Finally,
the contracted power, Pct , is set to 755 kW by considering
the average of peak load and the excessive power in the test
period.

A. BUILDING LOAD PREDICTION METHOD
The energy prediction method is employed for a more prac-
tical evaluation. The time series model based linear predic-
tion method, which is a common energy prediction model,
is implemented for the day-ahead scenario. This method
involves linear filter coefficients that are decided by analyz-
ing the causality between the observed values using a refer-
ence [33]. The training data set is data from the past 1.5 years,
with the test period of the load prediction for analysis of
prediction errors set to 1 year. The standard deviation and the
average values of the prediction error were calculated, and
plotted in Fig. 6.
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B. PEV CHARGING COORDINATION MODELS FOR
COMPARATIVE ANALYSIS
1) FIRST COME FIRST SERVE (FCFS) CHARGING SCHEME
For comparison with the actual charging scheme, the FCFS
charging scheme as introduced in [13] are employed. In the
FCFS charging method, when PEVs are connected to the
grid, the batteries charge promptly at the charging rates of
the EVSE. The charging operations terminate when the their
batteries meet the desired energy. The FCFS charging scheme
is formulated as below:

min
pδchi,t

I∑
i=1

tdepi∑
t=tarri

pchi,t × pδ
ch
i,t , (24)

where

tdepi∑
t=tarri

(κγ chpδcht,i)+ ψ
ini
i > ψdes

i (25)

2) ToU WEIGHTED COORDINATION METHOD
For intuitive evaluation, the ToU weighted coordination
method introduced in reference [2] is tested. When the elec-
tricity price is high in the ToU tariff at time t , each PEV
discharges the extra energy saved. The PEV freely charges
and discharges within the energy flexibility of each PEVs,
FPEVi,t , by considering the ToU tariff as below:

min
pδdchi,t ,pδ

ch
i,t

I∑
i=1

tdepi∑
t=tarri

κ(ξ cht γ
chpδchi,t + ξ

dch
t γ dchpδdchi,t ), (26)

with constraints
I∑
i=1

(pδdchi,t + pδ
ch
i,t ) < N ch

tdepi∑
t=tarri

κ(γ chpδchi,t − γ
dchpδdchi,t )+ ψ

ini
i > ψdes

i , (27)

where N ch is the number of the available chargers, and
the number of the available chargers equals the number of
PEVs in the multi-charger station environment. This method
can generate a high peak load, since only the ToU tariff is
considered. Also, the total benefit is reduced if the battery
degradation cost is considered.

C. CASE STUDIES
The performances of three PEV charging strategies are eval-
uated within a week duration in summer. In the first opti-
mization of the proposed method, the charging operations of
the EVSE is controlled to minimize the overall electricity
cost by considering the information of the PEV fleet. The
charging operations of the EVSE in the day-ahead scenario
is expressed as illustrated in Fig. 7.

The energy flexibility boundaries through the PEV fleet
in the building is expressed by the black line, and the load

FIGURE 7. Load guided signal based on the first charging optimization.

FIGURE 8. The probability density function of PEV existence based on the
normal distribution with the PEV penetration level 40%.

FIGURE 9. The charging/discharging priorities of two PEVs.

guided signal based on the electricity cost means the cumula-
tive energy of the charging operations of EVSEs. The charg-
ing operation of each PEV is controlled to match the charging
energy amounts of the PEV fleet to the load guided signal.
To allocate the charging operations to PEVs, the probability
density function of the PEV’s existence is expressed as shown
in Fig. 8. Since the probability density function is high value
when the duration of parking is short, the PEVs with short
parking periods charge their desired energy rapidly. In con-
trast, the PEVs with the long parking periods implement
the charging strategies, when the PEVs with short parking
periods are absent in the PEV charging station.

The charging/discharging priorities of two PEVs are dis-
played in Fig. 9. The charging priority is higher than the
discharging priority near the arrival time of the PEV. This
means that the charging operation usually occurs before the
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FIGURE 10. The PEV charging profiles of three PEV charging coordinations with penetration level 40%.

discharging operation, and the charging operation of most
PEVs is completed quickly before departure time.

The load profiles of three charging coordination methods
in the day-ahead scenario are compared in Fig. 10. In the
commercial building, the FCFS method produces a high
peak load in the morning, when most people are commuting.
In addition, the load profile of the FCFS method is heavily
influenced by the driving pattern model of the PEV fleet,
because the maximum peak load appears when the arriving
number of PEVs is high. Thus, the maximum peak load is
generated in the morning if the number of F type and M
type vehicles increases. The ToU weighted coordination is
shown in the the magenta line in Fig. 10. In the ToU weighted
coordination, high fluctuation of power emerges depending
on the ToU tariff, with the power overload generated because
all PEVs charge at low-price timezone. Conversely, the pro-
posed method is represented by the dotted red line, providing
low peak power and low fluctuation because the demand cost
of the contracted power and the ToU tariff are considered
jointly. The baseline cost is paid monthly the contracted
power. In the proposed method, the new contracted power is
decided from the highest value of the power profiles in the
simulation period. If the maximum peak load occurs on the
previous day, the batteries of the PEVs in following day are
charged and discharged using the ToU tariff by configuring
new contracted power based on the maximum peak power of
the previous days. In the fourth day in Fig. 10, the charging
operations of the proposed method is based on the ToU tariff
under a new contracted power.

The cost performances of these charging coordination
methods are evaluated, as illustrated in Fig. 11. This result
shows the average values of the costs and the standard
deviations of costs from 10 tests. The baseline cost of the
proposed method is the lowest value, since the maximum
peak power is reduced. However, the battery degradation
cost and charging/discharging loss cost is higher than for the

FCFS method, since much energy is used to reduce the max-
imum peak load. On the other hand, the ToU weighted coor-
dination generates high penalty cost and high battery degra-
dation cost, and the overall cost is about 40% higher than for
the FCFSmethod. In addition, the ToU tariff weighted coordi-
nation pays additional cost, because the battery degradation
cost and the contracted power are not considered. In terms
of the battery degradation cost, the FCFS method has the
best solution, because the charging operations of the PEV
fleet meet only to the desired energy, but it generates a high
peak load in the building at morning time. Consequently,
the overall cost of the proposed method is about 7% better
than FCFS method in penetration level 40%.

In this study, the stability of the power system by PEV fleet
is analyzed. The load factor is obtained by accounting for the
base load of the building and the charging energies of PEVs,
as follows:

Load factor=

∑T
t=1(P

B
t +

∑N ch

k=1 P
EVSE
k,t )

max(PBt +
∑N ch

k=1 P
EVSE
k,t )

×
100
T

[%] (28)

The load factor is an indicator of whether the power equip-
ment is operating efficiently. As the load factor approaches
100%, it means that the power equipment is used efficiently.
The load factors of the building according to the charging
strategies are compared in Fig. 12. It is confirms that the
FCFS method and the ToU weighted coordination increase
the maximum peak load, and lower the load factors. In con-
trast, since the maximum peak load of the proposed method is
lower than base load, this stabilizes the power system. With
a penetration level of 40%, the load factor of the proposed
method improves by about 9% relative to that of the FCFS
scheme with the results analyzed in Fig. 13.

The performance improvement rate means the degree
of improvement when the proposed method is compared
with the FCFS method. As the number of PEVs increases,

VOLUME 7, 2019 144557



S. Yoon, E. Hwang: Load Guided Signal-Based Two-Stage Charging Coordination of PEVs for Smart Buildings

FIGURE 11. The cost performances of three charging strategies with the PEV penetration level 40%.

FIGURE 12. The impact of the three charging strategies with penetration
level 40%, (left) the maximum peak load, and (right) the load factor on
power system.

FIGURE 13. Performance improvement rate of the proposed charging
coordination by penetration level.

the energy required by PEVs also rises. Thus, the FCFS
method generates a higher peak load and high overall costs.
Conversely, the proposed method offers more positive effects

for the building’s energy system, because the building energy
system has lots of available energy at high penetration level.
Thus, the performance improvement rate is improved, as the
penetration level increases, as described in Fig. 13. In addi-
tion, since the driving patterns of the PEV fleet are created
randomly, the variation of results exists. If the parking dura-
tion of most PEVs is short, the energy flexibilities of the PEV
fleet is reduced. As the result, the driving pattern models
of the PEV fleet affects the performance of the proposed
method.

In our proposed system, the performances using the pre-
diction error are evaluated in order to consider the actual
environment. To evaluate the performance, the building load
profile are used through the load prediction instead of actual
load profile, as below:

PBt = P̂Bt + w3σ
pred
t , (29)

where σ predt is the standard deviation of prediction errors
at time t as shown in Fig. 6, and w3 is the conditioning
weight, which acts as the buffer of the prediction error. In the
proposed method, when the prediction error is quite large,
its buffer suppresses the charging amount of the PEV fleet
to lower the contracted power. Instead, the overall cost per-
formance may decrease, and the load factor and cost perfor-
mances by the prediction errors are described in Fig. 14. The
load prediction error is calculated using the mean absolute
percentage error (MAPE). As the prediction error increases,
the performance improvement rate is reduced dramatically
in Fig. 14. When w3 = 1 or 2, the performances of cost and
load factor is compensated. However, the cost performance
of the proposed method is lower than the FCFS method if
MAPE is 5.5%, although the buffer is used. To apply the
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FIGURE 14. Performance improvement rate of PEV charging coordination
based on load prediction of building with penetration level 50%.

FIGURE 15. The battery performance of PEVs by w2 for PEV owner. (a) the
average SoC of PEVs and the charging completion time. (b) the histogram
of battery SoCs.

proposed method, the prediction, showing a high perfor-
mance is needed.

In this study, the user satisfaction is also evaluated. The
previous methods for V2B does not consider the variation
of the SoC levels of PEVs. To improve the lifetime of the
battery, the SoCs of PEVs must stay within a certain range.
For the evaluation of the battery states, the ρ factor for battery
lifetime is defined as below:

ρ =
1∑T

t=1 N
PEV
t

I∑
i=1

tdepi∑
t=tarri

bit
Bi
× 100[%], (30)

where ρ is the average of the distances between α% and
SoC levels of the PEV fleet. The α configures 50% in the
day-ahead scenario, and as w2 increases, it is shown that
many PEVs proceed charging operations near 50%, as illus-
trated in Fig. 15(a) and (b). The performance of ρ improves
as the w2 increases. However, the performance of rho con-
verges specific value when w2 is larger than 0.3 because each
PEV should satisfy the departing SoC level.

In addition, the charging completion time (CCT) is evalu-
ated as the user satisfaction values. If the charging operations
of the PEV fleet quickly ends, the variation of the PEV’s

departure time does not affect the PEV charging coordination
method. Therefore, the CCT is an essential factor for the
evaluation of the user satisfaction, and is formulated as:

CCT =
I∑
i=1

(
max((t − tarri )× pδchi,t )

tdepi − t
arr
i

)×
100
I

[%] (31)

A low CCT value implies the charging operation of most
PEVs ends quickly. The charging operation of PEVs finishes
rapidly before the departure time if only the probability den-
sity function of PEV’s existence is considered (w2 = 0).
As w2 increases, the charging complete time rises, as dis-
played in Fig. 15(a). Thus, w1 and w2 require proper control
considering the effects of battery and CCT.

VI. CONCLUSION
This study introduces a novel PEV charging coordination
scheme for flexible charging/discharging operations of the
PEV fleet by considering the energy cost of the building as
well as the PEV requirements. The proposed method consists
of two optimization processes with separate objective func-
tions. The first optimization minimizes overall energy cost
of the building by controlling the operations of the EVSE
in the PEV charging station of the building, while limiting
the impact on the stability of the building’s energy system.
In this step, all cost constraints are jointly considered like the
ToU tariff, contracted power, and battery degradation costs.
In the second optimization, the satisfaction of PEV owners
is the primary concern, and it is improved by prioritizing
the charging demands of the PEVs by the probability density
function of their existence and SoC levels of their batteries.
For evaluations, the impacts of the load prediction error and
penetration level on the performances of both the electricity
cost and the load factor are investigated. The results of case
studies are summarized:

− The cost benefit of the PEV fleet in smart building is
generated from the reduction of the demand charge cost
mainly. The proposed method could provide 12% cost
reduction and 13% load factor increase with penetra-
tion level of 50%. For the power system, the proposed
method contributes in stabilizing the building’s energy
system, since the peak power is reduced by utilizing the
available energy of the PEV fleet.

− For the PEV’s owner, the user satisfaction is improved
by completing the charging request of PEV quickly.
Also, the lifetime of the battery is improved by care-
fully controlling the priority of the PEVs.
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