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ABSTRACT The nonlinear Fourier transform (NFT) has recently gained significant attention in fiber optic
communications and other engineering fields. Although several numerical algorithms for computing theNFT
have been published, the design of highly accurate low-complexity algorithms remains a challenge. In this
paper, we present new fast forward NFT algorithms that achieve accuracies that are orders of magnitudes
better than current methods, at comparable run times and even for moderate sampling intervals. The new
algorithms are compared to existing solutions in multiple, extensive numerical examples.

INDEX TERMS Nonlinear Fourier transform, transforms for signal processing, fast algorithms for DSP,
nonlinear signal processing.

I. INTRODUCTION
The fast Fourier transform (FFT) is a well-known success
story in engineering. From a numerical point of view, the FFT
provides a mere first-order approximation of the discrete-
time Fourier transform one is actually interested in. Hence the
success of the FFT is quite surprising. Upon closer inspection,
it however turns out that approximations based on FFTs are
very accurate if the signal is smooth [1]. Recently, nonlinear
Fourier transforms (NFTs) have been gaining much atten-
tion in engineering areas such as fiber-optic communications
[2], [3] and coastal engineering [4], [5]. NFTs are general-
izations of the conventional Fourier transform that allow to
solve specific nonlinear evolution equations in a way that is
analogous to how Fourier solved the heat equation [6]. The
evolution of the nonlinear Fourier spectrum is, exactly like in
the linear case, much simpler than the evolution of the orig-
inal signal. NFTs also have unique data analysis capabilities
that enable the detection of particle-like signal components
known as solitons [7].

Recently, a nonlinear variant of the FFT has been derived
[8], [9]. These type of fast NFTs (FNFTs) can provide up
to second-order accuracy [3]. Unfortunately, unlike for the
FFT, the accuracy of the FNFTs in [3], [8], [9] remains
(at most) second-order even when the signal is smooth.
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As a result, engineers currently have to strongly oversam-
ple even smooth signals in order to get reliable numerical
results [10, Section 4]. Several authors have proposed NFT
algorithms with higher orders of accuracy, utilizing either
Runge-Kutta [11], [12] or implicit Adams methods [13].
However, even though these methods have higher accuracy
orders, they require very small sampling intervals in order to
actually perform better than standard second-order method
such as [14]. For practically relevant sampling intervals, they
are typically not the best choice as they are slower and may
even performworse in these regimes. Numerical methods that
provide better complexity-accuracy trade-offs in practically
relevant regimes have been an open problem until recently.

In [15], the authors introduced a new numerical method
that can compute the NFT with accuracies that are orders
of magnitudes better than those of standard methods while
having comparable run times. The key enabler for this large
improvement in the complexity-accuracy trade-off was that,
for the first time, a so-called commutator-free exponential
integrator [16] of higher order was used to compute the NFT.
In a nutshell, the absence of commutator terms drastically
reduces the computational cost whereas the excellent perfor-
mance of exponential integrators is retained. However there is
one drawback remaining in [15]: The complexity of the algo-
rithm grows quadratically with the number of signal samples
D, which makes the algorithm attractive only if the number
of samples is not too high. In other words the algorithm is
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not fast. In this paper we overcome this limitation.Our main
contribution is the first fast higher-order NFT algorithm
based on an exponential integrator. By combining it with
Richardson extrapolation scheme, we arrive at an NFT
algorithm that requires only O(D log2 D) floating point
operations, but achieves a sixth-order [O(D−6)] error
decay.1 To the best of our knowledge no such algorithm
has been investigated in the literature before. We show
that the complexity-accuracy trade-off of the proposed
algorithm is dramatically better than that of existing stan-
dard methods. To give an illustration, we point out that in
one of our numerical examples, our new method achieves an
accuracy that is hundredmillion times better than the standard
second-order method in [14] at a comparable run time.2

The rest of this paper is structured as follows. In Section II
we recapitulate the required mathematical background of
the NFT. In Section III we derive improved versions of
our recently proposed numerical NFT in [15], and compare
them with both conventional second-order and other higher-
order NFT algorithms in multiple numerical examples. Then,
in Section IV, we demonstrate how some of our new numer-
ical NFTs can be made fast. The fast versions are compared
to their slow counterparts. Next, in Section V, we investigate
how Richardson extrapolation can improve the complexity-
accuracy trade-off of the fast NFT methods even further. The
paper is finally concluded in Section VI.3

Notation: Real numbers: R; R≥0 := {x ∈ R :

x ≥ 0}; Complex numbers: C; Complex numbers with posi-
tive imaginary part: H; Integers: Z; i :=

√
−1; Euler’s num-

ber: e; Real part: Re(·); Complex conjugate: (·)∗; Floor func-
tion: b·c; Absolute value: |·|; Matrix exponential: expm(·);
Matrix product:

∏K
k=1 Ak := AKAK−1 × · · · × A1; Matrix

element in the ith column and jth row: [·]i,j; Fourier transform
of the function f (t), F(f (t)) = f̃ (ξ ) =

∫
∞

−∞
f (t)e−itξdt;

Inverse Fourier transform of the function f̃ (ξ ), F−1(f̃ (ξ )) =
f (t) = 1

2π

∫
∞

−∞
f̃ (ξ )eitξdξ .

II. PRELIMINARIES
In this section we describe the mathematical machinery
behind the nonlinear Fourier transform (NFT). For illustra-
tion purposes we will describe the NFT in the context of
fiber-optic communications. Let q(x, t) denote the complex
envelope of the electric field in an ideal optical fiber, whose
evolution in normalized coordinates is described by the non-
linear Schrödinger equation (NSE) [17, Chap. 2]

i
∂q
∂x
+
∂2q
∂t2
+ 2κ|q|2q = 0. (1)

1The complexity estimate only contains the cost of computing the so-
called continuous spectrum as is usual in the NFT literature. Details on the
continuous spectrum will be given later in the text. The cost of computing
the discrete spectrum are highly problem dependent.

2Compare the error for CF[2]1 in Fig. 6 with that of FCF_RE[4]2 in Fig. 13
for the execution time 1 sec. We remark that although the execution times are
implementation specific, they still give a good indication of the advantages
of our proposed algorithm (see Appendix A).

3Some of the results were presented at the OSA Advanced Photonics
Congress, Zurich, July 2018 (SpM4G.5).

Here, x ≥ 0 denotes the location in the fiber and t denotes
retarded time. The parameter κ determines if the dispersion
in the fiber is normal (−1) or anomalous (+1).When κ = +1,
(1) is referred to as the focusing NSE and for κ = −1 (1) is
referred to as the defocusing NSE. The NFT that solves the
NSE (1) is due to Zakharov and Shabat [18]. It transforms any
signal q(t) that vanishes sufficiently fast for t → ±∞ from
the time-domain to the nonlinear Fourier domain through the
analysis of the linear ordinary differential equation (ODE)

∂V (t, λ)
∂t

= C(t, λ)V (t, λ) =
[
−iλ q(t)
−κq∗(t) iλ

]
V (t, λ), (2)

where q(t) = q(x0, t) for any fixed x0, subject to the boundary
conditions

V (t, λ) =
[
φ(t, λ) φ̄(t, λ)

]
→

[
e−iλt 0
0 −eiλt

]
as t →−∞,

V (t, λ) =
[
ψ̄(t, λ) ψ(t, λ)

]
→

[
e−iλt 0
0 eiλt

]
as t →∞. (3)

The term λ ∈ C is a spectral parameter similar to s in the
Laplace domain. The matrix V (t, λ) is said to contain the
eigenfunctions since (2) can be rearranged into an eigenvalue
equation with respect to λ [6]. One can view the eigenfunc-
tions V (t, λ) as being scattered by q(t) as they move from
t → −∞ to t → ∞. Hence (2) is referred to as the
scattering problem [18]. (Many problems in signal processing
can be expressed through such scattering problems [19].) For
(2) subject to boundary conditions (3), there exists a unique
matrix

S(λ) =
[
a(λ) b̄(λ)
b(λ) −ā(λ)

]
, (4)

called the scattering matrix, such that [6][
φ(t, λ) φ̄(t, λ)

]
=
[
ψ̄(t, λ) ψ(t, λ)

]
S(λ). (5)

The components a(λ), b(λ), b̄(λ) and ā(λ) are known as the
scattering data. The components a(λ) and b(λ) are suffi-
cient to describe the signal completely. Their evolution along
the x dimension (along the length of the fiber) is simple
[6, Section III]

a(x, λ) = a(0, λ),

b(x, λ) = b(0, λ)e−4iλ
2x . (6)

The reflection coefficient is then defined as ρ(λ) = b(λ)/a(λ)
for λ ∈ R and it represents the continuous spectrum. In the
case of κ = 1, the nonlinear Fourier spectrum can also
contain a so-called discrete spectrum. It corresponds to the
complex poles of the reflection coefficient in the upper half-
plane H, or equivalently to the zeros λk ∈ H of a(λ). It is
known that there are only finitely many (N ) such poles. The
poles λk are also referred to as eigenvalues and a corre-
sponding set of values ρk := b(λk )/

da(λ)
dλ

∣∣∣
λ=λk

are known
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as residues [6, App. 5]. There are different ways to define
a nonlinear Fourier spectrum. One possibility is {ρ(λ)}λ∈R,
(λk , ρk )Nk=1 [6]. The other is {b(λ)}λ∈R, (λk , b(λk ))Nk=1 [20].
In this paper we are primarily interested in computation of
ρ(λ) but some notes regarding computation of b(λ) and the λk
will also be given. Although we will illustrate our algorithms
by applying them to the specific case of NFT of NSE with
vanishing boundary condition, it should be noted that we in
fact presenting algorithms for solving a class of equations
similar to (2) [6, Eq. 2]. Hence the algorithms presented in this
paper should carry over to NFTs w.r.t. other nonlinear evolu-
tion equations such as the Korteweg–de Vries equation [21]
and other boundary conditions.

III. NUMERICAL COMPUTATION OF NFT USING HIGHER
ORDER EXPONENTIAL INTEGRATORS
In this section we will start by outlining some assumptions
that are required for the numerical methods that will be pre-
sented.Wewill give a brief overview of one of the approaches
for computing theNFT and then talk specifically about imple-
mentations using commutator-free exponential integrators.
To evaluate the methods, we describe examples and perfor-
mance criteria. We will finally show and compare the results
for various methods applied to the mentioned examples.

We remark that only one of the investigated
commutator-free exponential integrators can later serve
as basis for our new fast method. However, the remaining
higher order integrators have their own merits when the
number of samples is low, since (asymptotically) slowNFT
algorithms can be faster than (asymptotically) fast NFT
algorithms in that regime.

A. ASSUMPTIONS
Just like the FFT, the numerical computation of the NFT is
carried out with finitely many discrete data samples. Hence,
we need to make the following assumptions:

1) The support of the signal q(t) is truncated to a finite
interval, t ∈ [T−,T+], instead of t ∈ (−∞,∞). The
values T± are chosen such that the resulting truncation
error is sufficiently small. The approximation is exact
if q(t) = 0 ∀ t /∈ [T−,T+].

2) The interval [T−,T+] is divided into D subintervals of
width h = (T+ − T−)/D. We assume that the signal is
sampled at the midpoints of each subinterval tn = T−+
(n+0.5)h, n = 0, 1, . . . ,D−1 such that qn := q(tn).

B. NUMERICAL SCATTERING
The main step in numerically computing the NFT is to solve
the scattering problem (2) for φ(T+, λ) for different values
of λ. We can view the D subintervals as layers which scatter
the eigenfunction φ(t, λ) as it moves from t = T− to t = T+.
Using numerical ODE solvers we solve for an approximation
φ̂(T+, λ) ofφ(T+, λ). By taking ψ̄(T+, λ) andψ(T+, λ) equal
to the limit in (3) at t = T+, we can compute with (5)

a numerical approximation of the scattering data and ulti-
mately the reflection coefficient.

C. EXPONENTIAL INTEGRATORS
Almost any numerical method available in literature for solv-
ing ODEs can be used to solve for φ(T+, λ) [11], [22].
However, we are particularly interested in so-called expo-
nential type integrators. These methods have been shown to
provide a very good trade-off between accuracy and com-
putational cost in several numerical benchmark problems
while being fairly easy to implement, see [23] and references
therein. We propose to use a special sub-class known as
commutator-free quasi-Magnus (CFQM) exponential inte-
grators as some NFT algorithms based on these integrators
turn out to have the special structure [8] that is needed tomake
them fast. We show this in Section IV.

The results in [24] provide a scheme to compute a numer-
ical approximation φ̂(T+, λ) of φ(T+, λ). We start by fixing
φ̂(T+, λ) = H (λ)φ(T−, λ), where

H (λ) =

(
D−1∏
n=0

Gn(λ)

)
= GD−1(λ)GD−2(λ) · · ·G0(λ), (7)

with n being the index of samples of q(t).
The structure of Gn(λ) depends on the integrator and the

exact values depend on the signal samples qn and the value
of λ. For the integrator in [24], Gn(λ) = CF[r]J (tn, λ) which
leads to the following iterative scheme:

φ̂n+1(λ) = CF[r]J (tn, λ)φn(λ)

=

J∏
j=1

expm(Bj(tn, λ))φ(tn, λ)

= expm(BJ (tn, λ)) · · · expm(B1(tn, λ))φn(λ)

= φ(tn+1, λ)+O(hr+1), (8)

where expm is the matrix exponential

Bj(tn, λ) = h
K∑
k=1

ajkCk (tn, λ), j ∈ {1, . . . , J},

Ck (tn, λ) = C(tn + (ck − 0.5)h, λ), (9)

where ajk and ck ∈ [0, 1] for k ∈ {1, . . . ,K } are con-
stants that are specific to the integrator and C(t, λ) as in (2).
By iterating with (7) from n = 0, 1, . . . ,D − 1, we obtain
the numerical approximation of φ(T+, λ) that we need to
compute the NFT.

For an integrator CF[r]J , r is the order and J is the number
of matrix exponentials required for each subinterval. K is the
number of points within each subinterval where the signal
value needs to be known. We refer the reader to [24] for their
derivation.

An integrator of order r has a local error (error in each
subinterval) of O(hr+1). Over D (∝ 1/h) such subintervals
i.e., over the interval [T−,T+], the global error will beO(hr ).
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This distinction of local and global error will become impor-
tant when we define the error metric used to compare the
various algorithms in Section III-D.

The integrator CF[2]1 is also sometimes referred to as the
exponential midpoint rule. It was used in the context of
NFT for the defocusing NSE (κ = −1) by Yamada and
Sakuda [25] and later by Boffetta and Osborne [14]. For
CF[2]1 , (8) reduces to

φ̂n+1(λ) = Gn(λ)φn(λ), where

Gn(λ) = expm(hCn(λ)),

Cn(λ) =
[
−iλ qn
−κq∗n iλ

]
. (10)

This is applied repeatedly as in (7) to obtain φ̂(T+, λ). In [15]
we investigated the possibility of using CF[4]2 (first intro-
duced in [16]) to obtain φ̂(T+, λ). We were able to show its
advantage over CF[2]1 when considering the trade-off between
an error and execution time. Here we investigate further in
this direction and evaluate CF[4]3 , CF[5]3 and CF[6]4 , which are
fourth-, fifth- and sixth-order methods respectively.

The CFQM exponential integrators require multiple non-
equispaced points within each subinterval. However, it is
unrealistic to assume that signal samples at such non-
equispaced points can be obtained in a practical setting.
In [15] we used local cubic-spline based interpolation to
obtain the non-equispaced points from the mid-points of
each subinterval. (We will refer to the samples at these mid-
points as the given samples.) However we found that local
cubic-spline based interpolation is not accurate enough for
higher-order methods. Here, we propose to utilize the Fourier
transform and its time-shift property for interpolation, i.e.,

q(t − ts) = F−1(e−iξ tsF(q(t))), (11)

to obtain the samples on shifted time grids required for (9)
with ts = −(ck − 0.5)h. This interpolation rule is also
known in signal-processing literature as sinc or bandlimited
interpolation [26, Section 7.4.2] and it is accurate when q(t) is
sampled in accordance with the Nyquist criterion. As we are
working with discrete signal samples, the interpolation can be
implemented efficiently using the FFT. The MATLAB code
that we used can be found in Appendix B. We remark that
we use band-limited interpolation for all methods that require
non-equispaced samples: CF[4]2 , CF[4]3 , CF[5]3 and CF[6]4 .

D. ERROR METRIC AND NUMERICAL EXAMPLES
In this subsection, we compare the performance of CFQM
exponential integrators CF[2]1 , CF[4]2 , CF[4]3 , CF[5]3 and CF[6]4 ,
the two-step Implicit-Adams method (IA2) introduced in [13]
and the fourth-order Runge-Kutta method [11] (RK4) for
computation of the reflection coefficient. The fourth-order
Runge-Kutta method (r = 4) was the first fourth-order
method used for the computation of the reflection coefficient
in [11], [12]. We include the third-order two-step Implicit-
Adams method (r = 3) here as it was the first higher-order
method that was introduced in the context of fast nonlinear

Fourier transform. Themeaning of "fast" will bemade precise
in Section IV.

We are interested in evaluating the trade-off between the
increased accuracy and execution time due to use of higher-
order methods. We assess the accuracy of different methods
using the relative L2-error

Eρ =

√∑M−1
n=0 |ρ(λn)− ρ̂(λn)|

2√∑M−1
n=0 |ρ(λn)|

2
, (12)

where ρ(λ) is the analytical reflection coefficient, ρ̂(λ) is the
numerically computed reflection coefficient and λn are M
equally-spaced points in [−λmax, λmax]. Eρ is a global error
and hence it is expected to beO(hr ) for an integrator of order
r as explained in Section III-C. We compute the reflection
coefficient at the same number of pointsM as the number of
given samples D, i.e. M = D, unless mentioned explicitly
otherwise.

1) EXAMPLE 1: HYPERBOLIC SECANT, κ = 1
As the first numerical example we chose the signal q(t) =
◦qe−2iλ0 t sech(t). The closed form of the reflection coeffi-
cient is given by applying the frequency-shift property [27,
Section D] to the analytical known reflection coefficient of
the secant-hyperbolic signal [28],

ρ(λ) =
b(λ)
a(λ)

,

b(λ) =
− sin( ◦qπ )

cosh(π (λ− λ0))
,

a(λ) =
02(0.5− iλ)

0(0.5− i(λ− λ0)+
◦q)0(0.5− i(λ− λ0)−

◦q)
,

(13)

where 0(·) is the gamma function. The discrete spectrum is

λk = λ0 + i(
◦q+ 0.5− k), k = 1, 2, . . . ,MD, (14)

bk = (−1)k , k = 1, 2, . . . ,MD, (15)

MD = b(
◦q+ 0.5)c. (16)

We set ◦q = 5.4, λ0 = 3, λmax = 10, and chose [T−,T+] =
[−32, 32] to ensure negligible truncation error.

2) EXAMPLE 2: RATIONAL REFLECTION COEFFICIENT
WITH ONE POLE, κ = 1
The signal is given by [29]

q(t) =

−2iγ
α

|α|
sech

(
2γ t + arctanh

(β
γ

))
, t ≤ 0

0, t > 0,
(17)

where α, β are scalar parameters and γ =
√
αα∗ + β2.

We used α = 1 and β = −1. The corresponding reflection
coefficient is then known to be

ρ(λ) =
α

λ− iβ
. (18)
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We set λmax = 60 and chose [T−,T+] = [−12, 0]. As the
signal in (17) has a discontinuity, it cannot be interpolated
well using bandlimited interpolation. We hence assume only
in this example that we can sample the signal at exactly the
points that we require.

3) EXAMPLE 3: HYPERBOLIC SECANT, κ = −1
The signal is given by

q(t) =
Q
L

(
sech

(
t
L

))1−2iG
, (19)

where G, L and Q are scalar parameters. We used G = 1.5,
L = 0.04 and Q = 5.5. The corresponding reflection
coefficient is known to be [30]

ρ(λ) = −2−2iGQ
0(d)0(f−)0(f+)
0(d∗)0(g−)0(g+)

, (20)

where 0(·) is the gamma function, d = 0.5+ i(λL−G), f± =
0.5− i(λL±

√
G2 +Q2), and g± = 1− i(G ±

√
G2 +Q2).

We set λmax = 250 and chose [T−,T+] = [−1.5, 1.5].
The numerical methods were implemented and tested

in 64-bit MATLAB (R2018a) running in Ubuntu 16.04 on a
machine with an Intel R© CoreTM i7-5600U CPU with a max-
imum clock rate of 3200 MHz and 8192 MB of DDR3 mem-
ory at 1600 MHz. The CPU was set to the highest available
performance setting and the number of computational threads
was set to 1 using the maxNumCompThreads function of
MATLAB. The closed-form expression of a 2 × 2 matrix
exponential as in [31] was used for the CFQM exponential
integrators.

As we are interested in studying the complexity-accuracy
trade-off of the NFT algorithms, we need a measure of
computational complexity. In the literature, either number
of floating point operations (FLOPs) or execution times are
used as a measure of the computational complexity. Both are
not ideal. Although FLOP counting seems more objective,
in practice FLOP counts are (just like execution times) imple-
mentation specific and it is hard to determine even the number
of FLOP counts of basic operations such as square roots.
FLOP counts also do not account for typical capabilities of
modern processors and neglect critical issues such as memory
access.Wewill present our results in terms of execution times
as we believe that they are more realistic than FLOP counts.
However, to ensure that our implementations were equally
efficient, we carried out an additional FLOP count analysis
in Appendix A. By comparing the FLOP counts with the
measured execution times we show there that the measured
execution times agree well with the FLOP counts for medium
to high number of samples. We also show there that the FLOP
counts are not representative of computation costs for low
number of samples.

Execution times were recorded using the MATLAB stop-
watch function (tic-toc). We report the best execution time
among three runs to ensure that we minimize the impact of
unrelated background processes.

FIGURE 1. Error using slow NFT algorithms for Example 1 with λmax = 1.

Fig. 1 shows the error measure Eρ , as defined in (12), for
Example 1 for a range of relatively large step-sizes h. To read
such error plots we look at the error achieved by each method
for a particular step-size. For the largest two step-sizes, all
the errors are above 100 percent and hence a comparison of
the methods is not meaningful. The remaining results suggest
that the higher-order methods can always be preferred over
the lower-order methods.

FIGURE 2. Error using slow NFT algorithms for Example 1 with λmax = 10.

The error measure Eρ for smaller sampling intervals h for
Example 1, 2, and 3 are shown in Figs. 2, 3 and 4 respec-
tively.4 For all three examples, the slopes of the error-lines
are in agreement with the order r of each method except for
IA2. For smooth signals IA2 is seen to have an error of order
four rather than the expected three. This observation is in
agreement with [13, Fig. 2]. However, for the discontinuous

4To ensure that the discontinuity in Example 2 is faithfully captured,
we use tn = T− + nh for the Runge-Kutta method and the Implicit-Adams
method, instead of the description in Section III-A.
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FIGURE 3. Error using slow NFT algorithms for Example 2.

FIGURE 4. Error using slow NFT algorithms for Example 3.

signal of Example 2 we see third-order behavior as expected.
We can also see that a higher r generally corresponds to better
accuracy (lower Eρ) for the same h. However, that is not
necessarily obvious as seen in Fig. 2, where CF[5]3 is more
accurate than CF[6]4 for larger h. The advantage of using three
exponentials (J = 3) in CF[3]4 instead of two in CF[2]4 is
also clear from the figures. The third-order Implicit-Adams
method (IA2 with r = 3) and fourth-order Runge-Kutta
method (RK4) may be more accurate than CF[1]2 depending
on the signal and other parameters, but have lower accuracy
compared to CF[2]4 and CF[3]4 .
The error Eρ reaches a minimum around 10−12 and can

start rising again as seen in Fig. 4 for CF[4]6 . To understand
this behavior, note that the local error in (8) is actually
O(hr+1+ε), where ε is a small constant due to finite precision
effects that can normally be neglected. The global error is
thus O(hr + εh−1). As h is becoming smaller and smaller,
the second component also known as the arithmetic error,
becomes dominant and eventually causes the total error to rise
again [32].

FIGURE 5. Execution time using slow NFT algorithms for Example 1.

For the CFQM exponential integrators, computation of the
transfer-matrix H (λ) in (7) for each λ requires JD multipli-
cations of 2 × 2 matrices (8) for D(∝ 1/h) given samples.
If the reflection coefficient is to be computed at D points
then the overall computational complexity will be of the
order O(D2). In Fig. 5 we plot the execution times of all
the methods for Example 1. These execution times are rep-
resentative for all examples. We can see that the execution
time scales quadratically with 1/h. The execution time of
the CFQM exponential integrators is approximately a linear
function of J . The IA2, RK4 and CF

[2]
4 methods have similar

execution times. Although both CF[3]4 and CF[3]5 methods
require 3 matrix exponentials, the execution times of CF[3]5
are higher because it involves more operations using complex
numbers compared to CF[3]4 .

FIGURE 6. Error vs. Execution time trade-off using slow NFT algorithms
for Example 1.

To evaluate the trade-off between the execution time and
accuracy, we plot the execution time on the x-axis and the
error on the y-axis in Fig. 6 for Example 1. To read such
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trade-off plots we look at the error achieved by each method
for a given amount of time. For Example 1 it turns out
that CF[3]5 provides the best trade-off, but we can conclude
that extra computation cost of the higher-order methods is
generally justified by increased accuracy.

Although performingmatrix multiplications of 2×2matri-
ces is fast, the total cost of the NFT (O(D2)) is significantly
higher when compared to its linear analogue, the FFT, which
has a complexity of onlyO(D logD). So the natural question
to ask is: Can the complexity be reduced? – Yes, this will be
shown in the next section.

IV. FAST FOURTH-ORDER NFT
In this section we investigate which of the new higher-order
NFT algorithms from the previous section can be made fast
by using suitable splittings of thematrix exponential.Wefind
that only the CF[2]

4 NFT can be made fast. The result
is a fast fourth-order NFT algorithm. We then compare
the slow CF[2]

4 NFT with its fast variant to ensure that
the gain in computational complexity outweighs the loss
in accuracy introduced by approximations of the matrix
exponential.

A. FAST SCATTERING FRAMEWORK
In the framework proposed in [8], each matrix Gn(λ) is
approximated by a rational function matrix Ĝn(z), where
z = z(λ) is a transformed coordinate. By substituting these
approximations in (7), a rational function approximation Ĥ (z)
of H (λ) is obtained.

Ĥ (z) =
D−1∏
n=0

Ĝn(z). (21)

We want to compute the coefficients of the numerator and
denominator polynomials, respectively. A straightforward
implementation of the matrix multiplication where each entry
is a polynomial, has a complexity ofO(D2). Instead, by using
a binary-tree structure and FFTs [8, Alg. 1], the computa-
tional complexity can be reduced to O(D log2 D). Hence it
is referred to as fast scattering. In [8], the number of samples
D was assumed to be a power of two. In cases where D is
not a power of two, we use the following approach. We write
D = 2D1 + 2D2 + . . . + 2Dm , where D1, D2, . . .,Dm are
non-negative integers. We first choose D1 as large as pos-
sible. Then we choose D2 as large as possible and repeat
until all Dk are fixed. This step splits the D samples into
m sets to each of which the fast scattering is applied. The
results Ĥ1(z), Ĥ2(z) . . . Ĥm(z) are then multiplied using the
rule Ĥ (z) = [. . . [[Ĥ1(z)Ĥ2(z)]Ĥ3(z)] . . .]Ĥm(z). Each mul-
tiplication is carried out using the same FFT based algorithm
as in [8].

The rational function approximation Ĥ (z) is explicitly
parametrized in z and hence (7) is reduced to polynomial eval-
uations for each z. To elaborate, we again restrict ourselves to
Gn(λ) of the form (8). Hence for CF[2]1 , we need to approx-
imate Gn(λ) = expm(hCn(λ)). The matrix exponential can

be approximated to various orders of accuracy using ratio-
nals [33] or using splitting-schemes such as the well-known
Strang-splitting and the higher-order splitting-schemes devel-
oped in [21]. The splitting-schemes map λ ∈ R, the domain
of the reflection coefficient, to z = exp(iλh/m) on the unit cir-
cle, where m is a real rational. Such mappings have a certain
advantage when it comes to polynomial evaluations which we
cover in Section IV-B. Note that the mapping z = eiλh/m is
periodic in λ with period 2πm/h. Hence we can resolve the
range |Re(λ)| < πm/h. (See e.g. [34].) This is similar to the
Nyquist–Shannon sampling theorem for the FFT.

For a higher-order CF[r]J integrator, eachGn(λ) is a product
of J matrix exponentials. For example let us look at CF[4]2 .
We can write

Gn(λ) = expm(hC2
n (λ)) expm(hC1

n (λ)),

C2
n (λ) = a2C(T− + (n+ c1)h, λ)+a1C(T−+(n+c2)h, λ),

C1
n (λ) = a1C(T− + (n+ c1)h, λ)+a2C(T−+(n+c2)h, λ),

a1 =
1
4
+

√
3
6
, a2 =

1
4
−

√
3
6
,

c1 =
1
2
−

√
3
6
, c2 =

1
2
+

√
3
6
. (22)

Each of the two matrix exponentials can be approximated
individually using a splitting-scheme from [21]. Ĥ (z) can
then be obtained as in (21). However, there are a few caveats
which prevent extension of this idea to higher-order methods.
The splitting-schemes in [21] should not be applied to CFQM
exponential integrators with complex coefficients ajk . Com-
plex coefficients mean that λ ∈ R is no longer mapped to z on
the unit circle. Such a mapping is undesirable for polynomial
evaluation as will be explained in Section IV-B. In addition,
we do not even obtain a polynomial structure if there exists no
z such that exp(iλh

∑K
k=1 aj,k ) is an integer power of this z for

all j. Furthermore, if such a z exists but only for high co-prime
integer powers, Ĝn(λ) will consist of sparse polynomials of
high degree, which can significantly hamper the computa-
tional advantage of using the approximation. Due to these
reasons we restrict ourselves to fast implementations of CF[2]1

and CF[4]2 which will be referred to as FCF[2]1 and FCF[4]2 .
Even though we made the FCF[2]1 algorithm available in the
FNFT software library [35] already, accuracy and execution
times for it haven’t been assessed and published formally
anywhere in literature. The FCF[4]2 algorithm is completely

new. For both FCF[2]1 and FCF[4]2 we use the fourth-order
accurate splitting [21, Eq. 20].

B. FAST EVALUATION
Once we obtain the rational function approximation Ĥ (z) of
H (λ) in terms of numerator and denominator coefficients,
we only have to evaluate the numerator and denominator
polynomials for each value of z = z(λ) in order to compute
the reflection coefficient. The degree of the polynomials to
be evaluated will be at least D which can be in the range
of 103–104. It is known that evaluation of such high-degree
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polynomials for large values of z can be numerically prob-
lematic [9, Section IV-E]. However, by choosing the mapping
z = exp(iλh/m), which maps the real line to the unit circle,
the polynomials need to be evaluated on the unit circle where
evaluation of even high-degree polynomials is numerically
less problematic. The higher-order splitting schemes in [21]
were developed with such a mapping in mind allowing for
approximations of the matrix exponentials as rational func-
tions in z. Evaluating any polynomial of degree D using
Horner’s method has a complexity ofO(D) [9, Section IV-E].
Hence for M values of z, the total cost of fast scattering
followed by polynomial evaluation would be O(D log2 D) +
O(MD).

Mapping λ ∈ R to z on the unit circle has an additional
computational advantage. Let p(z) = pN zN + pN−1zN−1 +
. . .+ p0 be a polynomial in z of degree N . Evaluation of p(z)
at a point zk can be written as

p(zk ) =
N∑
n=0

pnznk = zNk

N∑
n=0

pN−nz
−n
k . (23)

For M equispaced points zk , k = 1, . . . ,M , on a circular
arc, this amounts to taking the chirp Z-transform (CZT)
of the polynomial coefficients. The CZT can be computed
efficiently using the algorithm in [36] which utilizes FFTs.
We can also see (23) as a non-uniform discrete Fourier trans-
form of the polynomial coefficients which allows us to utilize
efficient non-uniform FFT (NFFT) algorithms in [37] for
evaluating the polynomial. If the number of evaluation points
M is in the same order of magnitude as D, the complexity
of evaluation becomes O(D logD) and hence the overall
complexity of the fast nonlinear Fourier transform (FNFT)
is O(D log2 D). In the next section we will see that the error
of the FCF[4]2 algorithm reaches a minimum value and then
starts rising. This is again due to the arithmetic error as we
already saw in Section III-D. We remark that in numerical
tests the CZT was found to perform equally well as the
NFFT before the error minimum but the error rise thereafter
was significantly steeper. We hence used the NFFT routine
from [37] for evaluating the polynomials.

C. NUMERICAL EXAMPLES
1) REFLECTION COEFFICIENT
We now compare the implementations of CF[2]1 and CF[4]2
presented in Section III-D and their fast versions FCF[2]1 and
FCF[4]2 for computing the reflection coefficient ρ(λ). We plot
the error versus the execution time for Example 1 in Fig. 7,
for Example 2 in Fig. 8 and for Example 3 in Fig. 9. In the
three figures we can see that the fast FCF algorithms achieve
similar errors as their slow CF counterparts in a significantly
shorter time. From the other viewpoint, for the same exe-
cution time, the FCF algorithms achieve significantly lower
errors compared to CF algorithms. Our new algorithm FCF[4]2
outperforms FCF[2]1 in the trade-off for all the examples which
again highlights the advantage of using higher-order CFQM
exponential integrators.

FIGURE 7. Error vs. Execution time trade-off using CF and FCF algorithms
for Example 1.

FIGURE 8. Error vs. Execution time trade-off using CF and FCF algorithms
for Example 2.

FIGURE 9. Error vs. Execution time trade-off using CF and FCF algorithms
for Example 3.

Since the NFT is a nonlinear transform, it changes its
form under signal amplification, and computing it typ-
ically becomes increasingly difficult when a signal is
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FIGURE 10. Variation of error of CF algorithms with amplitude for
Example 1. The fourth-order CF[4]

2 algorithm is seen to have gradual
increase in error with increase in amplitude similar to the second-order
CF[2]

1 algorithm.

amplified [22]. Hence it is of interest to study amplification
of error with increase in signal amplitude. To test the ampli-
fication we use Example 1 and sweep the signal amplitude
◦q from 0.4 to 10.4 in steps of 1.0 while keeping all other
parameters the same as before. As the time-window remains
the same, amplification the signal amplitude leads to directly
proportional amplification of the signal energy. We compute
the error Eρ for decreasing h for each value of ◦q for the
CF and FCF algorithms. We plot Eρ versus the sampling
interval h on a log-scale for CF algorithms in Fig. 10 and
for FCF algorithms in Fig. 11. Instead of plotting individual
lines for each value of ◦q, we represent the amplitude using
different different shades of gray. As shown in the colourbar,
lighter shades represents lower ◦q and darker shades represent
higher ◦q. The stripes with a higher slope are the higher-order

methods. All the four algorithms i.e., CF[2]1 , CF[4]2 , FCF[2]1
and FCF[4]2 show similar trends for the amplification of error
with signal amplitude. The CF[2]1 algorithm was compared
with other methods in [22] (where it is referred to as BO),

and they conclude that CF[2]1 scales the best with increasing
signal amplitude. Hence the results shown in Fig. 10 are very
motivating as the amplification in the error of CF[4]2 is similar
to the amplification for CF[2]1 . The error of approximations
used in the FCF algorithms also depends on ◦q. However,
comparing Fig. 10 and Fig. 11we can see that the contribution
of the approximation error is small. These results combined
with the results in the trade-off plots (Figs. 7, 8, and 9) make
a strong case for our new FCF[4]2 algorithm.

2) B-COEFFICIENT
The accurate and fast computation of the scattering coef-
ficient b(λ) (Section II) is of interest to the fiber-optic
communication community, as an efficient FNFT algorithm
can be combined with the recently proposed b-modulation

FIGURE 11. Variation of error of FCF algorithms with amplitude for
Example 1. Approximating the matrix exponentials with splitting schemes
does not significantly affect the amplification of error with increasing
amplitude.

FIGURE 12. Error in b-coefficient using FCF algorithms for Example 1. The
execution times for some of the points are shown to give an indication of
the computational complexity.

[38]–[40] scheme to develop a complete NFT based
fiber-optic communication system. Hence to test the perfor-
mance of both the FCF algorithms in computation of the
b-coefficient, we define

Eb =

√∑M−1
n=0 |b(λn)− b̂(λn)|

2√∑M−1
n=0 |b(λn)|

2
, (24)

where b(λ) is the analytically known and b̂(λ) is the numeri-
cally computed scattering coefficient. For the numerical test
we again use the signal from Example 1 as b(λ) is known.
We plot the error Eb for both the FCF methods for decreasing
sampling interval h in Fig. 12. FCF[4]2 clearly outperforms
FCF[2]1 even after considering the additional computational
cost.
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From the results of the numerical tests presented in this
section it is clear that approximatingH (λ) in (7) using rational
functions to make the method fast, provides a significant
computational advantage: similar accuracy, shorter execution
time. However, as mentioned earlier we could only make
the fourth-order method CF[4]2 fast. To further improve the
accuracy and order of convergence while restricting ourselves
to a fourth-order method, we explore the possibility of using
Richardson extrapolation in the next section.

V. MAIN RESULT: FAST SIXTH-ORDER NFT
In this section we arrive at our main result by integrat-
ing Richardson extrapolation into our new fast fourth-order
NFT FCF[4]2 from the previous section. We show numeri-
cally that the resulting algorithm has sixth-order accuracy
rather than fifth-order as would be expected. We further-
more show that the added complexity due to Richardson
extrapolation is outweighed by the gain in accuracy so
the complexity-accuracy trade-off of our final algorithm
is the best among all methods investigated in this paper.

A. RICHARDSON EXTRAPOLATION
Richardson extrapolation is a technique for improving the rate
of convergence of a series [41].5 Given an r th-order numerical
approximation method ρ̂(λ, h) for the reflection coefficient
ρ(λ) that depends on the step-size h, we can write

ρ(λ) = ρ̂(λ, h)+O(hr ). (25)

We assume that ρ̂(λ, h) has a series expansion in h,

ρ̂(λ, h) = ρ(λ)+ ρr (λ)hr + ρr+1(λ)hr+1 + . . . (26)

In Richardson extrapolation [41], we combine two numerical
approximations ρ̂(λ, h) and ρ̂(λ, 2h) as follows,

ρ̂[RE](λ, h) =
2r ρ̂(λ, h)− ρ̂(λ, 2h)

2r − 1
. (27)

Using the series expansion, we find that the order of the new
approximation ρ̂[RE](λ, h) is at least r + 1:

ρ̂[RE](λ, h) =
2r (ρ(λ)+ ρr (λ)hr + ρr+1(λ)hr+1 + . . . )

2r − 1

−
ρ(λ)+ ρr (λ)(2h)r + ρr+1(λ)(2h)r+1 + . . .

2r − 1

= ρ(λ)−
2r

2r − 1
ρr+1(λ)hr+1 +O(hr+2). (28)

We apply this idea to FCF[2]1 and FCF[4]2 to obtain the
algorithms FCF_RE[2]

1 and FCF_RE[4]
2 respectively. Note that

the range of |Re(λ)| that can be resolved is determined by
the larger of the two step-sizes h (see Section IV-A). We also
remark that Richardson extrapolation can also be applied to
the slow algorithms in Section III-C.

5It was used to improve an inverse NFT algorithm for the defocusing case
in [42].

FIGURE 13. Error vs. Execution time trade-off of FCF and FCF_RE
algorithms for Example 1.

FIGURE 14. Error vs. Execution time trade-off of FCF and FCF_RE
algorithms for Example 2.

B. NUMERICAL EXAMPLES
We test FCF_RE[2]

1 and FCF_RE[4]
2 against FCF[2]1 and

FCF[4]2 for all three examples. Since Richardson extrapo-
lation requires us to compute two approximations, which
increases the computational complexity, we again evaluate
the complexity-accuracy trade-off. We plot the error ver-
sus execution time curves for the three examples in the
Figs. 13 to 15. In all figures we can see that the FCF_RE
algorithms achieve slopes of r + 2 rather than the expected
slope of r + 1. This is an example of superconvergence [43].
Specifically, the error of FCF_RE[2]

1 decreases with slope
four and that of FCF_RE[4]

2 decreases with slope six. As seen
before in Section III-D, the arithmetic error starts to dom-
inate after a certain point and causes the error to rise.
Although the executions times of FCF_RE algorithms are
higher for the same step-size h, the error achieved is almost
an order of magnitude lower even for large h. From the other
viewpoint, for the same execution time, the FCF_RE
algorithms achieve significantly lower errors compared to
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FIGURE 15. Error vs. Execution time trade-off of FCF and FCF_RE
algorithms for Example 3.

FCF algorithms. FCF_RE[4]
2 outperforms FCF_RE[2]

1 in the
trade-off for all the three examples again highlighting the
advantage of using higher-order CFQM exponential inte-
grators. These results suggest that Richardson extrapolation
should be applied to improve the considered FNFT algo-
rithms. The FCF_RE[4]

2 algorithm provides the best trade-off
among all the algorithms presented in this paper.

C. REMARKS ON COMPUTING EIGENVALUES
The main focus of this paper has been the efficient com-
putation of the reflection coefficient. The computation of
the discrete spectrum (see Section II) is more involved and
problem specific. The best approach strongly depends on
the available a priori knowledge on the number and loca-
tion of the eigenvalues. In scenarios where little a priori
knowledge is available, some of the ideas presented for the
reflection coefficient can be applied to the discrete spec-
trum as well. Some possible approaches are discussed in
Appendix C.

VI. CONCLUSION
In this paper, we proposed new higher-order nonlinear Fourier
transform algorithms based on a special class of exponential
integrators. We also showed that one of these algorithms can
bemade fast using special higher-order exponential splittings.
The accuracy of the fast algorithmwas improved even further,
to sixth-order, using Richardson extrapolation. To the best of
our knowledge this is the first fast sixth-order NFT algo-
rithm ever presented in the literature. Numerical demon-
strations showed that the proposed algorithm is highly accu-
rate and provides much better complexity-accuracy trade-offs
than existing algorithms. In the future we plan to integrate
the algorithms from this paper into the open source software
library FNFT [35]. We finally remark that the development
of a fast higher-order inverse NFT is an interesting open topic
for future research.

TABLE 1. Number of operations per type.

TABLE 2. Number of FLOPs for various operations.

APPENDIX A
COMPARISON OF FLOP COUNTS AND EXECUTION TIMES
In this section we show a comparison between the number
of floating-point operations (FLOPs) and execution times of
two algorithms proposed in this paper. We counted all the
operations of the slow algorithm and the fast algorithm based
on the CF[4]2 integrator. We list the different operations and
how often they occur in Table 1. For the FFT and CZT,
the size of the input is also specified. The number of FLOPs
required for each operation type are provided in Table 2. Note
that these values are only rules of thumb and vary widely
across programming languages and CPU architectures. The
number of FLOPs required for the fast scattering step (see
Section IV-A) is given by

FLOPs(Fast scattering of size N)

=

dlog2 Ne∑
k=0

2dlog2 Ne−k
(
12 FLOPs(FFT of size(2k+1 + 1))

+ (8 FLOPs(Mult)+ 4 FLOPs(Add))(2k+1 + 1)
)
. (29)
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FIGURE 16. The number of FLOPs and measured execution times of a
slow fourth-order algorithm and its fast variant.

In Fig. 16, we plot the total number of FLOPs and the execu-
tion times from our MATLAB implementations against the
number of given samples D. At medium to high number of
samples we see that the MATLAB execution times match the
number of FLOPs very well. Moreover the crossover point at
which the fast algorithm becomes faster than the slow variant
(D > 300 in Fig. 16) is almost the same. At lower number
of samples, the execution times deviate from the number of
FLOPs. This is due to the unaccounted overheads dominating
over the floating-point operations.

APPENDIX B
INTERPOLATION BASED ON FOURIER TRANSFORM

APPENDIX C
COMPUTING EIGENVALUES
Recall that for the case of focusing NSE (κ = 1), the non-
linear Fourier spectrum has two parts: a continuous and

a discrete part. In this appendix, we are concerned with the
numerical computation of the discrete part. We first mention
some of the existing approaches and then show how one of
them can be extended to work with the new fast higher-order
NFT algorithms. We will also show that Richardson extrapo-
lation can be applied to improve the accuracy at virtually no
extra computational cost.

A. EXISTING APPROACHES
Finding the eigenvalues consists of finding the complex upper
half-plane roots of the function a(λ). Most of the existing
approaches can be classified into four main categories.

1) Search methods: Newton’s method.
2) Eigenmethods: Spectral methods based on the solution

of a suitably designed eigenproblem [27].
3) Gridding methods: They find λk using iterative meth-

ods or optimized grid search [11], [27]. Recently a
method based on contour integrals was proposed [46].

4) Hybrid methods:Any combination of the above. Eigen-
methods with rougher sampling can e.g. be used to find
initial guesses for a search method [47].

Our proposed method will be a hybrid of a eigenmethod and
a search method in the spirit of [47], where an eigenproblem
is solved to obtain initial guesses for Newton’s method.

B. PROPOSED METHOD
Remember that the discrete spectrum consists of eigenval-
ues, which are the zeros of a(λ) in the complex upper
half-plane (H), and their associated residues. We start with
discussing an approximation of a(λ) that will be useful for
locating the eigenvalues. From (3), (4) and (5) we can write

a(λ) = lim
t→∞

φ1(t, λ)eiλt . (30)

Over the finite interval [T−,T+] using (7) we can see that

a(λ) ≈ H1,1(λ)eiλT−eiλT+ . (31)

Hence we hope that the zeros of H1,1(λ) are approximations
of the zeros of a(λ) if the signal truncation and discretization
errors are small enough. In Section IV-A we explained how
H (λ) can be approximated by a rational function in a trans-
formed coordinate z. Hence we can further write

a(λ) ≈
ânum(z)
âden(z)

eiλT−eiλT+ , (32)

where ânum(z) and âden(z) are polynomials in z(λ). Let
ânum(z) = âN zN + âN−1zN−1 + . . . + â0. Thus ânum(z) will
have N zeros. These zeros or roots of ânum(z) can be found
using various methods [48]. Of these N zeros, there should
be K (typically, K � N ) values that are approximations of
zeros of a(λ) in H.

EXAMPLE
We would like to add clarity through a visual representation
of the roots. We choose the signal from Example 1 with

D = 29. We plot all the zeros of ânum(z) of FCF
[2]
1 with ‘x’
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FIGURE 17. Zeros of ânum(z) for Example 1 with D = 29.

FIGURE 18. Mapped zeros of ânum(z) for Example 1 with D = 29.

in Fig. 17. Here z = eiλh. We can thenmap these zeros back to
obtain values of λ. These are plotted with ‘x’ in Fig. 18. From
the definition of discrete spectrum, we can filter out all the
values that are not in H. Recall that we can resolve the range
|Re(λ)| < π/h. (See Section IV-A.) Since we observed that
spurious eigenvalues tend to cluster around |Re(λ)| = π/h,
we filter out the corresponding roots of ânum(z). More pre-
cisely we keep only values of λ for which |Re(λ)| < 0.9π/h.
The filtered roots are plotted in Figs. 17 and 18 with ‘o’. For
the chosen value of ◦q = 5.4 the set of eigenvalues is 3 =
{3+4.9i, 3+3.9i, 3+2.9i, 3+1.9i, 3+0.9i}. From Fig. 18 we
see that the values marked with ‘o’ are indeed approximations
of the values in set3. However, there is no guarantee that we
will always be able to locate approximations for all values in
3 as that depends on several factors, some of which are the
signal magnitude ◦qo, signal interval [T−,T+], step-size h and
values of the eigenvalues themselves.

For the example chosen in the visual demonstration,
the number of zeros is N = 1024 and the number of eigen-
values is K = 5. For the chosen mapping from λ → z,

the K values of interest will always lie inside the unit circle
in Fig. 17 and most other spurious zeros of ânum(z) will lie
on the unit circle. Even with the best eigenmethods available
for polynomial root-finding, which have a complexity of
O(N 2) [49], execution time grows very steeply, making this
approach infeasible for large N . To reduce the complexity,
it was suggested in [47] to sub-sample the given signal to
reduce the dimensionality of the root-finding problem. The
algorithm is summarized in Fig. 19.

FIGURE 19. Algorithm : Subsample and refine.

We now discuss the three stages of the algorithm in detail.
1) Root finding from a subsampled signal

The given signal qn is subsampled to give qsubn with
Dsub samples. The corresponding step-size is hsub.
There are no results for the minimum number of sam-
ples that guarantee that all eigenvalues will be found.
One choice can be based on limiting the overall com-
putational complexity to O(D log2 D), which is the
complexity for the reflection coefficient. For a root-
finding algorithm with O(D2) complexity, we choose

to useDsub = round
(√

D log2 D
)
samples. The polyno-

mial ânum(z) is then built from these Dsub samples. For
FCF[4]2 , the non-equispaced samples should be obtained
from the original D samples and not the Dsub sam-
ples. An eigenmethod is then used to find all zeros
of ânum(z). We used the algorithm in [49]. The values
of z are mapped backed to λ and filtered to remove
implausible values.

2) Root refinement using Newton method
The Newton method based on the slow CF methods
is used for root refinement. The derivative da(λ)/dλ is
calculated numerically along with a(λ) as in [14] using
all the given samples qn. The values of λ that remain
after filtering in the previous step are used as the initial
guesses for the Newton method. We chose to stop the
iterations if the change in value goes below 10−15 or if
a maximum of 15 iterations is reached. The resulting
roots are filtered again.

3) Richardson extrapolation
We pair the roots resulting from the Newton step,
λ̂Newtonk , with the corresponding initial guesses λ̂initk .
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FIGURE 20. Error in approximation of the eigenvalues by the fast second-
and fourth-order algorithms of type 1 (no sub-sampling) and type 2
(sub-sample and refine, no Richardson extrapolation).

Then, we apply Richardson extrapolation:

λ̂k =
( hsubh )r λ̂Newtonk − λ̂initk

( hsubh )r − 1
. (33)

λ̂k is then an improved approximation and constitutes
the discrete part of the FCF_RE algorithm. It may so
happen that more than one λ̂initk converge to the same
λ̂Newtonk . In such cases the value λ̂initk closest to λ̂Newtonk
should be used for Richardson extrapolation. The other
values λ̂initk that also converged to the same λ̂Newtonk
should be treated as spurious values and discarded.

The numerical algorithmsmay not find particular eigenval-
ues or find spurious ones. Let 3̂ be the set of approximations
found by an algorithm. To penalize both missed values and
incorrect spurious values at the same time, we define the error

E3 = max
{
max
λi∈3

min
λ̂j∈3̂

|λi − λ̂j|,max
λ̂j∈3̂

min
λi∈3

|λi − λ̂j|
}
. (34)

Note that the first term in the outer maximum grows large if
an algorithm fails to approximate a part of the set 3 while
the second term becomes large if an algorithm finds spurious
values that have no correspondence with values in 3. E3 is
expected to be of order r for an algorithm of order r .

C. NUMERICAL EXAMPLE
In this section, we compare different variants of our proposed
algorithm using Example 1. We compute the error E3 for the
following three types of algorithms:

1) Discrete part of FCF algorithms. An eigenmethod is
applied to the approximation ânum(z) built using all
samples. No sub-sampling is used.

2) Discrete part of FCF algorithms with sub-sampling.
Only steps 1 and 2 of the algorithm mentioned above.

3) Discrete part of FCF_RE algorithms. All the three steps
mentioned above.

To demonstrate the effect of sub-sampling, we show in Fig. 20
the errors for the second- and fourth-order algorithms of

types 1 and 2. For h > 0.3 the errors are high either due
to failure to find approximations close to the actual eigen-
values or due to spurious values. For h ≤ 0.3, FCF[4]2 of
type 1 and FCF[2]1 of type 2 find exactly five values that are
close approximations of the values in 3. However FCF[2]1 of
type 1 and FCF[4]2 of type 2 find good approximations only
for h ≤ 0.06. The error of FCF[2]1 algorithms decreases with
slope two and that of FCF[4]2 algorithms decreases with slope
four as expected from the order of the underlying numerical
schemes.

FIGURE 21. Error in approximation of a eigenvalues computed using FCF
and FCF_RE algorithms.

In Fig. 21 we show the errors for the second- and fourth-
order algorithms of type 2 and 3 to indicate the advantage
of the extrapolation step. The extrapolation step improves
the approximation significantly for FCF_RE[2]

1 while adding
negligible computation cost to the algorithm. However, there
is onlyminor improvement in case of FCF_RE[4]

2 over FCF[4]2 .

FIGURE 22. Execution time of FCF[4]
2 and FCF[4]

2 algorithms for computing
eigenvalues of Example 1.

In Fig. 22 we plot the execution times for the FCF algo-
rithms of types 1 and 2. The execution times of algorithms
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of type 3 are almost the same as those of type 2. For type 1
algorithms, these times include the time required to build
ânum(z) and the time taken by the root-finder. For algorithms
of type 2, the additional time required for root-refinement by
Newton’s method is also included. Even with sub-sampling,
we see that the execution times are an order of magnitude
higher than the execution times for the continuous part.
The FCF_RE algorithms seem to provide the best trade-off
between accuracy and computation cost similar to the case of
continuous part. The overall computational complexity may
be decreased by using alternative methods to find the initial
guesses.
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