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ABSTRACT The increasing penetration of new renewable sources of electrical energy reduces the overall
mechanical inertia available in power grids. This raises a number of issues regarding grid stability over
short to medium time scales. A number of approaches have been proposed to compensate for this inertia
reduction by deploying substitution inertia in the form of synchronous condensers, flywheels or power-
electronic-based synthetic inertia. These resources are limited and expensive; therefore, a key issue is to
determine how to optimally place them in the power grid, for instance, to mitigate voltage angle and
frequency disturbances following an abrupt power loss. Performance measures in the form of H2−norms
have recently been introduced to evaluate the overall magnitude of such disturbances. However, despite
the mathematical convenience of these measures, analytical results can only be obtained under rather
unrealistic assumptions of a uniform damping-to-inertia ratio or a homogeneous distribution of the inertia
and/or primary control. Here, we introduce and apply matrix perturbation theory to obtain analytical results
for an optimal inertia and primary control placement in the case where both are heterogeneous. This
powerful method allows us to construct two simple algorithms that independently optimize the geographical
distribution of the inertia and primary control. The algorithms are then implemented for a numerical model
of the synchronous transmission grid of continental Europe with different initial configurations. We find
that an inertia redistribution has little effect on the grid performance but that the primary control should
be redistributed on the slow modes of the network, where the intrinsic grid dynamic requires more time to
damp frequency disturbances. For a budget-constraint optimization, we show that increasing the amount of
primary control in the periphery of the grid, without changing the inertia distribution, achieves 90 % or more
of the maximal possible optimization, already for relatively moderate budgets.

INDEX TERMS Low-inertia transmission grids, optimal placement of inertia and primary control,
perturbation theory.

I. INTRODUCTION
The penetration of new renewable energy sources (RESs),
such as photovoltaic panels andwind turbines, is increasing in
most electric power grids worldwide. Currently, these energy
sources are connected to power grids via inverters, which
make them essentially inertialess. Accordingly, the increased
penetration leads to periods of unusually low inertia at times
of high-RES production [1]. This raises important issues
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regarding the power grid stability, which is of more concern
to transmission system operators than the volatility of RES
production [2], [3]. The substitution of traditional production
based on synchronous machines with inertialess RES may
in particular lead to geographically inhomogeneous inertia
profiles. It has been suggested to deploy substitution inertia –
synthetic inertia, flywheels or synchronous condensers –
to compensate locally or globally for the missing inertia.
Two related questions naturally arise: (i) where is it safe to
substitute synchronous machines with inertialess RES, and
(ii) where is it necessary to accompany the deployment of
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new RES with substitution inertia? Problem (ii) has been
investigated in small power grid models with up to a dozen
buses, optimizing the geographical distribution of the inertia
against cost functions based on eigenvalue damping ratios [4],
Hp-norms [5], [6] and RoCoF [7], [8] and frequency excur-
sions [8]. Investigations of problem (i) in large power grids
have emphasized the importance of the geographical extent
of the slow network modes [9]. A numerical optimization can
certainly be performed for any given network on a case-by-
case basis; however, it is highly desirable to shed light on
the problem with analytical results. So far, such results have
either been restricted to small systems or derived assuming
homogeneity in the damping and inertia parameters or their
ratio. In this manuscript, we go beyond these assumptions
and construct an approach that is applicable to realistic large
power grids with inhomogeneous independent damping and
inertia parameters.

Inspired by theoretical physics, we introduce matrix per-
turbation theory [10] as an analytical tool to tackle this
problem. That method is widely used in quantum mechanics
to approximate solutions to complex, perturbed problems,
extrapolated from known, exact solutions of integrable prob-
lems [11].Matrix perturbation theory is a spectral method that
allows the expression of eigenvalues and eigenvectors of the
matrix corresponding to the full, complex problem in a con-
trolled series about the eigenvalues and eigenvectors of a sim-
pler, exactly solvable problem. The approximation is useful
as long as the two problems are not too different and it makes
sense to consider the full, complex problem as a perturbation
of the exactly soluble, simpler problem. When this is the
case, the perturbation expansion converges rapidly, and its
truncation at low orders delivers rather accurate results. In the
context of electric power grids, this method was applied, for
instance, in Ref. [12], where quadratic performance measures
similar to those discussed below were calculated following a
line fault, starting from the eigenvalues and eigenvectors of
the network Laplacian before the fault.

In this paper, we consider abrupt power losses in
high-voltage electric power grids. We aim to determine the
best geographical distribution of inertia and primary con-
trol to mitigate the ensuing transient excursion. To do so,
we apply matrix perturbation theory [10] to evaluate the
magnitude of the transient excursion in a series expansion to
first order in the inertia and primary control inhomogeneities.
Our perturbation theory is an expansion in two parameters:
the maximal deviations δm and δd of the rotational inertia
and the damping parameters from their initial valuesm and d .
The approach is valid as long as these local deviations are
small; i.e., | δm/m | < 1, | δd/d | < 1. In principle, these
conditions tolerate that inertia and damping parameters van-
ish or are twice as large as their average values in some
buses. The theory constructed below constitutes an important
step forward in the analytical optimization of inertia and
primary control placement in low-inertia power grids. In fact,
the approach allows us to to derive analytical results without
relying on homogeneity assumptions regarding the inertia and

primary control or assuming that their ratios are constant.
To the best of our knowledge, earlier analytical works have
all been based on such mathematically convenient but unre-
alistic assumptions. Our main analytical results are given in
Theorems 1 and 2 below, which formulate the algorithms
for the optimal placement of the local inertia and damping
parameters. The spectral decomposition approach used here
has recently drawn the attention of a number of groups and
has been used to calculate performance measures in power
grids and consensus algorithms, e.g., in [7], [13]–[15]. This
paper builds up on our earlier work [16].

The article is organized as follows. Section II addresses the
case where the inertia and primary control are uniformly dis-
tributed in the system. The performance measure that quan-
tifies the system disturbances is introduced, and we calculate
its value for abrupt power losses. In Section III, we apply
matrix perturbation theory to calculate the sensitivities of
our measure for local variations in the inertia and primary
control. Section IV presents our analytical theory for the opti-
mal placement of inertia and primary control. In Section V,
we apply our optimal placements to a model of the conti-
nental European grid. Three different initial configurations
are considered, for which budget-constraint optimizations are
performed. Section VI concludes our article.

II. HOMOGENEOUS CASE
We consider the power system dynamics in the lossless line
approximation, which is a standard approximation used for
high-voltage transmission grids [17]. On time scales rang-
ing from a few AC cycles to approximately 10-20 sec-
onds, the transient dynamics are governed by the swing
equations [17]:

miω̇i + diωi = Pi −
∑
j

Bij sin(θi − θj) . (1)

This set of differential equations gives the dynamics of the
voltage angles θi and frequencies ωi = θ̇i at each network
bus labeled i = 1, . . .N in a frame rotating at the rated
grid frequency of 50 or 60 Hz. Each bus is characterized
by inertia, mi, and damping/primary control, di, parameters,
and Pi is the active power injected (Pi > 0) or extracted
(Pi < 0) at bus i. We introduce the damping-to-inertia ratio
γi ≡ di/mi. The buses are connected to each other via
lines with susceptances Bij. The operating state is given by
stationary solutions {θ (0)i } to (1), i.e., power flow solutions
determined by Pi =

∑
j Bij sin(θ

(0)
i − θ

(0)
j ). The small-signal

response about such a solution under a change in active power
Pi → Pi + δPi is obtained by linearizing (1) about such a
solution with θi(t) = θ

(0)
i + δθi(t). One has, in matrix form,

Mω̇ + Dω = δP − Lδθ , (2)

where M = diag({mi}), D = diag({di}) and the voltage
angles and frequencies are cast into vectors δθ and ω ≡ δθ̇ .
The Laplacian matrix L has matrix elements Lij = −Bij
cos(θ (0)i − θ

(0)
j ), for i 6= j, and Lii =

∑
k Bik cos(θ

(0)
i − θ

(0)
k ).
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A. EXACT SOLUTION FOR THE HOMOGENEOUS
DAMPING-TO-INERTIA RATIO
When the damping-to-inertia ratio is constant, di/mi =
γi = γ , ∀i, (2) can be integrated exactly [7], [12]. To see this,
we first transform the angle coordinates as δθ = M−1/2δθM
to obtain

ω̇M+M−1D︸ ︷︷ ︸
0

ωM+M−1/2LM−1/2︸ ︷︷ ︸
LM

δθM = M−1/2δP , (3)

where we have introduced the diagonal matrix 0 =

diag({di/mi}) ≡ diag({γ }). The change of coordinates substi-
tutes the LaplacianmatrixLwith amatrixLM that is weighted
by inertia. Since the matrix is real and symmetric, LM can be
diagonalized

LM = U>3U (4)

with an orthogonal matrix U , and the αth row of this matrix
gives the components uα,i, i = 1, . . .N of the αth eigen-
vector uα of LM . The diagonal matrix 3 = diag({λ1 =
0, λ2, · · · , λN }) contains the eigenvalues of LM in increas-
ing order λα < λα+1. For stable networks, the smallest
eigenvalue λ1 vanishes, corresponding to the eigenvector
with components u1i =

√
mi/

√∑
j mj. If the network is

connected, it is the only vanishing eigenvalue. Rewriting (3)
in the basis diagonalizing LM gives

ξ̈ + U0U>ξ̇ +3ξ = UM−1/2δP , (5)

where δθM = U>ξ . This change of coordinates is simply a
spectral decomposition of the angle deviations δθM into their
components in the basis of the eigenvectors of LM . These
components are cast in the vector ξ . The formulation (5) of the
problem makes it clear that, if 0 is a multiple of the identity
matrix, the problem reduces to an exactly integrable diagonal
ordinary differential equation problem. This case is treated
below in (11), which provides an exact solution about which
we then construct the matrix perturbation theory.
Proposition 1 (Unperturbed evolution): For an abrupt

power loss, δP(t) = δP2(t), with the Heaviside step
function defined by 2(t > 0) = 1 and 2(t < 0) = 0 and
with a homogeneous damping-to-inertia ratio, 0 = γ 1 with
the N × N identity matrix 1, the frequency coordinates ξ̇α
evolve independently as

ξ̇α(t) =
2Pα
fα

e−γ t/2 sin
( fαt
2

)
, ∀α > 1, (6)

where fα =
√
4λα − γ 2 and Pα =

∑
i uαi δPi/m

1/2
i .

This result generalizes Theorem III.3 of [14].
Proof: The proof follows the procedure proposed

in [7], [12], [18]. First, one rewrites (5) as

d
dt

[
ξ

ξ̇

]
=

[
0N×N 1

−3 −γ 1

]
︸ ︷︷ ︸

H0

[
ξ

ξ̇

]
+

[
0N×1
P

]
, (7)

where P = UM−1/2δP and 0N×M is an N × M matrix of
zeroes. The matrix H0 is block-diagonal up to a permutation

of rows and columns [12], with each 2× 2 block correspond-
ing to one of the eigenvalues λα of LM . The αth block is easily
diagonalized by the transformation[

χ
(0)
α+

χ
(0)
α−

]
= TLα

[
ξα
ξ̇α

]
, TLα ≡

i
fα

[
µ
(0)
α− −1

−µ
(0)
α+ 1

]
, (8)

[
ξα
ξ̇α

]
= TRα

[
χ
(0)
α+

χ
(0)
α−

]
, TRα ≡

[
1 1
µ
(0)
α+ µ

(0)
α−

]
, (9)

with the eigenvalues µ(0)
α± of the αth block,

µ
(0)
α± = −

1
2
(γ ∓ ifα) . (10)

The two rows (columns) of TLα (TRα) provide the nonzero
components of the two left (right) eigenvectors t(0)Lα± (t(0)Rα± )
of H0. Following this transformation, (7) is

d
dt

[
χ
(0)
α+

χ
(0)
α−

]
=

[
µ
(0)
α+ 0
0 µ

(0)
α−

][
χ
(0)
α+

χ
(0)
α−

]
+
i
fα

[
−Pα
Pα

]
. (11)

With the initial condition ξα(t = 0) = ξ̇α(t = 0) = 0,
which implies that χ (0)

α±(t = 0) = 0, (11) is easily integrated,
leading to

χ
(0)
α± = ±

iPα
fαµ

(0)
α±

(
1− eµ

(0)
α±t
)
, ∀α > 1 . (12)

Equation (6) is finally obtained by inserting (12) into (8),
which concludes the proof.

B. PERFORMANCE MEASURE
We wish to mitigate disturbances following an abrupt power
loss. To this end, we use performance measures that evaluate
the overall disturbance magnitude over time and the whole
power grid. Performance measures have been proposed that
can be formulated as L2- and squared H2-norms of lin-
ear systems [6], [7], [12], [18]–[24] and are time-integrated
quadratic forms of the angle, δθ , or frequency, ω, deviations.
Here, we focus on frequency deviations and use the following
performance measure:

M =
∞∫
0

(
ω> − ω̄>

)
M
(
ω − ω̄

)
dt , (13)

where ω̄ = (ωsys, ωsys, . . . ωsys)> is the instantaneous aver-
age frequency vector with components

ωsys(t) =
∑
i

miωi(t)
/∑

i

mi . (14)

Rewriting M in the eigenbasis of LM gives

M =
∞∫
0

∑
α>1

ξ̇2α (t)dt , (15)

since the first eigenvector of LM (with a zero eigenvalue) has
components u1i =

√
mi/

√∑
j mj.

Proposition 2: For an abrupt power loss, δP(t) =

δP2(t), on a single bus labeled b with a homogeneous
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damping-to-inertia ratio 0 = γ 1 with the N × N identity
matrix 1, the performance measure (13) is

Mb =
δP2

2γmb

∑
α>1

u2αb
λα

, (16)

in terms of the eigenvalues λα and the components uαb of the
eigenvectors uα of LM .
Note that we introduce the subscript b to indicate that the

fault is localized on that bus only. The power loss is modeled
as Pi = P(0)i − δPi2(t) with δPi = δib δP, where the
Kronecker symbol is δib = 1 if i = b and 0 otherwise.

Proof: (6) straightforwardly gives
∞∫
0

ξ̇2α (t)dt =
δP2 u2αb
2γ mb λα

, α > 1 , (17)

which, when summed over α > 1, gives (16).
Remark 1: For the homogeneous inertia coefficients,

M = m1, the eigenvectors and eigenvalues of the
inertia-weighted matrix LM defined in (3) are given by uα =
u(0)α and λα = m−1λ(0)α in terms of the eigenvectors u(0)α and
eigenvalues λ(0)α of the Laplacian L. In this case, the perfor-
mance measure is

M(0)
b =

δP2

2γ

∑
α>1

u(0)2αb

λ
(0)
α

. (18)

Here the superscript (0) indicates inertia homogeneity.
This expression has an interesting graph theoretic inter-
pretation. We recall the definitions of the resistance
distance �ij between two nodes on the network, the
associated centrality Cj and the generalized Kirchhoff
indices Kfp [23], [25],

�ij = L†ii + L
†
jj − L

†
ij − L

†
ji , (19)

Cj = N
(∑

i

�ij

)−1
, (20)

Kfp = N
∑
α>1

λ−pα , (21)

where L† is the Moore–Penrose pseudoinverse of L. With
these definitions, one can show that [15], [23], [26]∑

α>1

u(0)2αb

λ
(0)
α

= C−1b − N
−2Kf1 , (22)

using the spectral representation of the resistance
distance [27], [28]

�ib =
∑
α>1

(
u(0)αi − u

(0)
αb

)2/
λ(0)α . (23)

Because Kf1 is a global quantity characterizing the network,
it follows from (18) with (22) that, when the inertia and
primary control are homogeneously distributed in the system,
the disturbance magnitude as measured byM(0)

b is larger for
disturbances on peripheral nodes [9], [29].

III. MATRIX PERTURBATION
The previous section treats the case where the inertia and
primary control are uniformly distributed in the system. Our
goal is to lift this restriction and obtainMb when some mild
inhomogeneities are present. We parametrize the inhomo-
geneities in the inertia and damping-to-inertia ratio as

mi = m+ δm ri , (24)

di = miγi = (m+ δm ri)(γ + δγ ai) , (25)

in terms of the averagesm and γ and the maximum amplitude
of the deviations δm and δγ (which we will call ‘‘inhomo-
geneity parameters’’). Local inhomogeneities are determined
by the coefficients −1 ≤ ai, ri ≤ 1 with

∑
i ri =

∑
i ai = 0,

which are determined following a minimization of the per-
formance measure Mb of (13). In the following two para-
graphs, we construct the matrix perturbation theory to first
order in δm and δγ to calculate the performance measure
Mb =M(0)

b +
∑

i riρi+
∑

i aiαi+O(δm2, δγ 2). This requires
a calculation of the susceptibilities ρi ≡ ∂Mb/∂ri and
αi ≡ ∂Mb/∂ai.

A. INHOMOGENEITY IN THE INERTIA
When the inertia is inhomogeneous but the damping-to-
inertia ratio is homogeneous, the system dynamics and Mb
are still given by (7) and (16). However, the eigenvectors of
the inertia-weighted Laplacian matrix LM differ from those
of L, and consequently Mb is no longer equal to M(0)

b .
In general, there is no simple way to diagonalize LM ; how-
ever, one expects that if the inhomogeneity is weak, then
the eigenvalues and eigenvectors of LM will only slightly
differ from those of m−1L, which allows the construction of
a perturbation theory.
Assumption 1 (Weak inhomogeneity in the inertia): The

deviations δm ri of the local inertia mi are all small compared
to their average m. We writeM = m

[
1+µ diag

(
{ri}

)]
, where

µ ≡ δm/m� 1 is a small, dimensionless parameter.
To linear order in µ, the series expansion of LM is

LM = M−1/2LM−1/2 = m−1
[
L+ µV1 +O(µ2)

]
, (26)

with V1 = −
(
RL + LR

)
/2 and R = diag({ri}). In this

form, the inertia-weighted Laplacian matrix LM is given by
the sum of an easily diagonalizable matrix,m−1L, and a small
perturbation matrix, (µ/m)V1. Truncating the expansion of
LM at this linear order gives an error of order ∼ µ2, which is
small under Assumption 1.

Matrix perturbation theory expands the eigenvectors uα
and eigenvalues λα of the full problem LM in a power series
inµ depending on the eigenvectors (u(0)α and eigenvalues λ(0)α )
of L [10]. To first order in µ, one has

λα = m−1
[
λ(0)α + µλ

(1)
α +O(µ2)

]
, (27)

uα = u(0)α + µu
(1)
α +O(µ2) , (28)

with

λ(1)α = u(0)>α V1u(0)α , (29)
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u(1)α =
∑
β 6=α

u(0)>β V1u
(0)
α

λ
(0)
α − λ

(0)
β

u(0)β . (30)

From (16), (27) and (28), the performance measure Mb can
be approximated to first order in µ as

Mb =M(0)
b +

µδP2

2γ

∑
α>1

λ(0)−1α

(
2u(0)αbu

(1)
αb − rbu

(0)2
αb

−u(0)2αb λ
(0)−1
α λ(1)α

)
+O(µ2) . (31)

Proposition 3: For an abrupt power loss, δP(t) =

δP2(t), on a single bus labeled b, where δPi = δib δP, and
under Assumption 1, the susceptibilities ρi ≡ ∂Mb/∂ri are
given by

ρi = −
µδP2

γN

∑
α>1

u(0)αbu
(0)
αi

λ
(0)
α

. (32)

Proof: We first take the derivative of (31) with respect
to ri, with λ

(1)
α and u(1)αb from (29) and (30). We obtain

∂Mb

∂ri
=
µδP2

2γ

[ ∑
α>1,
β 6=α

u(0)αbu
(0)
βbu

(0)
αi u

(0)
βi

(
1

λ
(0)
α

−
2

λ
(0)
α − λ

(0)
β

)

−δib
∑
α>1

u(0)2αb

λ
(0)
α

+

∑
α>1

u(0)2αb u
(0)2
αi

λ
(0)
α

]
+O(µ2) , (33)

The first term in the square bracket in (33) gives

∑
α>1
β 6=α

u(0)αbu
(0)
βbu

(0)
αi u

(0)
βi

λ
(0)
α

=

∑
α>1,
β

u(0)αbu
(0)
βbu

(0)
αi u

(0)
βi

λ
(0)
α

−

∑
α>1

u(0)2αb u
(0)2
αi

λ
(0)
α

= δib
∑
α>1

u(0)2αb

λ
(0)
α

−

∑
α>1

u(0)2αb u
(0)2
αi

λ
(0)
α

, (34)

where we used
∑
β u

(0)
βi u

(0)
βb = δib. This term therefore exactly

cancels the last two terms in the square bracket in (33), and
one obtains

ρi(b)=
∂Mb

∂ri
=−

µδP2

γ

∑
α>1,
β 6=α

u(0)αbu
(0)
βbu

(0)
αi u

(0)
βi

λ
(0)
α − λ

(0)
β

+O(µ2) . (35)

The argument of the double sum in (35) is odd under a
permutation of α and β; therefore, the only terms that do not
vanish are those with β = 1. With u(0)1i = 1/

√
N , one finally

obtains (32).
Remark 2: The sum of the susceptibilities over all possible

fault locations vanishes:
∑

b ρi(b) = 0. This follows from the
properties of the eigenvector u(0)α , α > 1.

B. INHOMOGENEITY IN THE DAMPING-
TO-INERTIA RATIO
Equation (6) gives exact solutions to the linearized dynamical
problem defined in (5) under the assumption of a homoge-
neous damping-to-inertia ratio, di /mi ≡ γ . Next, we go
beyond this assumption and allow for homogeneities in the

damping-to-inertia ratio. We write γi = γ +δγ ai. With these
inhomogeneities, (7) is

d
dt

[
ξ

ξ̇

]
=

[
0N×N 1

−3 −γ 1− δγ V2

]
︸ ︷︷ ︸

H

[
ξ

ξ̇

]
+

[
0N×1
P

]
, (36)

which differs from (7) only through the additional term
−δγV2, where V2 = UAU> and A = diag({ai}). Under
the assumption that g ≡ δγ /γ � 1, this additional term
only introduces small corrections to the unperturbed problem
of (7), and we use matrix perturbation theory to calculate
these corrections in a polynomial expansion in g.
Assumption 2 (Weak inhomogeneity in the damping-to-

inertia ratio): The deviations δγ ai of the damping-to-inertia
ratio γi from the average γ are all small compared to the
average. We write 0 = γ

[
1 + g diag

(
{ai}

)]
, where g ≡

δγ /γ � 1 is a small, dimensionless parameter.
Our goal is to integrate (36) using the spectral approach

used above to derive (12). This requires exactly knowing the
eigenvalues and eigenvectors of H in (36); however, this is
not possible in general, because the matrices V2 and 3 do
not commute. As long as g is sufficiently small, the eigen-
values and eigenvectors are only slightly altered [10] and can
be systematically calculated order by order in a polynomial
expansion in g. Therefore, we employ a perturbative approach
that expresses the solutions to (36) in a polynomial expansion
in g. Formally, for the eigenvalues µαs and the left and right
eigenvectors tL,Rαs of H , one has

µαs =

∞∑
m=0

gm µ(m)
αs , (37)

tL,Rαs =
∞∑
m=0

gm t(m)L,Rαs , (38)

where the m = 0 terms are given by the eigenvalues µ(0)
αs

and the left and right eigenvectors t(0)L,Rαs of the matrix H0
in (7), corresponding to homogeneous inertia. For the sums
in (37) and (38) to converge, a necessary condition is that
g < 1. Then, the task is to calculate the terms µ(m)

αs and
t(m)L,Rαs with m = 1, 2, . . .. When g � 1, one expects that
only a few low-order terms will provide a good estimate of
the eigenvalues and eigenvectors ofH . Here, we calculate the
first-order corrections, withm = 1. The corrections are given
by formulas similar to (29) and (30):

gµ(1)
αs = t(0)Lαs

[
0N×N 0N×N
0N×N −δγ V2

]
t(0)Rαs , (39)

g t(1)Rαs =
∑
β,s′

t(0)L
βs′

[
0N×N 0N×N
0N×N −δγ V2

]
t(0)Rαs

µ
(0)
αs − µ

(0)
βs′

t(0)R
βs′ , (40)

g t(1)Lαs =
∑
β,s′

t(0)Lαs

[
0N×N 0N×N
0N×N −δγ V2

]
t(0)R
βs′

µ
(0)
αs − µ

(0)
βs′

t(0)L
βs′ , (41)
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where
∑

indicates that the sum is taken over (β, s′) 6= (α, s).
One obtains

gµ(1)
αs = −δγ

(1
2
+ is

γ

2fα

)
V2;αα , (42)

g t(1)Rαs = 2 δγ
∑
β,s′

V2;αβ µ
(0)
αs

fβ (ss′ fα − fβ )
t(0)R
βs′ , (43)

g t(1)Lαs = 2 δγ
∑
β,s′

V2;αβ µ
(0)
βs′

fα(fα − ss′ fβ )
t(0)L
βs′ , (44)

with V2;αβ =
∑

i ai uαi uβi.
Remark 3: The diagonal elements of the matrix V2 are

constrained by −1 ≤ V2;αα =
∑

i ai u
2
αi ≤ 1, since −1 ≤

ai ≤ 1. Therefore, (42) indicates that when the parameters
{ai} are correlated (anticorrelated) with the square compo-
nents {u2αi} for some α, that mode is more strongly (more
weakly) damped. Accordingly, Theorem 2 will distribute the
set {ai} in a correlated way with the slowest modes ofH . This
choice reduces the performancemeasure as much as possible,
because it increases the damping of the slowest modes while
faster modes are naturally damped by their fast oscillating
character (6) [9].
Proposition 4: For an abrupt power loss, δP(t) =

δP2(t), on a single bus labeled b, where δPi = δib δP, and
under Assumption 2, ξ̇α(t) is, to leading order in g,

ξ̇α(t) =
Pα
fα
e−γ t/2

[
2sα

(
1+ g

γ 2

f 2α
V2;αα

)
−gγ tV2;αα

(
sα +

γ

fα
cα
)]

+gγ
∑
β 6=α

V2;αβPβ
λα − λβ

e−γ t/2
[
γ

fβ
sβ −

γ

fα
sα + cα − cβ

]
+O(g2) , (45)

where sα = sin(fαt/2), cα = cos(fαt/2), and Pα and fα are
defined below (6).
The proof is based on (42) to (44) and is given in

the Appendix.
Proposition 5: For an abrupt power loss, δP(t) =

δP2(t), on a single bus labeled b, where δPi = δib δP, and
under Assumption 2, the susceptibilities αi ≡ ∂Mb/∂ai are
given by

αi = −
gδP2

2γmb

[∑
α>1

u2αiu
2
αb

λα

+

∑
α>1,
β 6=α

γ 2uαi uαbuβi uβb
(λα − λβ )2 + 2γ 2(λα + λβ )

]
(46)

Proof: From (45), to first order in g, one has
∞∫
0

ξ̇2α (t)dt =
P2
α

2γ λα

(
1− gV2;αα

)
−gγ

∑
β 6=α

V2;αβ PαPβ
(λα − λβ )2 + 2γ 2(λα+λβ )

+O(g2) . (47)

Taking the derivative of (47) with respect to ai with the
definition of V2;αβ given below (44) and summing over
α > 1, one obtains (46).
Remark 4: In the vicinity of the homogeneous case

M = m1 and 0 = γ1, summing over every fault location b
leads to the vanishing of the second term in (46). One obtains∑

b αi = −gδP
2∑

α>1 u
(0)2
αi /(2γ λ

(0)
α ). This follows from the

properties of the eigenvectors u(0)α , α > 1, of the Laplacian
matrix L.

IV. OPTIMAL PLACEMENT OF INERTIA AND
PRIMARY CONTROL
Having calculated the susceptibilities ρi ≡ ∂Mb/∂ri and
αi ≡ ∂Mb/∂ai, we are fully equipped to construct our
algorithm for the optimal placement of the inertia and primary
control.

A. LOCAL OPTIMIZATION
In general, it is not possible to obtain closed-form analyti-
cal expressions for the parameters ai and ri in determining
the optimal placement of the inertia and primary control.
Simple optimization algorithms can, however, be constructed
that determine how to distribute these parameters to mini-
mize Mb. Theorems 1 and 2 provide two such algorithms
for an optimization under Assumptions 1 and 2, respectively.
Additionally, Conjecture 1 proposes an algorithm for an opti-
mization under both Assumptions 1 and 2.
Theorem 1: For an abrupt power loss under Assumption 1

and with 0 = γ1, the optimal distribution of parameters {ri}
that minimizesMb is obtained as follows.
1) Compute the sensitivities ρi = ∂Mb/∂ri from (32)
2) Sort the set {ρi}i=1,...N in ascending order
3) Set ri = 1 for i = 1, . . . Int[N/2] and ri = −1 for

i = N − Int[N/2]+ 1, . . .N
The optimal placement of the inertia and primary control is
given by

mi = m+ δm ri , di = γ (m+ δm ri) . (48)
The proof is provided in the Appendix.
Theorem 2: For an abrupt power loss under Assumption 2

and with M = m1, the optimal distribution of parameters
{ai} that minimizesMb is obtained as follows.
1) Compute the sensitivities αi = ∂Mb/∂ri from (46).
2) Sort the set {αi} in ascending order,
3) Set ai = 1 for i = 1, . . . Int[N/2] and for i = N −

Int[N/2]+ 1, . . .N
The optimal placement of the primary control is given by

di = m(γ + δγ ai) . (49)
Proof: With Proposition 5 and M = m1, we obtain

(46). The proof is the same as that for Theorem 1 given in
the Appendix but with {αi} instead of {ρi}.

We next propose an algorithmic linear optimization that
simultaneously addresses Assumptions 1 and 2 and numeri-
cally show that the optimization works well. The main dif-
ficulty is that for limited resources, i.e., fixed total inertia
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and primary control, one has
∑

i mi = N m,
∑

i di = N d
and the latter condition requires

∑
i airi = 0 from (25). This

is a quadratic, nonconvex constraint, which makes the prob-
lem difficult to solve. The following conjecture presents an
algorithm that starts from the distributions {ri} and {ai} from
Theorems 1 and 2, which optimize the inertia and primary
control placement in the case of an inhomogeneous inertia or
damping-to-inertia ratio, respectively. The algorithm orthog-
onalizes them to satisfy

∑
i airi = 0 while attempting to

minimize the unavoidable related increase in Mb.
Conjecture 1 (Combined linear optimization): For an

abrupt power loss, under Assumptions 1 and 2, the optimal
placement of a fixed total amount of inertia

∑
i mi = mN and

primary control
∑

i di = dN that minimizesMb is obtained
as follows.

1) Compute the parameters ri and ai from Theorems 1
and 2.
a) If N is odd, align the zeros of {ri} and {ai}. Let ir0

and ia0 be the indices of these zeros. Their new
common index is

ieqnarray = argmin
i

(riρir0 + aiαia0 − riρi − aiαi) .

Interchange the parameter values rir0 ↔ rieqnarray
and air0 ↔ aieqnarray .

b) If N is even, do nothing
2) If n ≡

∑
i riai = 0, the optimization is finished.

3) Find the set I = {i | sgn(riai) = sgn(n)}. To achieve∑
i riai → 0, our strategy is set some elements of I

to zero. Since
∑

i ai =
∑

i ri = 0 must be conserved,
this must be accompanied by a simultaneous change in
another parameter.

4) Find the pair (ai1, ai2 = −ai1) or (ri1, ri2 = −ri1) ∈
I × I which, when sent to (0, 0), induces the smallest
increase in the objective functionMb. Send this pair to
(0, 0). Because this pair has the opposite sign, it does
not affect the condition

∑
i ai =

∑
i ri = 0.

5) Go to step # 2.
Nothing guarantees that this algorithm will optimize the

inertia and primary control placement when both are inho-
mogeneous. However, below we present numerical results
indicating that the algorithm is in fact effective.

B. GLOBAL VULNERABILITY
The optimization considered thus far has focused on a single
fault in bus b. We are interested, however, in finding the
optimal distribution of the inertia and/or primary control for
all possible faults. Thus, we introduce the following global
vulnerability measure

V =
∑
b

ηbMb(δPb) , (50)

where the sum is taken over all generator buses. The vul-
nerability measure V provides a weighted average over all
possible fault positions, with the weight ηb accounting for
the probability that a fault occurs at b and δPb accounting

for its potential intensity given, e.g., by the rated power of
the generator at bus b.

For equiprobable fault locations and for the same power
loss everywhere, ηb ≡ 1, Remark 2 leads to ∂V/∂ri =
0 + O(µ2). Therefore, to leading order, there is no benefit
in scaling up the inertia. On the other hand, with Remark 4,
we obtain ∂V/∂ai = −gδP2

∑
α>1 u

(0)2
αi /(2γ λ

(0)
α ) + O(g2).

The corresponding optimal placement of primary control
can be obtained with Theorem 2, from which we observe
that the damping-to-inertia ratios are increased for the buses
with large squared components u(0)2αi of the slow modes of
L – those with the smallest λ(0)α . These modes are displayed in
Fig. 1. One concludes that, with a non-weighted vulnerability
measure, ηb ≡ 1 in (50), a homogeneous inertia location is a
local optimum for V , for which the damping parameters need
to be increased primarily on peripheral buses.

FIGURE 1. Color-coded components of the α = 2,3, . . .7 eigenvectors
of L. The colors represent the interval [−umax

α ,umax
α ], where

umax
α = maxi

∣∣u(0)
αi

∣∣.
C. OPTIMIZATION OF REALISTIC CONFIGURATIONS
Thus far, our theory has been constructed under the
assumption of initially uniform distributions of the inertia
and primary control. The theory can be extended to initially
nonuniform distributions that are closer to the actual situation
in real power grids, under the assumption of almost homo-
geneous damping-to-inertia ratios, γi ≡ di /mi ≈ γ . Here,
we describe the changes considering such distributions.

With the inertia and primary control varying locally as
mi = m0i + δmi, di = d0i + δdi but d0i/m0i ≈ γ , unop-
timized performance measures M(0)

b are still given by (18),
with however λ(0)α and u(0)α standing for the eigenvalues and
eigenvectors of the matrix L(0)M ≡ M−1/20 LM−1/20 , with
M0 ≡ diag({m0i}). To optimize the placement of the inertia
and primary control, we parametrize them as

mi = m0i
(
1+ µri

)
, (51)

di = d0i
(
1+ µri

)(
1+ gai

)
, (52)

where µ = maxi
(
|δmi| /m0i

)
. The susceptibilities

ρi = ∂Mb/∂ri are given by

ρi = −
µδP2 m1/2

0i

γm1/2
0b
∑

k m0k

∑
α>1

u(0)αbu
(0)
αi

λ
(0)
α

, (53)
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FIGURE 2. Deviation from homogeneous inertia and primary control
conditions following the minimization of V in (50) for different choices of
ηb: (a)-(b) ηb ≡ 1, (c)-(d) ηb =M(0)2

b and (e)-(f) ηb as defined in (55).
ri = −1,0,1 (left) and ai = −1,0,1 (right) are displayed in red, white and
blue, respectively. (g) Vulnerability Mb vs. the fault location (in
increasing order of Mb) for the homogeneous model (black) and the
optimized models corresponding to (a)-(b) (green line), (c)-(d) (blue line)
and (e)-(f) (red line). The purple line shows the best reduction achieved
by optimizing ri and ai fault-by-fault. The inset highlights the small
discrepancies induced by the choice of ηb for the faults with the largest
impact. We used µ = g = 0.3.

instead of (32), while αi = ∂Mb/∂ai are still given by (46),

again with the eigenvalues and eigenvectors λ(0)α and u(0)α
of L(0)M . The theory can therefore account for inhomogeneous
distributions of the inertia, and the condition d0i/m0i ≈ γ is
not unrealistic. Our optimization leads to ratios di/mi varying
by a factor of 5-10, similar to their variation for rotating
machines in real systems.

D. BUDGET CONSTRAINTS
The employed constraint is that the total inertia and primary
control remain constant;

∑
i ai =

∑
ri = 0 is useful, but

FIGURE 3. Evolution of the total inertia M of the total primary control D
and the gain in the global vulnerability V as the budget B increases. The
circles indicate the four budgets corresponding to the distributions
in Fig. 4. The initial configuration corresponds to the present situation.

a more realistic constraint would be a financial constraint
restricting the available budget to upgrade the system. There-
fore, we impose a limited budget to our optimization in the
form of a constrained cost function∑
i

(
cm+i δm+i + c

d+
i δd +i

+cm−i δm−i + c
d−
i δd −i

)
≤ B . (54)

Local increases or reductions in the inertia are accompanied
by costs cm+i or cm−i , the same is true for local increases
and reductions in the primary control, and the total cost
is bounded by a predetermined total budget B. The con-
dition (54) is straightforwardly reformulated in terms of
ri and ai. The resulting optimization problem is more realistic
but simultaneously more complex and needs to be solved
numerically.

V. NUMERICAL INVESTIGATIONS
In [9] and [26], we constructed a synthetic, numerical model
of the synchronous power grid of continental Europe, with
3809 buses, 618 of which are generator buses. We use this
model to numerically validate the main results derived above.
To align with our theoretical results, we first remove the
inertialess buses via a Kron reduction [30].

We optimize the placement of the inertia and primary con-
trol in the continental European grid. We numerically inves-
tigate the response of the grid for localized contingencies and
verify the reduction in the system vulnerability. For every
fault location b, the system encounters an abrupt power loss
described by Pb(t) = Pb − δP2(t), with δP = 100 [MW].
We integrate the system dynamics described in (1) and com-
pute the measureM defined in (13).
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FIGURE 4. From left to right, the optimal enhancement in the inertia (top) and primary control (bottom) as the budget B increases. The areas of the disks
are proportional to the amount of inertia or of primary control. The increases and decreases are highlighted in blue and red, respectively. The initial
configuration corresponds to the present situation of the dynamical resources in Europe.

A. UNIFORM INITIAL CONFIGURATION
We homogenize the distribution of the inertia with mi =
29.22 MWs2 and that of the primary control with
di = 12.25 MWs so that the total amounts remain the same
as those in the original synthetic model.

In the previous section, we argued that a homogeneously
distributed inertia, together with an increased primary con-
trol on the slowest eigenmodes of the network Laplacian
minimize the global vulnerability measure V of (50) for
ηb ≡ 1. This conclusion is confirmed numerically in
Fig. 2 (a) and (b). The optimal placement of the primary con-
trol displayed in panel (b) decreasesV bymore than 12%with
respect to the homogeneous case.

Setting ηb ≡ 1 in (50) is convenient mathematically but
treats all faults equally, regardless of their impact. One may
instead adapt ηb to obtain the inertia and primary control
distributions that reduce the impact of the strongest faults
with the largestMb. Here, we employ two different methods:
first setting ηb =M(0)2

b and second with

ηb =

{
1 , ifM(0)

b >Mthres,
0 , otherwise.

(55)

The corresponding geographical distributions of the inertia
and primary control redistribution parameters ri and ai are
shown in Fig. 2 (c) and (d) and Fig. 2 (e) and (f), respectively.
Compared to the choice of ηb ≡ 1 [Fig. 2 (a) and (b)],
we obtain small differences. More importantly, the impact of
various choices of ηb on Mb is almost negligible, as shown
in Fig. 2 (g). In all cases, our optimization algorithm reduces
the impact of the strongest faults, with little or no influence
on the faults with weakest impact on grid stability.

Most interestingly, our three choices of ηb are close to
optimal, especially when considering the strongest faults.

This can be seen in Fig. 2 (g), where the purple line shows
the maximal obtainable reduction when the inertia and pri-
mary control distributions are optimized individually fault-
by-fault, i.e., with a different redistribution for each fault.
The inset of Fig. 2 (g) shows that for the strongest fault,
the three considered choices of ηb lead to reductions in Mb
that are very close to the maximal value. We conclude that
rather generically, the inertia is optimally distributed homo-
geneously, while the primary control should be preferentially
located on the slow modes of the grid Laplacian.

B. BUDGET-CONSTRAINED OPTIMIZATION
The presented numerical results illustrate the validity and
power of our theory. We next consider the two more realis-
tic situations of (i) the current distribution of inertia in the
European transmission grid and (ii) a possible future config-
uration of a European transmission grid with strongly reduced
inertia, corresponding to an advanced stage of the energy
transition with a large penetration of inverter-connected new
renewable sources.

Fig. 3 shows the evolution of the total inertia and primary
control connected to the system as a function of the available
budget B for situation (i) corresponding to the current con-
figuration of the European transmission grid. Most of the
optimization is obtained relatively fast, and only by adding
primary control. We find that 96 % of the effect is readily
obtained for B = 20 only by adding primary control with
no change in the inertia. Furthermore, achieving the maximal
optimization requires an increase in the budget to B = 50.
An inertia redistribution and/or addition is essentially useless:
it only allows a gain of a few percent in the optimization but
is associated with a high cost.

Fig. 4 shows the optimal system enhancement for four
different values of the budget B corresponding from left to
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FIGURE 5. From left to right, the optimal enhancement in the inertia (top) and primary control (bottom) as the budget B increases. The areas of the disks
are proportional to the amount of inertia or primary control. Increases and decreases are highlighted in blue and red, respectively. The initial
configuration represents a later stage of the energy transition, and contributions from nuclear and coal-fired power plants are significantly reduced.

right to the four circles in Fig. 3. The primary control is, up to
B = 20, increased in the periphery of the grid. This qual-
itatively corroborates the above arguments that the primary
control should be increased on the slow modes of the grid
Laplacian. As a matter of fact, it is expected that these slow
modes dominantly reside in the grid periphery [9]. The inertia
is only redistributed for a higher budget; however, as already
mentioned, this occurs with little decrease in the performance
measure.

We finally consider a potential future European trans-
mission grid, where nuclear and coal-fired power stations
are partially dismantled and substituted with inertialess new
renewable sources. Accordingly, we reduce the correspond-
ing inertia by a factor of three, mi → mi/3. While this
scenario is unlikely to be realized in the future, it allows
us to investigate a power grid with strongly reduced iner-
tia. Fig. 5 shows that the optimization leads to qualitatively
similar results as those for the current configuration of the
European transmission grid – it seems more important to
redistribute the primary control than the inertia. Nevertheless,
from a quantitative point of view, this situation with more
inverter-connected production seems to require an inertia
redistribution even with a lower budget. An interesting study
beyond the scope of the present paper would be to quanti-
tatively investigate what penetration level of new renewable
resources requires a redistribution and/or an increase in the
inertia resources.

All of these numerical data correspond to the cost param-
eters cm+i = 1 (MWs2)−1, cm−i = 0.1 (MWs2)−1, c d+i = 1
(MWs)−1 and c d−i = 0.1 (MWs)−1 in (54). This arbitrary
choice takes into account that installing resources is more
expensive than dismantling them. We have checked that our
conclusions do not change qualitatively for cm±i /c d±i ∈

[0.1, 10], and only an increase in B occurs when the primary

control costs are increased with respect to the inertia costs.
In all cases, the primary control increase and its targeted dis-
tribution provide most of the maximal possible optimization,
with only a small, expensive contribution arising from the
inertia redistribution.

VI. CONCLUSION
To find the optimal placement of inertia and primary control
in electric power grids is a problem of paramount importance.
Here, we have realized an important step forward in con-
structing a perturbative analytical theory for this problem.
In this approach, both the inertia and primary control are
limited resources, whose placement needs to be optimized
simultaneously. Most importantly, our method goes beyond
the usual assumption of a constant damping-to-inertia ratio.
In our approach, the inertia and primary control can vary
spatially independently.

Our results indicate that grid stability as quantified by the
performance measures of (13) and (50) is improved domi-
nantly by an appropriate increase and geographical distribu-
tion of the primary control resources. The primary control
should in particular be reinforced on buses that support the
slower modes of the network Laplacian. We found, rather
surprisingly, that the inertia plays a very limited role in
the optimization of our performance measures. Nonetheless,
comparing Figs. 4 and 5 seems to indicate that in power grids
with increased penetration of inertialess, inverter-connected
production, the inertia redistribution becomes more impor-
tant. Future works should investigate in detail the critical
amount of inertialess production for which a change in behav-
ior will occur.

Our results emphasize the importance of simultaneously
optimizing the inertia and primary control. In particular,
the latter should also be considered as a control variable,
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which may be a shortcoming of Ref. [6]. Finally, it would
be interesting to compare our method with the methods of
Refs. [4], [8], where both the inertia and primary control are
control variables.

One limitation of our theory is that it considers only the
first order in perturbation theory. Future work should try to
extend this approach to the next order in perturbation theory
or include the presented results in an iterative algorithm, for
instance, along the lines of Ref. [4]. Work in this direction is
in progress.

APPENDIX
Proof of Proposition 4:

The proof follows the same steps as those for Propo-
sition 1. The calculations are rather tedious though alge-
braically straightforward. In the following, we describe the
calculation steps. Assuming that H can be diagonalized as
tR µ tL , where µ ≡ diag({µαs}) and tR,L are matrices con-
taining the right and left eigenvectors of H , the problem is
resolved by:
1) changing variables χ ≡ tL[ξ>ξ̇

>
]> to diagonalize (36), as

χ̇ = µχ + tL
[
0N×1
P

]
≡ µχ + P̃ ; (56)

2) solving (56) as

χα± = −
P̃α±
µα±

(
1− eµα±t

)
, ∀α > 1 ; (57)

3) and obtaining ξ̇α via the inverse transformation
[ξ>ξ̇

>
]> = tRχ .

These three steps are carried out with the approximate
expressions tR,L = tR,L(0) + gtR,L(1) and µα± = µ

(0)
α± +

gµ(1)
α± obtained with the first-order corrections in g presented

in (42)–(44). One obtains

[
ξα
ξ̇α

]
=

[
1 1
µ
(0)
α+ µ

(0)
α−

] [
χα+
χα−

]
−
gγV2;αα

f 2α

[
µ
(0)
α+ µ

(0)
α−

λα λα

]
[
χ
(0)
α+

χ
(0)
α−

]
− gγ

∑
β 6=α

V2;αβ

λα − λβ[
µ
(0)
β+ µ

(0)
β−

µ
(0)2
β+ µ

(0)2
β−

][
χ
(0)
β+

χ
(0)
β−

]
+O(g2) , (58)

with

χα± = −
1

µ
(0)
α±

[
P̃ (0)
α± + gP̃

(1)
α± − g

µ
(1)
α±P̃

(0)
α±

µ
(0)
α±

](
1− eµ

(0)
α±t
)

+gt
µ
(1)
α±P̃

(0)
α±

µ
(0)
α±

eµ
(0)
α±t +O(g2) , (59)

where[
P̃ (0)
α+

P̃ (0)
α−

]
=

i
fα

[
µ
(0)
α− −1
−µ

(0)
α+ 1

][
0
Pα

]
,[

P̃ (1)
α+

P̃ (1)
α−

]
=

iγ
fα

(
−
V2;αα

f 2α

[
λα −µ

(0)
α−

−λα µ
(0)
α+

][
0
Pα

]

+

∑
β 6=α

V2;αβ

(λα − λβ )

[
λβ −µ

(0)
α+

−λβ µ
(0)
α−

][
0
Pβ

])
. (60)

(45) is obtained from (58) by applying trigonometric
identities.
Proof of Theorem 1: To leading order in µ = δm/m, this

optimization problem is equivalent to the following linear
programming problem [31]

min
{ri}

∑
i

ρiri , (61)

s.t. |ri| ≤ 1 , (62)∑
i

ri = 0 . (63)

The problem is solved by the Lagrange multipliers method
with the Lagrangian function

L =
N∑
i=1

ρiri +
N∑
i=1

εi(r2i − 1)+ ε0
N∑
i=1

ri , (64)

where εi and ε0 are Lagrange multipliers. We obtain

∂L
∂ri
= ρi + 2εiri + ε0 = 0 , ∀i . (65)

The solution must satisfy the Karush-Kuhn-Tucker (KKT)
conditions [31] and in particular the complementary slack-
ness (CS) condition, which imposes that either εi = 0 or
ri = ±1 , ∀i. The former choice generally leads to a
contradiction. From (65) and dual feasibility conditions, one
obtains

εi = −
ε0 + ρi

2ri
≥ 0 . (66)

This imposes that ri = −sgn(ε0 + ρi). To ensure that∑
i ri = 0 is satisfied, ε0 is set to the negative of the median

value of ρi. If the number of bus N is odd, ri corresponding
to the median value of ρi is set to zero.
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