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ABSTRACT Device-free passive sensing of the human targets using wireless signals have acquired much
attention in the recent past because of its importance in many applications including security, heating,
ventilation and air conditioning, activity recognition, and elderly care. In this paper, we use receiver-side
beamforming to isolate the array response of a human target when the line of sight array response is several
magnitudes stronger than the human response. The solution is implemented in a 5G testbed using a software-
defined radio (SDR) platform. As beamforming with SDRs faces the challenge to train the beamformer to
different azimuth angles, we present an algorithm to generate the steering vectors for all azimuth angles from
a few training directions amidst imprecise prior information on the training steering vectors. We extract the
direction of arrival (DoA) from the array response of the human target, and conducting experiments in a
semi-anechoic chamber, we detect the DoAs of up to four stationary human targets and track the DoA of up
to two walking persons simultaneously.

INDEX TERMS Pervasive computing, ubiquitous computing, information and communication technology,
wireless access points, ambient assisted living.

I. INTRODUCTION
Device free human sensing has gained interest because of
its importance in many applications that includes human
safety in industry settings [1], security and surveillance [2],
heating, ventilation and air conditioning [3], and assisted
living [4]. Diverse technologies have been considered for
human sensing: cameras [5], infra-red [6], visible light [7]
acoustics [8] or wearables [9]. Compared to these solutions,
device-free wireless sensing has the advantages of reduced
intrusion of privacy, performance in darkness and occlusion
and not having the inconvenience of wearing a device.

Device-free passive human sensing is a challenging task
because the signals scattered off the humans are several mag-
nitudes weaker than that of the line of sight (LoS) signal.
Previous attempts have looked at signal strength [10], direc-
tion of arrival (DoA) [11], time of flight [12] and Doppler
shift [13], [14] or a combination of those [15] to extract the
parameters of the channel for activity recognition, presence
detection or localization and tracking. In this work, we use
DoA as the channel parameter but extract the DoA from a
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novel approach. More specifically, we use beamforming at
the receiver end and steer the beam to different directions
to construct the array response to detect the human presence
and to estimate the direction of that person. Unfortunately,
current super-resolution algorithms that detect the DoA, e.g.
multiple signal classification (MUSIC) [16], require the num-
ber of sources as prior information for an accurate estimation
of the DoAs [17]. Using beamforming, such problems can
be mitigated as the DoAs of the interested targets can be
simultaneously estimated from the amplitude of the array
response using our approach. Additionally, by focusing the
beam towards the direction of the person, activity patterns
can be simultaneously recognized for multiple persons [18].
However, beamforming has not been utilized for human sens-
ing in the past mainly because of the requirement of trans-
mitter (TX) and receiver (RX) phase synchronization and the
requirement of large antenna arrays for high resolution.

Recent developments in 5G with massive MIMO have
enabled beamforming with high resolutions. In our work,
we utilize a 5G testbed [19] comprised of software-defined
radios (SDRs). Beamforming with SDRs is still challenging
because the beamformer has to be calibrated for different
azimuth angles due to practical limitations like unknown
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wave propagation conditions and random phase shifts in RF
chains. Moreover, training the beamformer for a larger num-
ber of azimuth angles is labor intensive and is not practical.
We, therefore, use reference directions to train the beam-
former by transmitting from a limited number of azimuth
angles and measure the steering vectors at the receiver for
those directions using the relative phases of the antenna array.
The measured steering vectors can still be far from ideal
due to, e.g. unknown wavefield propagation conditions and
antenna array orientation and geometry errors. Therefore,
we sanitize these steering vectors and using them as reference
points, we generate the steering vectors for all azimuth angles
using a mathematical model.

As contributions, i) we propose an algorithm to estimate
steering vectors for all azimuth angles using the reference
points even when steering vector mismatches occur. ii) We
also provide an approach to detect the human presence from
the array response, and iii) a method to estimate the direction
of the human when the direct path from the transmitter is
several magnitudes stronger than the scattered paths from the
human. iv) By conducting experiments in a semi-anechoic
chamber of size 22.4m2, we achieve a 100% detection accu-
racy and a maximum error for the median direction of arrival
of 7◦ for a person performing in-place activities in five dif-
ferent locations of the area of interest. We perform experi-
ments placing up to four persons in the given area and show
that DoAs can be extracted from stationary persons when
sufficient spatial separation among them is present. Finally,
conducting experiments up to two walking persons we show
that their DoAs can be simultaneously extracted.

The rest of the paper is organized as follows. Section II pro-
vides a summary of themost relevant device-free human sens-
ing approaches. Section III introduces our signal model used
for beamforming and explains how we construct the array
response through beamforming using SDRs. In Section IV,
we provide our solutions to problems that occurred due to
practical limitations associated with SDR-based beamform-
ing i) fixed phase offsets in RF chains, and ii) steering vector
mismatch. In Section Vwe detect human presence from array
response, extract the response of the human and the corre-
sponding DoA. In Section VI we explain the configuration
of our testbed, Section VII explains the experiment environ-
ment, data collection and evaluation of our algorithms. We
discuss the scope and limitations of this work and provide
our conclusions in Section VIII.

II. RELATED WORK
Our work is related to Device-free localization, track-
ing and activity recognition of humans using radio sig-
nals. Other competing technologies include vision-based
solutions [5], thermal images [6], visible light [7] acous-
tics [8] or wearables [9]. Vision or optoelectronic sensors
used for people monitoring exploit the properties of reflectiv-
ity with time-of-flight (ToF) cameras, emissivity with thermal
images or acoustic sensors. They are, however, constrained

by range, occlusions, environmental conditions (smoke/fire),
and privacy concerns [20], [21]. Other solutions, which
demand that people carry a device (Device-based), limit
human subjects’ mobility, visibility, and communication.
Device-free RF-sensing solutions, which do not require peo-
ple to wear any devices, and which rely on electromagnetic
propagation, mitigate these challenges. The proliferation of
radio devices inside the area of interest is therefore expected
to boost the development of non-intrusive RF based localiza-
tion, tracking and activity recognition [22], [23].

Previous Research has demonstrated the use of radio sig-
nal measurements for the inference of different characteris-
tics of the human state. These measurements include time
delay [24], phase [11], Doppler [13], and signal strength [25].
They have been used for various purposes including vital sign
monitoring [26], activity and gesture recognition [27], local-
ization [28], [29], tracking [30], gait identification [31], fall
detection [4], [32], gesture control [33], and indoor human
walking direction estimation [34].

Among the most relevant approaches that perform device-
free localization and tracking, WiTrack [12] uses a custom
made transceiver exploiting a wideband FMCW radar to
estimate time delay of signals reflected from a human and
a 5 × 5 antenna array with more than half wavelength sep-
aration between two elements to achieve spatial diversity.
WiDeo [35] uses WiFi backscatter communication to jointly
estimate ToFs and AoAs to localize humans. DynamicMu-
sic [11] jointly estimates DoA and observed time of flight
(reflected off human subjects) from channel state informa-
tion (CSI) by a two dimensional MUSIC algorithm using
commodity WiFi devices. However, the approach success-
fully detects only a walking person, whereas IndoTrack [30]
extends this by incorporating AoA with Doppler informa-
tion to localize a static and dynamic person. xd-Track [15]
applies SAGE algorithm for multiple channel parameter
estimation (signal strength, DoA, ToF and Doppler) using
an SDR platform, thereby improving the resolution of
multiple human target tracking despite heavy computation
efforts and custom made hardware. Widar2.0 [36] extends
this to commercial WiFi devices that uses CSI and fur-
ther leverages multipath effects to enable absolute ToF
estimation.

These approaches are relevant to our work in device-
free estimation of DoA for human tracking, however, our
approach is different to all these in the way DoA is esti-
mated. While current state of the art approaches use either
an extended version of MUSIC algorithm or a variation
maximum likelihood estimation using the relative phases of
antenna arrays, we use beamforming techniques and con-
struct the array response to isolate the path correspond-
ing to humans and estimate their DoAs. We show that
the approach can estimate DoAs of multiple targets with-
out the knowledge of the target count in advance and
the target resolution is only limited by the number of
antennas.
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III. BEAMFORMING PRIMER
A. SIGNAL MODEL
Here we use a point source narrowaband signal model and
a uniform linear array (ULA) of M omnidirectional antenna
elements. The narrowband signal received at time instant t by
the ULA is modeled as

x(t) = s(t)+ i(t)+ n(t) (1)

where s(t), i(t) and n(t) are CM×1 vectors representing the
line of sight (LoS) signal, signal scattered off a person and
noise respectively. Under these conditions i(t) is the desired
signal and it can be amplified by finding the correct beam-
former weight w. However, as the person is not always
stationary, we cannot use a fixed weight as in beamform-
ing used for fixed transmitter and receiver positions. There-
fore, we construct the array response using the beamformer
weights for all azimuth directions.

B. ARRAY RESPONSE OF A DELAY AND SUM
BEAMFORMER
In this work, we use a 5G testbed (Sec. VI) consisting of
software defined radios (SDRs). In our testbed, a 12.48 MHz
channel is divided into 52 OFDM subcarriers each having a
bandwidth of 240 kHz. In OFDM, a channel is divided into
multiple subcarriers and data is modulated in each subcarrier.
The in-phase and quadrature (IQ) samples of the 52 subcar-
riers measured at runtime are fed to the beamformer as a
post-processing step to obtain N spatial streams of the array
response such that signals arriving from direction i ∈ N are
amplified at the ith spatial stream.
Here, we implement a delay and sum beamformer using

OFDM beacons. Even though, other commonly used beam-
formers like minimum variance distortionless response
(MVDR) or linearly constrained minimum variance (LCMV)
beamformers improve the signal to interference plus noise
performance, they achieve this by having the nulls of the
beam at interference directions [37]. This can be detrimental
for human sensing, as we rely on the signals scattered off the
humans behaving as the interference paths.

We implement the beamformer as follows. The transmitter
sends a beaconwith a known sequence a(t) each subframe. IQ
samples xm(t) ∈ C are received by antenna element m ∈ M
where M is the number of receiver antenna elements. xm(t)
can be represented as

Xm(f ) = Hm(f ) · A(f ) (2)

where Xm(f ) = FFT {xm(t)}, A(f ) = FFT {a(t)} is the trans-
mitted beacon and Hm(f ) is the wireless propagation channel
between TX and receiving antenna m. Radio waves arrive at
a receiver over multiple paths due to reflection and scattering
caused by objects in the environment. A plane wave arriving

from direction j introduces a phase rotation of φmj =
2πcτmj
λ

due to the time delay τmj to propagate to antenna element m
where c is the speed of light and λ is the wavelength. We

estimate φ̃mj ≈ φ
m
j by computing the cross-correlation r(φm),

r(φm) = FFT−1{Xm(f ) · A(f )∗} (3)

and φ̃mj maximizes the correlation between transmitted and
received beacons

φ̃mj = argmax
φm

|r(φm)|. (4)

This approach is possible because a truncated version of fre-
quency domain Zadoff-Chu sequence used in LTE is adopted
here as A(f ) [38]. The sequence was truncated because it was
longer than the number of available subcarriers.

The beamformer weight wi is computed using wi = pi/M
where pi is the steering vector for azimuth direction i ∈ N .
We apply the weight vector on rj(t) at time instant t

ai(t) = wi · rj(t) (5)

where rj(t) = [r(φ̃1j , t), r(φ̃
2
j , t), . . . , r(φ̃

M
j , t)]

T to obtain
array response a(t) where a(t) = [a1(t), a2(2), . . . , aN (t)].

IV. PRACTICAL IMPAIRMENTS TO BEAMFORMING AND
OUR SOLUTIONS
Even though the array response can be computed as above
in an ideal setting, practical limitations in real world testbeds
introduce errors on the relative phase of signals among the
received streams and the steering vectors. To tackle these
problems, we implemented calibration techniques.

A. PHASE OFFSETS OF THE RF CHAINS
The problem of time-varying phase-offset due to clock drift
is solved by using a separate transmitter that sends refer-
ence signals before receivers compute the phase difference
between RF chains for run time compensation by [38]. Phase
offsets caused by non-identical antenna feed cables, connec-
tors and other RF components are mitigated by first, perform-
ing phase measurements of each component via an external
vector network analyzer and measuring a crude phase offset
for each RF chain. Then, finding the phase offset αm in each
antenna element by using the line of sight (LoS) direction
as the reference. If a plane wave impinges on the antenna
array when a signal is emitted from the LoS, the relative
phases among the antenna elements are almost zero. We use
this assumption to calibrate the phase offsets. We first model
the measured signal x̂m(t) as x̂m(t) = xm(t) · ejαm where
αm is the unknown phase offset at antenna element m. Then,
we calibrate αm such that the steering vector qLoS of the LoS
direction is qLoS = [0, 0, 0 , . . . 0]1×M . This calibration
helps us in two ways: i) to mitigate fixed phase offsets in
RF chains, and ii) to use the LoS direction as the reference
direction for a signal coming from 90◦ azimuth angle to the
ULA.

B. STEERING VECTOR PROCESSING
In this work, we estimate the steering vectors and learn the
beamformer weights from a particular azimuth direction by
transmitting a signal from known anchor points. In practice,
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FIGURE 1. A plane wave impinging on a antenna array at an azimuth
angle of θi .

the steering vector associated with a plane wave impinging
from a particular direction may not be known precisely.
This results in a mismatch between the presumed and the
measured steering vectors. This can occur due to imprecisely
known wavefield propagation conditions, antenna calibration
errors, antenna array geometry and orientation errors and/or
signal pointing errors [39], [40]. Therefore, we choose to
first measure the phase rotations from signals transmitted
from k reference directions, convert them to steering vectors
and assign them as anchor points. Thereby, we derive the
directions of the signals arriving directly or from positions
near to those anchor points. Next, we use a model of the delay
and sum beamformer to sanitize the steering vectors and to
assign azimuth angles to those anchor points.

1) STEERING VECTOR ESTIMATION USING ANCHOR POINTS
(CALIBRATION PHASE)
We estimate the steering vector qi of receiver antenna ele-
ments by placing a transmitter at k anchor points, measure the
azimuth angles2 = [θ1, θ2 . . . θk ] and use them as reference
angles for the k steering vectors. The phase shifts corre-
sponding to the steering vectors for the k reference directions
are estimated using the method explained Sec. III. The IQ
samples are correlated with the TX beacon as in Eq. 3 and
the phase rotation φ̃mi that maximizes the correlation r(φm) is
estimated so that qi normalized to the 1st antenna element is

qi = [1, e−j(φ̃
2
i −φ̃

1
i ), e−j(φ̃

3
i −φ̃

1
i ), . . . , e−j(φ̃

M
i −φ̃

1
i ]) (6)

As mentioned above, the steering vector derived from the
anchor point is not ideal because of residual phase offsets in
RF chains, measurement offsets and orientation errors in the
antenna geometry.

2) STEERING VECTOR SANITATION AND ARRAY RESPONSE
COMPUTATION
As a solution for steering vector mismatch, we estimate the
presumed steering vector using a method explained in [40].
Note that this method is executed for a minimum variance
distortionless response (MVDR) beamformer under heavy
interference conditions. Even though we use a delay and
sum beamformer, this method can be applied to our case
because the steering vector is determined by the physical
properties of the channel independent of the type of beam-
former being used. We adapt their approach to estimate the

FIGURE 2. (a) Array response for a signal emitted from anchor point A at
−28◦ during 15 s and array response when a signal is emitted from C at
0◦ (b) no human exists in the environment (c) a human exists at A and
(d) a human exists at A and at B.

optimum steering vector as follows. The measured steering
vector is modeled as qi = pi + ei where pi is the presumed
steering vector and ei is the error for the anchor point at
direction i. Then we estimate the error eopti by maximizing
the beamformer output power of an MVDR beamformer
P(ei) = 1

|(pi+ei)H R̂−1i
(pi + ei)| [40] as a convex optimization

problem

eopti = argmin
ei

|(pi + ei)H R̂−1i (pi + ei)| (7)

Once the presumed steering vector is known, it is possible
to estimate the corresponding azimuth angle of the anchor
point by comparingwith amodeled steering vector.Wemodel
the steering vector p̂i for direction i as a function of azimuth
angle

p̂i = [1, e−j2π f τ
2
i , e−j2π f τ

3
i . . . , e−j2π f τ

M
i ] (8)

where τmi =
λ
2 · (m − 1) · sin θi and −90◦ < θi < 90◦

is the azimuth angle in the xy plane measured from x axis
for a signal arriving from the ith direction. By minimizing
the minimum mean square error (MMSE) between p̂i and pi
using azimuth angle as a variable, we are able to obtain the
optimum azimuth angle θopti of the anchor point and the
corresponding steering vector p̂opti ≈ pi.

[p̂opti , θ
opt
i ] = argmin

θi

( 1
m

∑
m

(p̂i,m − pi,m)2
)

(9)

Finally, we generate steering vectors for all azimuth angles
using Eq. 8 and construct the array response using Eq. 5.
Algorithm 1 summarizes this process. Fig. 2a and Fig. 2b
illustrates the array response computed from a signal emitted
for a duration of 15 s from a TX at A and and a TX at C.
Fig. 2c illustrate the array response for a person at A and and
Fig. 2d for a person at A and at B when the transmitter is at C.
From the first two figures it is visible that the array response
of a particular azimuth angle is constant. Compared to the first
two figures, it can be noticed that there are more perturbations
in the array response of the final two figures. Additionally,
compared to Fig. 2c, Fig. 2d has more perturbations closer to
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Result: Array response a(t)
for i← 1 to k do

Estimate eopti by solving (7)
Update vector pi using qi = pi + ei
Estimate p̂opti and θopti by solving (9)

end
Generate steering vectors using (8) for −90 ≤ θ ≤ 90
Construct the array response using (5)

Algorithm 1 Array Response Computation

the LoS response. However, the LoS response is quite strong
in both situations which tends to shadow the response of the
human.

V. DETECTION OF THE HUMAN IMPACT
In this section we analyze the array response in the presence
of a human from the spatial streams computed according
to Eq. 5 from the steering vectors processed according to
Sec.IV-B corresponding to azimuth angles−90◦ ≤ θi < 90◦.

A. HUMAN PRESENCE DETECTION
We infer human presence from the array response for a given
time interval T as follows. We construct the array response
ahf(t) for a human-free setting using Eq.5. rj(t) in Eq.5 is
computed from the IQ samples collected from the testbed
when no human exists. Then we find the difference, 1aT ,
between ahf(t0) and the array response measured with a
human subject present ahp(t) for all θs during the interval
t0 ≤ t < t0 + T (since the array response for the human free
environment is constant over time, we use only the response
at time instant t0).

1aT =
t0+T∑
t=t0

{ 1
181

90∑
θ=−90

|ahp,θ (t)− ahf ,θ (t0)|
}

(10)

Human presence is detected when1aT > Th, where Th is
the maximum 1a for array responses measured in a human
free environment Th = max(1aT1 ,1aT2 . . . 1aTN ) during N
time intervals. Note that 1aTn where n ∈ N is not zero due
to noise and multipath effects.

B. DETECTION OF THE ARRAY RESPONSE OF HUMANS
When human presence is detected by the above approach,
we remove the effect of the line of sight path from the array
response ahp(t) through subtraction and construct the array
response of a human ah(t). The intuition here is that the array
response of the LoS has a constant gain for a particular angle
over time. However, from the collected data we notice that
when the human is closer to the LoS beam, the subtraction
of a constant value from the array response of human and the
LoS does not completely remove the LoS effect over a long
duration. Therefore, we estimate the mean array response for
a short time interval T and subtract that value from the array

FIGURE 3. (a) Array response of the LoS when a person exists at A.
(b) Array response of the person when LoS response is removed.

response such that

ah(t) = ahp(t)−
1
T

t0+T∑
t=t0

ahp(t) (11)

where t0 ≤ t ≤ t0 + T . Fig. 3 illustrates the behaviour of
|ahp(t)| and Fig. 3b shows the behaviour of |ah(t)| when a
human is present at anchor point A for T = 15s. According to
Fig. 3, the LoS path overshadows the paths from the human,
however, between azimuth angles {−50◦, 0◦} perturbations
can be observed in the array response than between the
azimuth angles {0◦, 90◦}. When the effect of the LoS path
is removed, human’s impact can be observed as in Fig. 3b.
Interestingly, the two figures show that the highest amplitude
of the human response is as much as 4 times smaller than the
LoS response.

C. ESTIMATION OF A HUMAN’S DIRECTION
We use the array response of the human ah(t) when the LoS
response is subtracted to estimate the direction of arrival
corresponding to the human. As the beamwidth of the unit
response of a signal emitted from a particular direction is
fairly wide (half power beam width of ≈ 25◦ for a ULA
of 4 antenna elements in our case) and the residual response
of LoS signal may still exist, the estimation of the human’s
direction is not trivial. As a naïve approach, we can detect
the angle corresponding to the maximum gain at a particu-
lar time instant, however, this introduces noise due to large
beamwidth, residuals of the LoS beam and sidelobes. Again,
MVDR or MUSIC algorithms cannot be used because the
number of sources are not known in advance. Therefore,
we use the following procedure to estimate the DoA corre-
sponding to a human.

We first model the array response of the ULA for a signal
emitted from each azimuth angle. As an example, the array
response âj of a signal emitted from direction j can be
modeled by multiplying the beamformer weight wj with all
steering vectors of the interested K azimuth angles s.t.

âj = wH
j P (12)

where P = [p̂1, p̂2, . . . , p̂K ]. Figure 4b illustrates the ampli-
tude of the array response |âj| for a unit source impinging
on the ULA from directions θ = 0◦ and −27◦. Likewise
we compute Â = [â1, â2, . . . , âJ ] for unit sources impinging
on the ULA from azimuth angles −90 ≤ θ ≤ 90. Then we
correlate |âj|with the array response of the human |ah(t)| and
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FIGURE 4. (a) Comparison of the amplitude of the array response
|ahf(t)| when environment is human-free vs |ahp(t)| where a human
exists at −27◦ at a particular time instant. (b) Amplitude of the modeled
array response |âj | for a unit source impinging on the ULA from
directions θ = 0◦ and −27◦.

find the azimuth angle θmax(t) that maximizes this correlation
for time instant t .

θmax(t) = argmax
j
{|âj|T · |ah(t)|} (13)

The idea here is that when the peaks of |ah(t)| and |âj|
are aligned for a signal incoming from a certain azimuth
angle, this produces a high correlation. Here, we compute
the matrix Â manually instead of shifting |âj| over differ-
ent angles because the array responses for different azimuth
angles are not equal to their shifted versions. As an example,
according to Fig. 4b, |âj| for a signal arriving from−27◦ is not
the same as when |âj| for a signal arriving from 0◦ is shifted
by 27 degrees to the left.

VI. TESTBED DESCRIPTION
We used a software-defined radio platform consisting of a
single-antenna transmitter and a receiver with a four ele-
ment uniform linear array (ULA) with λ

2 inter-element spac-
ing. Dipole antennas were used as array elements. The
transmitter is comprised of a Universal Software Radio
Peripheral (USRP) X300 series with UBX-160 and SBX
RF-daughterboards as the radio front-ends connected to a
host computer. The receiver was comprised of three USRPs,
of which two served to collect the signal from the other high-
level node (= transmitter). The third device is the reference
USRP. It operates by synchronizing over the air with the
primary two USRPs and then transmitting a reference signal
to calibrate the starting offset between them. Phase coherence
between the two receiver USRPs was accomplished using
a clock distribution system. It provides both a pulse-per-
second signal and a 10 MHz reference signal to discipline
the local oscillators of the USRPs. The reference USRP was
necessary due to inter-device random phase offset at start-up
and component variability in each RF chain. Additionally, the
reference USRP helps to ensure that phase coherence, and
therefore beamforming performance is maintained through-
out the measurement collection.

The air-interface configuration of the testbed is an OFDM
frame structure at a carrier frequency of 3.42 GHz. The total
bandwidth of the system is 15.36 MHz with 52 subcarriers
each with a bandwidth of 240 kHz yielding a total bandwidth
of 12.48 MHz. Each USRP stream IQ samples at a rate

FIGURE 5. Experiment Environment. # of RX antennas: 4, # of TX
antennas: 1, antenna heights from ground: RX 0.89 m, TX 0.85 m, room
size: 5.6 m × 4 m × 2.184 m. (a) A to E and (b) 1 to 12 are anchor points.

FIGURE 6. MMSE between modeled and presumed steering vectors
of 17 directions from two measurement campaigns along with the
computed azimuth angles.

of 16.66 megasamples per second. This is subdivided into
subframes of 3082 samples in length in time domain, yielding
approximately a rate of 5408 subframes per second. This rate
of the subframes is essentially the sampling rate of the IQ
samples used as input for beamforming.

VII. EXPERIMENTS AND EVALUATION
We conducted experiments in an environment as shown in
Fig. 5 which is a semi-anechoic chamber where ground
reflections are still possible as the ground was not insulated
with radio wave absorbents. Each experiment in below sec-
tions lasted for 15s. As the testbed provides samples at a rate
in excess of 5400 samples/s we downsampled it by factor
10 and obtained 8112 samples for each experiment.

A. EVALUATION OF STEERING VECTOR SANITATION
As mentioned in Sec.IV-B we generate the beamformer
weights using a semi-supervised learning approach where
measurements are collected from anchor points and then
assigning the closest steering vector generated from a model
using the MMSE criterion. In this section we analyse the
performance of this approach using the MMSE of 17 steer-
ing vectors collected during two measurement campaigns as
shown in Fig. 5. In the first campaign we used 5 directions
(indexedA, B, C, D&E) as shown in Fig. 5a and in the second
campaign 12 reference directions (indexed 1-12) were used as
shown in Fig 5b. Fig 6 illustrates theMMSE for each direction
between the presumed steering vector pi and modeled steer-
ing vector p̂i together with the azimuth angle (θi) computed
according to Sec. IV-B2.
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FIGURE 7. Human presence detection from the array response (a) single person at A, B, C, D
and E, compared with human-free case, (b) two persons at AB, BC, CD, DE compard with
human-free case, (c) three persons at ABC, BCD, CDE, four persons at ABCD and BCDE and five
persons at ABCDE compared with human-free case.

FIGURE 8. Resuts of the experiments with and w/o human. (a) LoS AoA, (b) AoA of the human,
(c) Moving median AoA of the human.

For all the directions in both campaigns, except the direc-
tion having the index 7 in campaign 2, MMSE< 0.2. Gen-
erally, the directions having a smaller |azimuth angle| tend to
have low errors and vice versa, e.g., directions with indices 5,
6, 7 and 8 have the highest errors while C, D, 3, and 10 have
low errors. For the direction indexed 7, the error is 2.65 and
the corresponding azimuth angle is −20◦. Given that direc-
tion 7 should be further away from directions with indices
6 and 8 (having angles of −55◦ and −52◦ respectively),
it can be concluded that the measured steering vector for
direction 7 has a very high error which cannot be sanitized by
the proposed algorithm. Therefore estimation of the azimuth
angle for that direction is also erroneous. We conjecture that
the error is caused by the increase in azimuth angle where
the direction with index 7 has the highest azimuth angle. It is
well known that higher azimuth angles can introduce errors
in DoA resolution.

B. EVALUATION OF HUMAN PRESENCE DETECTION
We conducted 5 experiments by placing a person in the
positions corresponding to the anchor points A, B, C ,D, E,
4 experiments by placing 2 persons at AB, BC, CD and DE,
6 experiments with three persons at ABC, BCD and CDE,
4 persons at ABCD and BCDE and 5 persons at ABCDE.
Fig. 7a shows the results comparing1a of one person with Th
corresponding to human-free environment. Similarly, Fig. 7b
illustrates the behavior of 1a for 2 persons and Fig. 7c
for 1a of 3,4 and 5 persons. The persons perform in-place
random activities during the entire period the measurements

are collected. All 15s samples were divided into intervals
with a duration of T = 1 s. The duration for T was chosen
to satisfy human response estimation according to Sec. V-B
by comparing the performance of ah(t) for different intervals
ranging from 0.2 s to 2 s.

Comparing the five single person experiments, it can be
observed that 1a is above Th during the entire period. The
same can be observed with experiments involving 2-5 per-
sons. The main difference is that the worst case performance
of 1a for two persons (DE in Fig. 7b) is higher than that of
1 person experiments and it is even higher for experiments
involving 3 − 5 persons. This is expected behavior, more
perturbations in1a can occur, sincemore persons are present.

C. DIRECTION OF ARRIVAL ESTMATION OF A HUMAN
In this section we compare the impact of a person placed at
directions A, B, C, D or E i) on the DoAs of the LoS signal
and ii) on DoAs corresponding to the single person .

Fig. 8a shows a boxplot representation of the DoAs of the
LoS signal when a human subject is at A, B, C, D or E.
The median DoA of the LoS from A to E are 0◦, 1◦, 2◦,−2◦

and 0◦. It is clear that LoS DoAs are not affected when the
person is furthest from the LoS, e.g. A and E. Additionally,
we observe that the outliers of experiments A and E are
also low. When the person gets closer to the LoS, the low
resolution of the beamformer causes the LoS angles to devi-
ate slightly from the ideal, e.g., B (−1◦), C (2◦) and D
(2◦). Fig. 8b shows a boxplot representation of the raw
DoAs corresponding to the human derived from the approach
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FIGURE 9. Direction of arrival distribution in different scenarios. (a) No human exists, a TX is placed at A, B, C, D & E in separate measurement
campaigns, (b) one human exists at A, B, C, D & E in separate measurement campaigns, (c) two humans exist at AB, BC or DE within 0.5 m in three
separate measurement campaigns, (d) three humans exist at ABC 0.5 m from each other and (e) four humans exist at ABCD 0.5 m from each other.

described in Sec. V. The median DoAs of the human are
−32◦,−16◦,−4◦, 2◦, and 16◦. Compared to the DoAs of
anchor points of A to E shown in Fig. 6, the absolute errors are
0◦, 7◦, 2◦, 3◦ and 6◦ respectively which illustrates the accu-
racy of our DoA estimation approach. As positions furthest
from the LoS have most outliers, we remove these outliers by
applying a moving median filter. Finally, Fig. 8c illustrates
the result when those DoAs are filtered. The filtered DoAs
have medians −32◦,−16◦,−4◦, 2◦, and 16◦.

D. EVALUATION OF THE RESOLUTION OF DOA OF
MULTIPLE HUMAN TARGETS
1) STATIONARY HUMAN SUBJECTS WITH 0.5 M DISTANCE
Here we compare the distributions of the LoS signal with TX
at A, B, C, D and E, single human subject at A, B, C, D, and
E, two subjects at AB, BC and DE, three subjects at ABC and
four subjects at ABCD.

Fig 9a shows the distribution of angles corresponding to the
LoS paths, Fig 9b for the single human subject positions and
Fig 9c for the two human subjects case. Note that for these
three figures, the experiments were performed separately and
the results were merged to the three figures for ease of com-
parison. Figures 9d and 9e show the distributions for 3 and
4 human subjects respectively.

Clearly, the angles for the LoS signals have the most
consistency. TX at A, B, C and E have azimuth angles −32◦,
−23◦,−6◦ and 20◦ 100% of the time and D at 5◦ around 65%
of the time. However, when a human is placed in the same
five positions, the distributions show a Gaussian behaviour.
The mean angles can be computed as −32◦, −16◦, −4◦, 5◦,
and 14◦. This can be attributed to the paths scattering off of
different points from the subject’s body as opposed to the LoS
path not going through such disturbance.

When two persons coexist in the environment as in Fig 9c
0.5 m away from each other, the distributions spread even
further resembling a mixture of two Gaussians. However,
the DoA corresponding to the two persons cannot be directly
inferred from the mean or the peaks of the distributions. The
distributions only provide a rough estimate of the area where
the two persons are located, e.g. the distribution for AB is
shifted to the left of BC and BC’s distribution is shifted
to the left of DE. When three (Fig. 9d) and four (Fig. 9e)
persons coexist 0.5 m away from each other, the distributions

FIGURE 10. Direction of arrival distribution of humans at different
distances according to positions (Fig 5b). (a) Two humans at 2 and 5,
(b) Two humans at 12 and 7, (b) four humans at 1,2,5 and 6 and (e) four
humans at 1,12,6 and 7.

are spread even further. Based on this information, it can be
concluded that when people are stationary in a given area, the
number of persons can be estimated by evaluating the spread
of the distribution even though there DoAs cannot be directly
estimated.

2) HUMAN SUBJECTS WITH INCREASED DISTANCE
Next, we conducted two experiments placing two persons
at positions 2 and 4 marked in Fig. 5b, 1.6 m away
from each other and 1 and 6, 4 m away from each other.
Figures 10a and 10b show the distributions of the DoAs for
the two experiments. Unlike in the previous case, the distri-
butions for the two humans have a clear separation. For the
positions 2 and 4, the mean DoAs can be estimated as −26◦

and 25◦. The DoAs of the anchor points for the two positions
were estimated to be −19◦ and 22◦ which results in a DoA
difference of 7◦ and 3◦. As shown in Fig. 10b, again the distri-
butions for positions 1 and 6 has clear separation as expected,
however, the resolution is also diminished compared to the
former experiment given that the distributions have a larger
spread. The peak DoA of 1 is around 45◦ and the peak of 6 is
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around −50◦ while the anchor points have DoAs of 32◦ and
−55◦ respectively.

Finally, two experiments are carried out by placing four
persons simultaneously. In the first experiment, two of them
are at 1 and 2 and the other two are at 5 and 6, and in
the second experiment, two persons are placed at 1 and 12
and another two at 6 and 7 as marked in Fig. 5b. The DoAs
for those anchor points were estimated (Fig. 6) as 1: 32◦,
2: 22◦, 12: 44◦, 5: −43◦, 6: −55◦. Note that the DoA of
7 was erroneous and based on the DoAs of 6 and 8, it is
approximated as −60◦. The distributions of DoAs for the
two experiments are shown in Figs. 10c and 10d. As in
Section VII-D1, the DoAs of the two adjacent humans in
experiment 1 at 5 & 6 and 1 & 2 have now formed two
clusters. As in Fig. 10, the wide separation between 2 and 5
has allowed two DoA distributions to develop peaks at −28◦

and −45◦. The trends are similar for the second experiment
where adjacent humans have formed two clusters. However,
the distance between the two clusters has widened further
with peaks at −47◦ and 48◦.
Summarizing the trends in Sec. VII-D1 and VII-D2, even

though, the four element ULA is capable of distinguishing a
single person and estimating the DoA accurately, it struggles
in distinguishing when two persons are close specially up to
around 20◦. Therefore, DoAs of nearby persons are identified
as clusters. Additionally, based on the width of the distribu-
tions human induced DoAs, we can observe that the DoA
resolution is high when the azimuth angles are closer to 0◦

as opposed to angles in excess of ±50◦.

E. DOA ESTIMATION OF WALKING PERSONS
Finally, we perform three experiments with 1 person walk-
ing, 1 person walking while another person is standing still
(Fig. 11c) and two persons walking at two opposite ends 11e.
Route of the first experiment is marked in Fig. 11. The person
starts at position 1 (as in Fig 5b), walks two rounds in the
marked route and ends at position 1. Figure 11b llustrates
the DoAs captured for the person during his entire walk.
From the figure it can be observed that the DoAs correctly
follow the route of the person. The DoAs fluctuate between
≈ +45◦ and ≈ −50◦. Given that the maximum (+44◦) and
minimum angles (−55◦) corresponding to the anchor points
in Fig 5b, the DoA path is accurate. However, we also notice
discontinuities closer to the LoS, e.g. 1.9-3.8 s and 5.6-7.5 s.

Fig. 11d illustrates the DoA estimation when one per-
son walks while the other person stands in LoS as shown
in Fig. 11c. Again, it can be observed that it is possible to
capture both the persons at the same time. Note that the
maximum DoA this time is ≈ 30◦ while the minimum is
around ≈ −50◦. This can be attributed to the path that the
person is taking where the anchor points of the two extremes
have DoAs of32◦ and−55◦. Fig. 11f shows the DoAs when
two persons walk simultaneously this time between ≈+50◦

and ≈ −50◦. Interestingly, both paths were captured while
discontinuities exist when a person moves closer to the LoS
e.g. 1.9-3.8s. Another important observation is that the noise

FIGURE 11. (a) A person starts moving from position 6 marked in Fig 5b,
walks two rounds along the path marked in red and stops at 6, (b) DoA of
the person from (a), (c) A person starts moving from position 1, walks
between positions 1 and 6 along the path marked in red for two rounds
and stops at 3. Another person is fixed at 3, (d) DoA of the two persons
from c, (e) person 1 starts from position 6 and person 2 starts from
position 12 and walk along the paths marked in red for two rounds,
(f) DoAs of the two persons from (e).

levels when two persons exist are higher compared to when
a single person walks. We note that this is caused by low TX
power levels used in the two experiments involving the two
persons.

VIII. DISCUSSION AND CONCLUSION
This work presents an approach to capture a human and
the direction of arrival through beamforming utilizing SDRs
as the hardware. The main contributions are an algorithm
to generate the steering vectors from few reference points
and imprecise prior information, and detection of the human
and the direction of that person from human induced paths
amidst strong LoS signal. From experiments we detect human
presence 100% of the times, estimate DoA up to a maximum
error of 7◦ of a single person, show that detection of multi-
ple stationary persons is possible when sufficient separation
among them is present, and finally demonstrate the capability
of tracking up to two walking persons.

Currently, one of the main limitations of our approach is
the requirement of a calibration step to calculate the steering
vector for a few reference directions. The proposed solution
relies on the beam sweeping capabilities of the receiver as a
post processing step which relies on accurate steering vector
estimation. Even though, new wireless standards such as
IEEE 802.11ac, ax and 5G support such capabilities, cur-
rently there is no commodity hardware that can be utilized
for our purpose. Therefore, we use USRP hardware for this
work. However, with the current expansion of research on
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device-free human sensing, we expect chipset manufacturers
to expose such capabilities in a wide range of products.

The experiments are performed in a semi-anechoic cham-
ber which has only the ground reflection, this setup is more
similar to an open area that has no reflections. In future
work, we intend to perform experiments in a cluttered envi-
ronment with more reflections. However, as the reflections
from stationary objects remain static, we expect to subtract
those effects using the same approach used to remove the
LoS effect. For the experiments, currently a 4 antenna ULA
is used at the receiver and the minimum distance between two
nearby human subjects is 0.5m. In the current setup, the 0.5m
distance between humans is not enough to separate themwith
the current ULA. It is well known that, as the number of
antenna elements increase in the linear array, the beamwidth
can further be reduced so that the interference on adjacent
beams can be further attenuated. We will, in further inves-
tigations, study settings with 8 and 16 antennas in order to
increase the directional perception accuracy and the count
of people that can be recognized simultaneously. In future
work we expect to extend this approach to detect and localize
multiple persons and simultaneously recognize their activities
with a larger ULA that supports a higher resolution.
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