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ABSTRACT Binarization can greatly compress and accelerate deep convolutional neural networks (CNNs)
for real-time industrial applications. However, existing binarized CNNs (BCNNs) rely on scaling factor (SF)
and batch normalization (BatchNorm) that still involve resource-consuming floating-point multiplication
operations. Addressing the limitation, an improved BCNN named BitFlow-Net is proposed, which replaces
floating-point operations with integer addition in middle layers. First, it is derived that the SF is only effective
in back-propagation process, whereas it is counteracted by BatchNorm in inference process. Then, in model
running phase, the SF and BatchNorm are fused into an integer addition, named BatchShift. Consequently,
the data flow in middle layers is fully binarized during modeling running phase. To verify its potential in
industrial applications with multiclass and binary classification tasks, the BitFlow-Net is built based on
AlexNet and verified on two large image datasets, i.e., ImageNet and 11K Hands. Experimental results
show that the BitFlow-Net can remove all floating-point operations in middle layers of BCNNs and greatly
reduce the memory for both cases without affecting the accuracy. Particularly, the BitFlow-Net can achieve
the accuracy comparable to that of the full-precision AlexNet network in the binary classification task.

INDEX TERMS Binarized convolutional neural networks, model acceleration and compression, BatchShift.

I. INTRODUCTION
Rapid development of machine learning techniques has been
greatly improving the level of intelligence and automa-
tion in numerous industrial applications [1]–[7]. In com-
parison to traditional machine learning algorithms, deep
learning algorithms usually have automatic feature extrac-
tion capability and better performance contributed by deep
neural network structure [8]. For a higher accuracy, most
researchers tend to construct deeper and more complex net-
works [9], [10], which are usually at the cost of large net-
work size and high computation. For instance, it required
138M parameters, 553MB of storage and 15B floating-point
operations to classify an image with the size of 224 × 224
through the 19-layer VGGNet [9]. In many vision-based
industrial applications (such as industrial robots [11], defect
detection [12], [13], on-site monitoring [14] etc.), deep con-
volutional neural network (CNN) models are required to run
in real time on embedded platforms with limited computing
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and storage resources. As a consequence, various model
accelerating and/or compressing methods have been pro-
posed to reduce the resource consumption of deep learn-
ing, such as quantization [15]–[17], pruning [18]–[20],
distillation [21], low-rank decomposition [22], etc. Among
all these methods, quantization is most compatible with
embedded devices, as it could not only compress but also
accelerate the model simultaneously since it replaces the
floating-point operations with fix-point operations. Conse-
quently, quantization has attracted ever-increasing focus from
both academics and industry in recent years.

As the most efficient quantization method, binarization
quantizes the operand from floating-point to only one-bit,
which could greatly reduce model storage space and com-
puting resource [23]. Courbariaux et al. [24] proposed the
BinaryConnect to quantize weights of CNN to only one
bit and then replace the multiply-accumulate operation by
simple accumulations. Subsequently, Hubara et al. [25] pro-
posed the binarized neural networks (BNNs) which further
extend the idea of BinaryConnect by applying binarization
on both weights and activations. With binarized weights
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and activations, it is possible to use bit operation to
replace the original floating-point multiplication. This can
not only compress but also speed up the network, especially
on dedicated deep learning hardware. After all, a 32-bit
floating-point multiplier requires approximately 200 Xilinx
FPGA slices [26], and the 1-bit xnor gate only need a single
slice. The BNNs achieved state-of-the-art results on small
datasets (e.g., CIFAR-10, SVHN). However, the accuracy
is severely degraded when it is tested on large data sets
like ImageNet [27], due to a heavy information loss dur-
ing binarization. Rastegari et al. [28] proposed XNOR-Net,
which introduces scaling factor (defined as the channel-wise
average of the absolute values of weights) to partly address
the problem of accuracy degradation by softening the con-
straint of binarization. Besides, BatchNorm [29] is also
adopted to update AlexNet [30] between adjacent binary
convolutional layers (BinConv) to stabilize the training of
binarized network. Consequently, XNOR-Net outperforms
BNN by about 17%. To bridge the accuracy gap between the
binarized networks and the full precision networks, binarized
models with multiple bits were explored as well [31]. In [32],
the ‘‘WAGE’’ framework was proposed to discretize both
training and inference, where weights (W), activations (A),
gradients (G) and errors (E) among layers are shifted and
linearly constrained to low-bitwidth integers. Besides, batch
normalization is further replaced by a constant scaling layer.
It was shown that with a few more bits, the binarized
model could acquire an accuracy that is comparable to their
full-precision counterparts.

The obvious similarity among these works is that they all
employ the floating-point scaling factor to relax the constraint
of binarization and preserve the BatchNorm operation so as
to obtain a higher accuracy. In the reference [25], the authors
accelerate BatchNorm via bit operation, which replaces the
multiplication operations by left or right binary shift. Such
replacement is an inaccurate approximation of the multiplier
by its power-of-2. To avoid calculating the scaling factors
in each training epoch, Mcdonnell [33], [34] train a binary
weight network with a constant factor αHe and achieves a
good result. Recently, Bi-Real Net proposed by Liu et al. [35]
achieves the top-1 accuracy that is up to 10% higher than
the plain network based XNOR-Net, which is based on the
residual network that connects the real activations to consec-
utive blocks by an identity shortcut. In Bi-Real Net, the net-
work is retrained for an extra epoch after it has converged,
so as to absorb the scaling factor. But, our study is mainly
for the common plain networks, and thus the XNOR net-
work is selected for comparison. However, the aforemen-
tioned solutions still rely on floating-point operations (for
example, during BatchNorm or multiplication with scaling
factor), which would cause significant extra computation
cost especially when implementing binarized networks on
customizable hardware such as FPGA and ASIC. Besides,
it requires frequent data conversion between fixed-point and
floating-point data to multiply fixed-bit output of BinConv
layers with floating-point scaling factor. Such conversion will

FIGURE 1. Difference between the XNOR-Net and BitFlow-Net.
(a) The scaling factor multiplication and BatchNorm after the BinConv in
XNOR-Net. The pink steps involve the most time-consuming float point
operations, i.e. the integer-float conversion and the float point
multiplication. (b) The BatchShift after the BinConv in BitFlow-Net with
only a fixed-point accumulation.

cost extra memory resource and time, which compromises
the benefits brought by the binarization, as is illustrated
in Fig. 1a. Extra data conversions and floating-point multi-
plications in BatchNorm and scaling factors can be observed
in XNOR-Net.

To eliminate redundant floating-point operations, the role
of the scaling factor in the inference and back-propagation
processes is studied separately. Theoretically, it is derived
that the floating-point multiplication and addition operations
in the inference processes could be greatly simplified by
fusing them together into a shift operation, called BatchShift.
Since there is only inference during the model running phase,
the BatchShift can be employed to realize fully binarized
operations in the middle layers when running the model,
as shown in Fig. 1b. Based on framework of XNOR-Net,
we propose an improved BCNN named as BitFlow-Net,
which adopts the BatchShift during the inference process
without compromising the network accuracy. BitFlow-Net
is firstly tested on the complex multiclass classification
problem using the famous ImageNet dataset. Similar to the
XNOR-Net, the binarization of parameters in BitFlow-Net
will inevitably lead to loss of network accuracy. Moreover,
in order to explore the potential of binarized networks for
the industrial applications with binary classification problem,
BitFlow-Net is also tested on a hand images based gender
recognition challenging problem using the image dataset
named 11K Hands [36]. That is because resource-limited
embedded terminal devices are often adopted in industrial
applications to handle binary classification tasks [37], such
as detection of defect, damage, fault, etc.
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The remainder of this study is structured as follows.
In Sec. II, the XNOR-Net is first revisited, and then the role
of scaling factor during the inference and back-propagation
processes is analyzed. Sec. III conducts theoretical deduc-
tion and proposes the new BCNN BitFlow-Net. In Sec. IV,
based on the ImageNet benchmark and the 11K Hands, some
experiments are carried out to verify the performance of the
BitFlow-Net. Conclusions are drawn in Sec. V.

II. REVISITING XNOR-NET
This section revisits the XNOR-Net in terms of binariza-
tion and discusses how the accuracy is guaranteed. Then,
the mechanisms of scaling factor and BatchNorm are inves-
tigated, based on which some unnoticed facts that can poten-
tially further improve the performance are revealed.

A. BASICS OF BINARIZED NEURAL NETWORKS
Convolution operations mainly consist of multiplication-
accumulation operations of inputs and kernel weights. But
in binarized networks, both inputs and weights are binarized
to be either +1 or −1, which makes it possible to replace
the complex multiplication-accumulation operations in dot
product with high efficient xnor-bitcount operations [31],
as written in Eq.(1):

x · y ≈ bitcount(xnor(xb, yb)) (1)

where xb and yb are binarized versions of tensor x and y.
This leads to huge reduction of computation. The binarization
of input and weight is applied using the deterministic sign
function:

sign(x) =

{
+1, x ≥ 0;
−1, otherwise.

(2)

The core idea of XNOR-Net is to approximate
full-precision weight or activation with its sign multiplied
by the scaling factor in order to reduce quantization loss.
It is also reported that the scaling factor β for inputs is much
less efficient than the scaling factor α for weight [28], which
suggests that β can be neglected for XNOR-Net in practice.
The scaling factor α for weight is formulated in Eq. (3),
where the n is the number of elements of weight in one output
channel and W is the weight tensor. The product of the sign
of weights with its α is formulated as the optimal estimation
of the original full-precision weights under the constraint of
binarization. According to Eq. (3), it is obvious that α is
always greater than 0.

α =
1
n

n∑
i=1

|Wi| (3)

In XNOR-Net, Rastegari et al. also discussed the suit-
able block structure for binarization networks. As known,
the blocks broadly used in CNN are in the following order:
1-Convolutional, 2-Batch Normalization, 3-Activation and
4-Pooling. To decrease the information loss in binarization,
XNOR-Net adopts a new block structure that is in the order
of 1-Batch Normalization, 2-Binary Activation, 3-Binary

Convolutional, and 4-Pooling [28], which is also adopted
in our work. In this way, the output of BinaryConv is then
normalized before being binarized.

According to the flowchart illustrated in Fig. 1a, there are
three floating-point multiplications, two accumulations and a
bit-floating point conversion in every convolution block oper-
ation. Such floating-point operations will cost considerable
extra memory and computing resource for binarization net-
works. As the depth of the network increases, the impact will
be even greater. Motivated by this, our main goal is to elimi-
nate floating-point computation as much as possible. There-
fore, in next subsection, the mechanism of floating-point
scaling factor will be first explored.

B. MECHANISM OF SCALING FACTOR
A binary convolution operation is defined as:

Y = Xb ~ (W bα)1 (4)

where ~ indicates convolution operation, Xb,W b
∈

{−1,+1}, and α ∈ R+. Since the scaling factor α formu-
lated in Eq.(3) is computed channel-wise, Eq.(4) could be
reformulated as Eq.(5). As α is extracted, the floating-point
convolution operation could be replaced by xnor-bitcount
operation formulated in Eq.(1) that can be executed effi-
ciently by resource restricted devices. To multiply with the
floating-point scaling factor, the integer output of binary
convolution must be converted to floating-point type in
advance. Then, the floating-point scaled output is normalized
by a BatchNorm layer before being binarized again. Such a
procedure brings frequent conversions between integer and
floating-point data types, which costs extra computation and
memory. Moreover, we find that these extra computations
seem to be useless and bring no benefits to themodel accuracy
during the model running phase.

Y = (Xb ~W b)α (5)

We first start from the inference process. Usually, Batch-
Norm is used to channel-wise normalize the input data
to zero mean and unit variance across all samples in one
input batch. When the scaling factor operation is followed
by the BatchNorm layer, the output is normalized to the
unit variance regardless of the scaling factor. Therefore,
the BatchNorm layer counteracts the effect of scaling factor,
as demonstrated in Eq.(6). Since the scaling factor is channel-
wise, it can be extracted, i.e., E[αx] = αE[x], and Var[αx] =
α2 Var[x].

BN (αx) =
αx − E[αx]
√
Var[αx]+ ε

γ + β

=
αx − αE[x]√
α2Var[x]+ ε

γ + β

=
α(x − E[x])

α
√
Var[x]+ ε

γ + β

=
x − E[x]
√
Var[x]+ ε

γ + β

= BN (x) (6)
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As shown in Eq.(6), the BatchNorm output with scaled
input is equal to the one without scaled input, which means
that the scaling factor does not actually achieve the pur-
pose of improving the binary model by affecting the out-
put. If the scale factor of XNOR-Net is removed during the
model running phase, the output will not be different. This is
inconsistent with that the scaling factor increases the network
accuracy. Therefore, the scaling factor may only take effect
in the back-propagation by improving the gradient weight
distribution, which will be discussed in detail as belows.

In the XNOR-Net, the scaling factor and sign(x) are com-
bined as a scaled sign function:

W̃ = α · sign(W ). (7)

For each full-precision weightWC
i in channel C , its gradi-

ent with respect to the loss L is:

∂L

∂WC
i

=
∂L

∂W̃C
i

·
∂sign(WC

i )

∂WC
i

· α

+ sign(WC
i ) ·

1
n
·

n∑
j=1

[
∂L

∂W̃C
j

· sign(WC
j )] (8)

In order to simplify the expression, firstly let



grad =
∂L

∂W̃C
j

sign = sign(WC
j )

mean =
1
n

n∑
j=1

[
∂L

∂W̃C
j

sign(WC
j )]

=
1
n

n∑
j=1

sign · grad

(9)

It is clear that the first item in Eq.(8) is the scaled
version of the original gradient of sign(x). Since in this
work, the Straight Through Estimator (STE) [25] is adopted,
∂L
∂W̃C

i
·
∂sign(WC

i )
∂WC

i
· α = ∂L

∂W̃C
i
· α. The second item in Eq.(8)

is contributed by α, in which 1
n ·

∑n
j=1[

∂L
∂Ŵj
· sign(Wj)] is

a measure of average change of weights after the update of
this iteration. The second item serves as a compensation of
the gradient of the first item and keeps the gradient steady.
We make detailed qualitative analysis as belows.

If the weight in channel C is updated according to
W̃C,update
j = W̃C

j − grad as the one without scaling factor,
it can be found from Eq. (7) and Eq. (8) that when sign ·
grad > 0, W̃C

j − grad will approach or even cross 0;
when sign · grad < 0, W̃C

j − grad will be away from 0,
as summarized in Table 1, where an arrow oriented to ‘0’
indicates the value may approach or even cross 0, an arrow
against ‘0’ indicates the value is away from 0, an arrow on the
left side of ‘0’ means it’s original value is negative, an arrow
on the right side of ‘0’ means it’s original value is positive.
In this case, mean can be regarded as a measurement of the

average variation of weight in channel C before and after the
updating.
After introducing the scaling factor, the weight in chan-

nel C is updated according to W̃C,update
j = W̃C

j − grad ·
α − sign · mean. The second item is just a scaled version
of the grad that update the weight with the same trend of
grad as shown in Table 1, while the third item means an
additional updating of the weight in channel C according
to W̃C,update

j = W̃C
j − sign · mean. It can be seen that

when mean > 0, W̃C
j − sign · mean will approach or even

cross 0; when mean < 0, W̃C
j − sign · mean will be away

from 0, as summarized in Table 1. Thus, the third item is a
compensation of the second item, which compensates every
weight with the average weight variation of its channel and
thus can keep the gradient steady.

TABLE 1. Trend of W̃ C
j − grad and W̃ C

j − sign · mean under different
conditions of grad , sign and mean.

C. DISCUSSION OF THE SCALING FACTOR EFFECT
IN THE MODEL TRAINING PHASE
Firstly, a very important phenomenon of binarized networks
should be noted: the output of a binary convolutional layer for
identical input will not change, unless some of the weights’
signs are reversed after weight updating. This means that
in order to effectively train the model, the magnitude of
gradient must be within a certain range during the model
training phase. If the amplitudes of gradients are too small,
the updated binary weights may be the same as before and
the network will be difficult to converge. On the contrary,
if the amplitudes of gradients are too large, the updated binary
weights may change too much compared with the one before,
and the network may be unstable and even may not converge
at all. Thus, it is very important to stabilize the amplitude of
gradient during training a binarized network.

Therefore, the percentage of weights, whose signs were
changed after being updated, can be used to represent the
effect of gradient on binarized networks, which is referred
as the sign changing rate. It is inspired by [38], in which
statistics were made on sign changing rate during training
with different settings of learning rate. The results show the
sign changing rate in binarized networks with learning rate
of 0.01 is about 102 larger than that of a full-precision net-
work. Thismakes the output of the binarized networks change
frequently after every training iteration, which is extremely
unstable compared to full-precision network and disrupts
its training. Therefore, small learning rate is suggested in
order to better train binarization model. In Section IV, further
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investigation on the change of signs over all training epochs
will be made.

III. BITFLOW-NET
In binarized networks, the time-consuming floating-point
computation in the middle layers is mainly introduced by the
scaling factor and the BatchNorm. As discussed in previous
section, floating-point scaling factor only takes effect in the
back-propagation process that is part of the model training
phase. However, during the model running phase, especially
when the model is running on resource limited embedded
devices, such floating-point operations waste resources and
are unnecessary. Based on this observation, we propose a
new binarized network named BitFlow-Net, which does not
modify the model during the training phase. But, it fuses
the scaling factor with the BatchNorm in the model running
phase, so as to eliminate float-point operations and let the bit
stream flows in the middle layers without being interrupted.
This is implemented based on the characteristic of binarized
networks, i.e., only the signs of inputs and weights but not the
magnitudes are important, when they are binarized.

A. BATCHSHIFT - FUSING SCALING FACTOR
WITH BATCHNORM
In binarized networks, the output of binary convolution is
discrete, which may cause the loss surface to be extremely
rough. Therefore, in binarized networks, BatchNorm is usu-
ally necessary to smooth the loss surface and obtain a high
accuracy. However, when the BatchNorm exists, the output
of the binary convolution must be converted to floating-point
data for being normalized. This conflicts with our goal of
making a binarized network with all data staying in bit flow.
Therefore, we start from the expression of BatchNorm and
focus on simplifying it into a floating-point free version.

As known, BatchNorm is defined as:

BN tr
B (x) =

x − µB√
σ 2
B + ε

γ + β (10)

where x is the input of a neuron, µB and σ 2
B are the mean

and variance of the x in a batch B respectively. γ and β
are learnable affine factors. During the inference process,
BatchNorm uses the average of µB and σ 2

B , i.e., the E[x]
and Var[x] calculated and saved during the training phase,
to approximate them.2

BN inf (x) =
x − E[x]
√
Var[x]+ ε

γ + β (11)

Since the back-propagation method usually prefers nor-
malized floating-point activation values, it is difficult to
remove floating-point multiplications during the model train-
ing phase. Therefore, BitFlow-Net aims to eliminate the

2Indeed, only one image is input during the testing phase, which cannot
provide the calculation of the E[x] andVar[x]. Therefore, Batchnorm approx-
imate the E[x] and Var[x] during the testing phase by the one of the E[x] and
Var[x] calculated during the training phase. Similarly, the scaling factor α
can also be approximated by the one calculated during the train phase.

floating-point multiplications in the model running phase by
reformulating the expression of BatchNorm. In the inference
process, one can fuse the BatchNorm with input scale α :

BN inf (αx) =
αx − E[αx]
√
Var[αx]+ ε

γ + β (12)

As shown in Eq.(6), BN inf (αx) = BN inf (x). Therefore,
Eq. (12) can be reorganized as Eq.(13), so as to avoid mul-
tiplying the input with floating-point α.

BN inf (x) =
x − 1

α
E[αx]√

1
α2
Var[αx]+ ε

γ + β (13)

Since E[αx] and Var[αx] are the statistics that can be calcu-
lated in advance, they can be considered as constants. In this
way, one can successfully reduce αx into simple x. Since all
the parameters (α, E[αx], Var[αx], γ and β) are channel-
wise, the Eq.(13) can be reformulated as:

BN inf (x) = (x −
1
α
E[αx]+ f · β)

1
f

(14)

which can be rewritten as Eq.(15). Obviously, the term sign(γ )
f

is always positive.

BN inf (x) = ((x −
1
α
E[αx]+ f · β)sign(γ ))

sign(γ )
f

(15)

As shown in Fig.(1), the output of Eq.(15) is then binarized
by BinaryActivation that discards the magnitude informa-
tion. Therefore, the sign(γ )

f can be removed without affecting
the sign of the output, and thus Eq.(16) is acquired. Here,
we name it as BatchShift, as there is only accumulation oper-
ations to shift the input. The multiplication with sign(γ ) only
flips some bits of the output and costs trivial resource. In this
way, the resource consuming floating-point multiplications
have been successfully removed, and only a shift by constant
1
α
E[αx]+ f · β is required.

BS inf (x) = (x −
1
α
E[αx]+ f · β)sign(γ ) (16)

However, the constant shift is still of floating-point type.
As known, the x is an integer, and the − 1

α
E[αx] + f · β is a

floating-point constant. The constant can be decomposed into
two terms in advance, i.e. an integer A plus a floating-point
decimal B that is small than 1.We discuss the sign of BS inf (x)
in two situations:

(1) if |x + A| > 1, the sign of BS inf (x) is determined only
by the sign of integer item x + A.

(2) if |x + A| = 0, the sign of BS inf (x) is determined only
by the sign of B.

In this way, the BatchShift, i.e. BS inf (x), is simplified
without floating point operations, as illustrated in Eq.(17).

BS inf (x) =

{
(x + A)sign(γ ), if |x + A| > 1
sign(B) · sign(γ ), if |x + A| = 0

(17)
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B. FIRST LAYER AND LAST LAYER
As the input and output interfaces of deep neural net-
works, the first layer and last layer are usually not bina-
rized [25], [28], [31]. Therefore, the first layer becomes
the most time-consuming part in binarized networks. As a
fully-connected layer, the last layer involvesmost storage cost
when the number of output classes is large. This will not be
a great problem since the continuous-valued inputs can be
converted into a fixed point numbers [25] at the first layer
and thus the computation complexity can be reduced. For
the last layer, its complexity is directly related to the number
of classification that is usually small in industrial embedded
application scenarios. Moreover, it can be binarized as well,
providing that a scale layer is added before feeding the output
of the binarized last layer into the Softmax function [38].
Therefore, the computation complexity of the first layer and
the memory required by the last layer can be greatly reduced,
which makes it more meaningful to remove the floating-point
operations in the middle layers.

C. IMPLEMENTATION OF THE BITFLOW-NET
The proposed BitFlow-Net employs BatchShift to remove the
floating-point operations in the middle layers. In this section,
the BitFlow-Net is built based on the AlexNet model. Actu-
ally, it can be built based on all the plain deep networks. The
details of BitFlow-Net are given in Algorithm 1. During the
training phase, the weights and the activations are binarized
only in forward propagation, and STE is used to obtain the
derivative of sign function. The weights of BitFlow-Net is
still saved as full-precision in the training phase. The adopted
BatchNorm is noted as BS tr (x̃), which is shown in Eq.(18).
During the model running phase, the BatchShift illustrated
in Eq.(17) is used to replace BatchNorm. Even though only
a fixed-point accumulation is required, the BatchShift can
provide the same result as the full precision BatchNorm for
binarized networks.

BS tr (x̃) =
x̃ − µB√
σ 2
B + ε

γ + β, x̃ = αx (18)

IV. EXPERIMENTS
In this section, the comparison between the BatchShift and
the combination of scaling factor and BatchNorm is per-
formed firstly, so as to validate that they have the same
effects during the inference process. The performance of the
BitFlow-Net is then tested not only on the complex image
dataset ImageNet for multiclass object recognition, but also
on a hand images dataset 11KHands for binary gender recog-
nition [36]. Experiments were carried out on a computer with
Intel(R) Core(TM) i5-7500 CPU, 32 GB RAM and GeForce
GTX1080Ti GPU. PyTorch framework is adopted and the
Adam optimizer with default parameter setting in PyTorch
is used to update the weights. The model is trained under
the same setting as the XNOR-Net. The order of building
blocks is arranged as BN-BinActiv-BinConv-pool, following
the instruction in [28].

Algorithm 1 BitFlow-Net
Input: A minibatch of inputs and targets (I ,T ),
Output: The largest element in the set

1 {1. Forward propagation during training}
2 for l ← 1 to L do
3 // Only binary convolutional layers are

//considered here.
4 for k th filter in lth layer do
5 α← 1

n‖Wlk‖l1
6 W̃k ← αsign(Wlk )
7 end
8 ãl−1← Sign(BS tr (al−1))
9 zl ← Conv(̃al−1, W̃l)
10 al ← ReLU (zl)
11 end
12 {2. Forward propagation during model running phase}
13 //Compute α for only one time.
14 for l ← 1 to L do
15 for k th filter in lth layer do
16 α← 1

n‖Wlk‖l1
17 W̃k ← αsign(Wlk )
18 end
19 end
20 for l ← 1 to L do
21 ãl−1← Sign(BS inf (al−1, αl−1)) //Fuse α with
22 //BatchShift.
23 W̃l ← Sign(Wl)
24 zl ← Conv(abl−1, W̃l)
25 al ← ReLU (zl)
26 end

A. EFFECT OF THE SCALING FACTOR IN THE TRAINING
PHASE OF THE BITFLOW-NET
The learning rate greatly affects the sign changing rate, which
is important for the stability of training in binarized net-
works [38]. A small learning rate can provide smooth sign
changing rate, leading to a better training accuracy. Similarly,
the sign changing rate of each layer across all training epochs
is monitored in this study, so as to test the effect of scaling
factor during the training phase. It is compared with the one
without scaling factor, as shown in Fig. 2. Without scaling
factor, the sign changing rate curves of the binarized network
fluctuate seriously, and therefore it is difficult to separate
the curves of different layers. After introducing the scaling
factor, the fluctuation of sign changing rate range is greatly
reduced. It can be observed that the curves with scaling factor
are relatively smooth and steady around 1. In view of the fact
that small learning rate that provides smooth sign changing
rate can lead to a better training performance [38], Fig. 2 is
an evidence of scaling factor’s effect on affecting gradient
distribution. It can be also found that the sign changing
rate curves of binarized networks with scaling factor have a
relatively smaller value at the very beginning of the training.
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FIGURE 2. Sign changing rate comparison of binarized networks w/ and
w/o scaling factor in 5000 iterations. The sign changing rate of binary
weights is obviously smoother, when the scaling factor is applied.
Left: Without scaling factor; Right: With scaling factor.

This somewhat performs like a warm-up learning rate strat-
egy that has been regarded as an efficient method for acceler-
ating learning [39].

B. VALIDATION OF THE EQUALITY BETWEEN BATCHSHIFT
AND THE COMBINATION OF BATCHNORM
AND SCALING FACTOR
Once the model has been trained, the BatchShift is used to
replace the combination of scaling factor and BatchNorm
during the model running phase of the BitFlow-Net. In Fig. 3,
we demonstrate an instance of the input and output of both
BatchNorm and BatchShift according to Eq. (16). It is worth
noting that the result of BatchShift according to Eq. (16) is
shown instead of the one of Eq. (17), so as to better illustrate
that only the sign instead of the magnitude is important
for binarized networks. It can be observed that even though
the magnitudes of output are different in BatchNorm and
BatchShift, their signs are consistent with each other. It is
demonstrated as well that the output is exactly the same
after the binarization step. Therefore, it is concluded that the
proposed BatchShift can replace the combination of Batch-
Norm and scaling factor in binarization networks without
affecting the output, whilst it can simplify and accelerate the
computation.

FIGURE 3. Output of the BatchShift. It is different from the BatchNorm
but with identical sign.

C. PERFORMANCE OF BITFLOW-NET ON IMAGENET
AND 11K HANDS
To verify the accuracy, the proposed BitFlow-Net is first
tested and compared with the XNOR-Net on the ImageNet
dataset. The epoch, batch size and the learning rate parame-
ters are set to be 50, 128 and 10−4 respectively. The results
are illustrated in Table 2, from which it can be observed

TABLE 2. Accuracy comparison between XNOR-Net and BitFlow-Net.

that even though most of floating-point operations have been
removed in binarized network during model running phase,
BitFlow-Net performs no accuracy degradation in contrast
to XNOR-Net. These results are consistent with expectation,
since the introduced BatchShift in BitFlow-Net functions
identically to the combination of scaling factor and Batch-
Norm in XNOR-Net. Through this simplification, the oper-
ations are simplified into an integer shift operation in the
middle layers, including three floating-point multiplications,
two accumulations and a bit-floating-point conversion in
each block. In this way, the computation complexity and the
memory for storing the feature map of hidden layers are
further reduced in the binarization networks. However, such
accuracy is still difficult to meet the need of the industrial
applications with multiclass classification tasks. But, it may
have great potential on the industrial applications with binary
classification requirement.

FIGURE 4. Example images of the 11K Hands dataset. Participants were
asked to open and hold the fingers of the right and left hands. The hand
images were then captured from the back side and the palm side of both
hands on the same white background with the same distance from the
camera.

Fortunately, many industrial applications just require
binary classification, such as online defect detection in pro-
duction line that is only concerned about whether there are
defects [40]. Since we are not involved in any specific indus-
trial applications, we test the proposed BitFlow-Net on a sim-
ilar gender recognition binary classification problem instead
using the public hand images large dataset 11K Hands, so as
to demonstrate the potential. The dataset contains 11,076
hand images (1600× 1200 pixels) of 190 persons, of varying
ages from 18 to 75 years old, some samples of which are
illustrated in Fig. 4. The gender recognition problem is a chal-
lenging task for traditional machine learning classification
algorithms [41], since they rely on manual feature extrac-
tion and their performance are limited by shallow network
structure. Firstly, the full precision deep learning network
AlexNet is used to tackle the task as the baseline. Then,
the proposed bitFlow-Net is tested on the problem as well,
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TABLE 3. Comparison between XNOR-Net and BitFlow-Net. Both memory cost and floating-point computation amount in the running phase are
dramatically reduced.

FIGURE 5. Accuracy convergence curves of BitFlow-Net and AlexNet on
11K Hands dataset. After training for 40 epochs, BitFlow-Net model could
achieve an accuracy comparable to the AlexNet model.

and its result is compared with the baseline. In this work, all
the images in 11K Hands are resized into 224×224. In order
to increase the generality of the trained model, the random
flipping method is used for the data augmentation of the orig-
inal dataset. Then, 10-fold cross-validation method is further
used for validating the generality performance. In this study,
the networks are trained for 100 epochs, while the batch size
is set to be 128. In addition, the learning rate is initialized to be
10−4 and decays at epoch 5, 15, 35 and 75 by 0.1. The exper-
imental results are shown in Fig. 5 and Table 2. Fig. 5 shows
the accuracy curves of BitFlow-Net and its full-precision
counterpart during the training on the 11K Hands dataset.
It can be seen that the binarized model gradually converges
after 40 epochs and its accuracy is very close to the full pre-
cision one. Both BitFlow-Net and the full-precision AlexNet
perform well on the gender recognition binary classification
task. Specifically, the accuracy of BitFlow-Net is just 1.54%
lower than the full precision AlexNet, whilst the network
is greatly accelerated. Furthermore, the storage and compu-
tation resource required in the two binarized networks are
analyzed. As shown in Table 3, several parameters of the
two network models are compared, including the storage
size, required memory and million floating-point operations
(MFLOP). It is worth noting that only the resource reduction
in the middle layers are demonstrated in Table 3, since this
study only focuses on removing the floating point operation in
these layers, i.e. the layers of Conv2, Conv3, Conv4, Conv5,
FC6 and FC7. Key parameters of these layers are given as
well, including the feature map (FMap), kernel size (KSize),
and size of feature map (FMapSize). As known, the size of

parameters in the middle layers of the AlexNet is 56.8M,
which is reduced to be 6.9M by XNOR-Net. In this study, it is
further reduced by 2% through removing the floating point
parameters. More importantly, the required memory for the
feature map is reduced by 80%, since the floating point oper-
ations can be fused into one integer operation in the middle
layers and consequently the required floating point operations
are totally removed. Therefore, the proposed BitFlow-Net
method can effectively promote the deployment of binarized
networks on resource-constrained embedded hardware.

V. CONCLUSION
Binarized deep neural networks have great potential in
resource-limited embedded devices for real-time industrial
applications. In this study, based on the AlexNet, we propose
an improved binarized convolutional neural network named
BitFlow-Net that improves model efficiency by eliminat-
ing floating point operations introduced by scaling factor
and BatchNorm in the middle layers. Through studying the
role of scaling factor and BatchNorm in binarized networks,
it is revealed that the scaling factor only takes effect in
the back-propagation process, and it is counteracted by the
BatchNorm operation in the running phase. Then, in view of
the characteristic that only the sign is important instead of
the magnitude in the binarization networks, the scaling factor
and BatchNorm are fused into a simplified integer opera-
tion named BatchShift. Using the BatchShift, floating-point
operations in the middle layers of trained models can be
completely removed without affecting the model running
results. The proposed BitFlow-Net is tested on two large
image datasets, i.e. the ImageNet for the complex multiclass
classification and the hand images based gender recognition
dataset, 11K Hands, for binary classification. Experimental
results validate that, in comparison with XNOR-Net, the pro-
posed method can reduce the memory by 80% and remove all
floating point operations in themiddle layers of BCNNswith-
out affecting the accuracy. Especially, in comparison to the
full precision AlexNet, the BitFlow-Net shows competitive
performance in the challenging hand images based gender
recognition problem. Therefore, it may have great potential in
real time embedded devices for many industrial applications
especially with binary classification tasks.
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