
SPECIAL SECTION ON MOBILE EDGE COMPUTING AND MOBILE CLOUD COMPUTING:
ADDRESSING HETEROGENEITY AND ENERGY ISSUES OF COMPUTE AND NETWORK RESOURCES

Received September 8, 2019, accepted September 26, 2019, date of publication October 3, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945499

Characterizing Dynamic Load Balancing in Cloud
Environments Using Virtual Machine
Deployment Models
MISBAH LIAQAT 1,2, ANJUM NAVEED 2, RANA LIAQAT ALI 3, JUNAID SHUJA 4,
AND KWANG-MAN KO5
1Department of Computer Science and Engineering, Air University Islamabad, Islamabad 44000, Pakistan
2Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
3Department of Physics, COMSATS University Islamabad, Islamabad 44000, Pakistan
4Department of Computer Science, COMSATS University Abbottabad, Abbottabad 22060, Pakistan
5Department of Computer Engineering, Sangji University, Wonju 26339, South Korea

Corresponding authors: Misbah Liaqat (misbah.liaqat@mail.au.edu.pk) and Kwang-Man Ko (kkman@sangji.ac.kr)

This work was supported by the Basic Sciences Research Program (2017030223) Funded by the Ministry of Education and international
cooperation program (2018090561, FY2018) managed by the National Research Foundation of Korea (NRF). We also extend our sincere
appreciation to the Higher Education Commission (HEC) at COMSATS University Islamabad Pakistan for funding the NRPU/2017/R&D
(Project No 10393).

ABSTRACT The ever growing computational demands of users call for efficient cloud resourcemanagement
to avoid service-level agreement (SLA) violation. Virtualization co-locates multiple virtual machines (VMs)
on a single physical server to share the underlying resources for efficient resource management. However,
the decision about ‘‘what’’ and ‘‘where’’ to place workloads significantly impacts performance of hosted
workloads. Existing cloud schedulers consider a single resource (RAM) to co-locate workloads that as a
result lead to SLA violation due to non-optimal VM placement. To handle this issue, current study has
updated nova scheduler to propose a multi-resource based VM placement approach to improve application
performance in terms of central processing unit (CPU) utilization and execution time. Experimentally we
have shown that our proposed method has lessened application execution time by 50% when compared with
one of the well-known technique.

INDEX TERMS Date center, initial VM deployment, OpenStack, scheduling, virtualization.

I. INTRODUCTION
During the last one decade, due to extensively increasing
demand for high-end computational servers, efficient cloud
resource management has become a must to meet require-
ments for cloud providers [1], [2]. Virtualization config-
ures and runs numerous workloads on a single physical
server to attain high resource utilization for effective cloud
resource management [3], [4]. However, aggressive work-
load co-location leads to resource over utilization that sig-
nificantly impacts application performance in terms of SLA
violation. Therefore, the decision about what and where
to place workloads is very important as efficient work-
load distribution surges in application performance due to
diminishing hotspots with data centers (DC). Alternatively,
cloud resource underutilization significantly impacts return
on investment (ROI) for cloud operators. Load balancing

The associate editor coordinating the review of this manuscript and
approving it for publication was Christos Verikoukis.

within cloud data centers fairly distributes a workload onto a
set of physical servers to, (i) increase ROI, (ii) minimize the
number of hotspots, (iii) reduce SLA violation, and (iv) min-
imize cloud operational cost.

Load balancing guarantees that all physical resources
within cloud DC have a uniform workload. Existing load
blanching schemes such as, Round Robin [5], Min-Min
scheduling [6]–[8], Max-Min Algorithm [9], OpenStack
Scheduler [10], Min-min Algorithm [11], and Improved
Max-min [12], have considered static load balancing (single-
resource) to co-locate VMs. All aforementioned schemes
opted VM placement scheduler that overlooks queuing user
requests, and a fair-share algorithm enabled resources pro-
visioning within data centers. Furthermore, in OpenStack
the design of existing nova scheduler is not optimized as it
considers the RAM availability factors only to select servers
for VM deployment. However, in static load balancing the
absence of dynamic state of CPU load, during the scheduler’s
decision making leads to inappropriate workload distribution

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 145767

https://orcid.org/0000-0003-1496-7178
https://orcid.org/0000-0002-3850-7726
https://orcid.org/0000-0001-7924-3854
https://orcid.org/0000-0003-0726-5311


M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

on physical hosts. The inappropriate workload distribution
surges application execution time. Therefore, to handle these
issues, we have proposed a method that considers multiple
resources during workload’s co-location to improve the appli-
cation execution time.

The main contribution to this study includes:
• Performance evaluation of existing OpenStack sched-
uler to present a case for dynamic load balancing through
VM placement.

• Proposing and implementing a multi resource-based
scheduler to minimize the deficiencies of OpenStack
scheduler.

• Proposing and implementing a load analyzer algorithm
to capture the current CPU utilization. Load analyzer
effectively capture the rising trend of CPU utilization
pattern to manage the VM placement based on current
load.

The detailed structure of the paper is as follows. Section II
briefly discusses the related work and resource allocation
background. Section III presents, the proposed solution and
core algorithms. Section IV elaborates the initial VM deploy-
ment model. Moreover, the experimental setup is discussed
in section V. In addition, performance analysis of existing
and proposed approaches is conducted in section VI. Finally,
a comprehensive conclusion of this work is included in
section VII along with future research directions.

II. RELATED WORK
During recent era, load balancing has become an active area
of research due to multifarious applications in various com-
puting domains such as, cloud computing [13], big data [14],
[15] and grid computing [16]. For the sake of understand-
ing, we have organized existing state-of-the-art in two cate-
gories. First category briefly debates on initial VM placement
schemes which are closely related to our work. Alterna-
tively, second category focuses on the VM placement based
cloud schedulers.

Regarding the initial placement of VMs, researchers
in [17] considered VM placement at the time of creation
using discrete event-based Koala simulator. However, [17]
lacks in considering the requirements of application during
VM placement. The authors of [18] exploited black-box
method to identify the capability of multi-tier application
hosted in virtualized platforms. Similarly, authors of [19]
employed same techniques as discussed in [18] to investigate
different factors such as, deployment scenarios, real-time
scheduler’s decisions, and types of workload, to identify the
parameters influencing VMs co-location. On the other hand,
researchers in [20] considered the relationship among three
categories of workload based on several virtual network con-
figuration strategies in terms of the number of VMs, vCPUs
usage per VM, and memory size for each VM. However, this
work overlooked the impact of statistical methodology to the
concluded results.

A Joint-VM provisioning approach can be seen in [21]
which consolidate and provide provision of multiple VMs

based on the estimate for their aggregated capacity needs.
The statistical multiplexing technique is utilized among the
work load patterns of multiple VMs. Alternatively, backward
speculative placement (BSP) technique considered the VM’s
resource usage history curve to decide VMs relocation and
placement. Though, BSP only considered the number of
CPUs while it overlooks the effects of load on physical hosts.
In addition, OpenStack components work together according
to the cloud needs and communicate with each other using
the RPC and RabbitMQ protocol [22]. In DC, OpenStack
compute service (nova), assists administrators to deploy one
or multiple hypervisors to virtualize the underlying resources.
It handles the communication with local hypervisor to ensure
VM initiation and termination along with the performance
metrics and queries to VM load indicators [23].

In second category, various aspects and evaluation of
cloud schedulers are extensively presented. Some of the
aspects dealing with the data processing flow which can be
seen in [24], and [25]. In a survey [26], the author pre-
sented the meta-scheduler analysis. Furthermore, a ‘‘model
for instantiating dynamically virtual machine in relation to
the current job characteristic’’ is described in [27] by utiliz-
ing CloudSim. In Cloud context, the scheduler remains of
interest without considerations of virtualization and its over-
heads [28] and [29]. The Openstack scheduler performance
can be enhanced as per developer’s view point discussed
in [30] and [31]. Detailed comparisons of Openstack features
with the other open source solutions such as OpenNebola
and VMware are presented in [32]–[34], and [35] in detail.
Some of the performance issues are identified by the authors
of [36] and [37] in comparison with the previous version of
Openstack, named as Cactus. A VM consolidation strategy
that is implemented on OpenStack cloud by considering SLA
violation is presented in [23] and [38]. Further, a dynamic
VM consolidation strategy is proposed in [39] that chose the
least active physical server from where the VM is migrated
in order to reduce the utilization. Moreover, authors in [10]
explain that in OpenStack, the number of CPU used and the
amount of RAM play a vital role in initial assignment of VMs
in different types of scheduler (filter, chance and simple).

The Openstack cloud is classified based on three types of
schedulers such as Chance, Filter, and Simple [33]. In Chance
scheduler, the available nodes are randomly chosen for place-
ment regardless of its characteristics whereas the Simple
scheduler identifies the available node with the least load
to deploy first VM. In contrast, filter scheduler maps the
nova-api calls to appropriate component. The filter sched-
uler consists of two functions the filtering and weighting to
compute genetically as shown in Fig. 1. A set of compute
servers having the capability to run a given VM is selected by
the filter function [10], [40]. On the contrary, a cost function
ranks the filtered set of servers with respect to their suitability.
At the deployment of VM, filter scheduler creates a disk
image for VM and calls the hypervisor for VM boot [41],
[42]. This call includes the parameters described as numbers
of cores, the amount of RAM needed and type of vCPU along

145768 VOLUME 8, 2020



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

FIGURE 1. Filter scheduler.

with local CPU allocation policy and the hard disk image to
boot from.

Based on literature review it is perceived that cloud sched-
ulers do not consider the CPU utilization at the deployment of
VM. Our proposed work is different from all aforementioned
VM placement schemes as we have proposed multi-resource
objective based scheme. We empowered Nova scheduler to
consider the RAM capacity and number of vCPUs in addition
with CPU utilization (CPU load) for initial placement to
minimize VM migration.

III. PROPOSED SOLUTION
Fig. 2 presents an overview of our proposed VM deploy-
ment architecture in OpenStack cloud. In the said figure,
OpenStack cloud controller represents the physical host that
runs the API components, schedulers, and compute servers.
Each compute server is deployed with the OpenStack com-
pute competent. The functionality of a request handler is

FIGURE 2. VM deployment architecture.

apprehended in OpenStack scheduler and API components.
The request handler accepts the VM placement requests,
as long as CPU demand remains below the cloud capacity
(i.e. Utilization of CPUdoes not exceed the defined threshold.
Otherwise, the request is rejected. The placement architec-
ture is split in two engines such as, Global Decision Engine
(GDE), and Local Monitoring Engine (LME). The Load Fil-
ter is running in the controller which resides within GDE. The
GDE performs the initial placement of VM based on decision
making parameters collected through the LME. LME shows
the Compute Load and Load Analyzer components. Compute
Load performs computations based on CPU states. In con-
trast, Load Analyzer collect the aggregated results of CPU
utilization from each compute server and transfer it to LME.

In this study, some details about the proposed algorithms
which are used in our implementation are explained. More-
over, Table 1 represents the symbols and their description.

TABLE 1. Algorithm’s symbols and their description.

A. COMPUTE LOAD
Compute Load (CL) calculates the average load and updates
it in a local database. CL exploits current and previous CPU
utilization states to compute average load on CPU. Initial
phase comprising (line 3-6) calculates CPU utilizations based
on user state, system state, nice state, and idle state.Moreover,
subsequent stage (line 7-11) refers to average load finding
process. Average load is computed based on the ratio of CPU
used to total CPU capacity as presented in Algorithm 1.

B. LOAD ANALYZER
LoadAnalyzer (LA) computes the load using the Algorithm 1
for all physical servers and shares it with GDE as shown
in Fig. 2. LA (Algorithm 2), transfer the CPU load by estab-
lishing a one-to-one communication link between GDE and
Load Analyzer for every compute node (line 2-3).

VOLUME 8, 2020 145769



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

Algorithm 1 Compute Load
1: tsecond← 30
2: while (1) do
3: ul← getUserProcessLoad()
4: sl← getSystemProcessLoad()
5: nl← getnice()
6: ncl← getNotUsedCPUpercentage()
7: SR1← {ul, sl, nl }
8: SR2← {ul, sl, nl, ncl}
9: SP1← {ul, sl, nl }
10: SP2← {ul, sl, nl, ncl}
11:

AvgLoad←

∑ length(SR1)
IεSR1

Cost (i)−
∑ length(SP1)

jεSP1
Cost (j)∑ length(SR2)

IεSR2
Cost (i)−

∑ length(SP2)
IεSP2

Cost (j)

12: Wait(tsecond)
13: Load-DB-update(AvgLoad)
14: Goto step 2
15: end while

Algorithm 2 Load Analyzer
1: for each node n ∈ N do
2: Loadinfo< n, val > ← ComputeLoad(n)
3: send-LoadInfo-GDE(ComputeLoad(n))
4: end for

C. LOAD FILTER
Load Filter (LF) decides whether a particular compute server
is feasible to host a VM or not. Load Filter is based on
four steps. LF starts with a verification process to see that
the user requested instance fulfills the deployment criteria
or not (see line 2-5). In the second step, LF investigates
available resources based on vCPU’s current utilization level
(see line 6-11). During step-3, LF gathers the load informa-
tion across each physical server from GDE as transmitted by
Algorithm 2 (line 12). Moreover, LF sets flag as TRUE if it
finds a compute node with, (a) minimum load, or (b) vCPUs
used are maximum but the targeted server has minimum CPU
utilization (line 14-18).

IV. SYSTEM MODEL OF VM ALLOCATION ALGORITHM
In this model we want to deploy the VM considering the load
as a factor while its initial placement to the physical machine.
For the better understating of the model all the constants and
variables are listed in Table 2. Based on the mixed-integer
linear programming, system problem is designed in the pro-
posed model. The objective function of cloud deployment
model is to maximize the number of VMs on the physical
hosts as shown in equation (1).

Objective function:

Maximize
M∑
i=1

N∑
j=1

Xij (1)

Algorithm 3 Load Filter
Require: self, s, p, TUi, i, car, d, N, threshold
1: procedure HostPasses(self, s, p)
2: Typei ← p.get(i) F i is instance type
3: if Typei

.
= TUi then

4: return True
5: end if
6: vCPU← getVCPU()
7: car← self .getCPUAllocationRatio(s, p)
8: TvCPU← s.TvCPU ∗ car
9: if Tvcpu > 0 then
10: vCPU← TvCPU
11: end if
12: l← ∀n∈N LoadInfo-GDE-DB(n)
13: MinLoad = d(s.vcpus− used)e ∗ l
14: if l > threshold then
15: return Tvcpu - s.vcpus− used > .= TUi.reqvcpu
16: else
17: return Tvcpu - (s.vcpus−used ∗ MinLoad) > .=

TUi.reqvcpu)
18: end if
19: end procedure

TABLE 2. Notations and description.

Subject to:
The event of VM placement method is summarized by

formulating the objective function with all the conditions and
constraints into the following equations.

Xij =

{
1, if the VMi is placed in server j;
0, otherwise.

(2)

Sj =

{
1, if the server is used;
0, otherwise.

(3)∑N

j=1
Xij ≤ 1, ∀i ∈ M (4)

The number of linear constraints based on the optimization
concept reflects the capacity limit of PMs, which subjects the

145770 VOLUME 8, 2020



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

obvious facts that a PM can only host the number of VMs
based on its remaining resources. In contrast, a single VM can
only be deployed to one PM. In constraint equation (2) Xij is
explained as the deployment of VMi on the physical server j.
Furthermore, the value of Xij = 1 when VM is deployed;
otherwise, Xij = 0, where, ∀i ∈ M and ∀j ∈ N . In addition,
the constraint (3) denotes that one VM will be deploy only
on a single physical host which shows that the Sj = 1
for that VM. Moreover, cloud providers have to fulfill the
request within the prescribed quota or SLA as explained in
equation (2-3).

M∑
i=1

Vcpui ∗ Xij ≤ Vcpuj.maxSj−Vcpuj.used , ∀j = 1...,N

(5)

Each server has a number of limited cores (vCPUs).
Vcpuj.max that cannot be exceeded when hosting or serv-
ing the VMs based on the remaining resources as pre-
sented in equation (5). For PMs authenticating the condition
Vcpuj.max ≥ Vcpuj.used and Vcpuused 6= 0, the total number

of used PMs are lower bounded by d
∑N

j=1 Vcpuj.used
Vcpuj.max

e. This
bound adds the following inequality to the model as shown
in equation (6).

N∑
j=1

Sj = d

∑N
j=1 Vcpuj.used
Vcpuj.max

e (6)

M∑
i=1

RiXij ≤ RSj ∗ ORSj, ∀j ∈ N (7)

∑M

i=1
Li ∗ Xij ≤ SjLT max ·j, ∀j ∈ N (8)

The constraint in equation (7) denotes that RAM which is
required to deploy the total number of VMs on each physical
server should be less than or equal to the total amount of RAM
of each physical host. Moreover, the constraints in equa-
tion (8) presents the VM deployment considering the load
factor. Li is the load value of virtual machine i on the physical
machine Xij that should be minimum or equal to the server
capacity considering the value of threshold LTmax.j defined for
the maximum load on each physical machine. In next section,
results are conducted for random and static load factors in
order to perceive the VM deployment behavior based on CPU
utilization with respect to existing and proposed work.

V. EXPERIMENTAL SETUP
This section briefly explains our experimental setup to per-
form analysis.We considered a control environment to deploy
VMs using OpenStack scheduler. Moreover, we have used
the traditional computers rather than expensive and power-
ful machines (small industrial cloud replica). For the anal-
ysis, we deployed our small OpenStack cloud infrastructure
comprising of four physical machines connected through a
flat-DHCP networking module. The configured server are
heterogeneous in terms of their resource capacity (RAM).

Among the physical hosts one node is set responsible to act as
a controller node with distinguished resource specifications
in terms of Xeon(R), Intel(R), CPU E5620 with 2.40GHz,
32 GB RAM, and QEMU hypervisor. Besides, for the rest
of three compute nodes physical servers have 16 GB RAM
but forth compute node is configured on the controller node.
For simplicity each compute node is termed as Edge1, Edge2,
Edge3, Edge4 and EEdge1, EEdge2, EEdge3, and EEdge4 for
existing and proposed technique, respectively. Moreover,
Edge1 and EEdge1 are also represented as controller nodes
as both have the maximum RAM specification among all
other nodes. Furthermore, the capacities of physical servers
are mentioned in Table 3.

TABLE 3. Capacity and physical server specification.

A. LOAD DISTRIBUTION BEHAVIOR STUDY
To analyze load distribution among physical machines,
we have characterized the load as static and dynamic.
To generate static and random load we have considered
a CPU intensive application that executes the multi-core
Python application to increase CPU load. In both cases, VMs
are created using same parameters such as, 2GB RAM, 1GB
Disk Space, and 2vCPUs. To analyze static load generation
case, equal numbers of VMs are deployed on each physical
server. Moreover, we have used same CPU intensive appli-
cation for each vCPU to generate a workload. In contrast,
for dynamic load, we have developed an application that
randomly generates a workload of different capacity. For
simplicity and randomness, load generator’s generated load
is mapped between 0 and 2 random values. The number 0
specify that no CPU intensive application is executed on
VM, whereas, values including 1 and 2 states that only
1 and 2 cores are fully utilized.

The coremotivation of this study is to perceive the behavior
of scheduler at the time of VM deployment or when it is
shielded from any external influence. By using the initial set
of experiments in next sections, performance of each compute
node is evaluated and VMs are launched to analyze the CPU
utilization based on the load factors.

VI. PERFORMANCE ANALYSIS OF EXISTING AND
PROPOSED APPROACHES
For the better understanding of results, VM deployment
with the placement sequence of existing study is presented

VOLUME 8, 2020 145771



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

in Fig. 3 with respect to CPU utilization on each physical
machine. In VM deployment model using the existing Open-
Stack scheduler, VMs are differentiated using distinct color
schemes. The light-purple color triangle shows that first eight
VMs are deployed on Edge1.

FIGURE 3. VM deployment using OpenStack cloud scheduler.

The VMs with dark gray-color are representing that VM is
fully loaded by executing the CPU intensive application.
Alternatively, white-color based VMs represents that VMs
are deployed without load. Based on CPU utilization factor,
Edge2 represents the current CPU usage capacity, which
is 97.9% while four VMs are hosted on it at time ‘‘t’’.
Alternatively, Edge3 and Edge4 represent 75.8% and 52.3%
CPU usage statistics at time ‘‘t’’. Considering Fig. 3, based
on non-optimized OpenStack scheduler, when 21st VM is
deployed it is placed on the highly loaded physical host based
on spread technique criteria in order to balance the RAM.

For the evaluation of proposed and existing OpenStack
scheduler, we have presented the two scenarios in this section
based on static and random load.

A. STATIC LOAD BASED VM DEPLOYMENT AND
CPU UTILIZATION
In our first experiment, we havemodeled the relation between
number of VMs deployment (x-axis represented as No. of
VMs) and virtual core’s utilization (y-axis) for all physical
hosts. Each VM is deployed exactly using the 2 vCPUs so at
y-axis themaximum value is 16 for each host. Therefore, total
sixteen VMs are deployed on a single compute node while
based on total number of VMs and there are thirty twoVMs in
total as presented on x-axis. In addition, Fig. 4a presents the
VM distribution while using the existing OpenStack sched-
uler. In contrast, Fig. 4b presents the VM distribution based
on proposed schedular. In order to differentiate the existing
and proposed study the physical hosts are named as Edge
and EEdge (extended Edge) based on existing and proposed
scheduler and different color patterns are used to explain the
single VM deployment on a specific host as shown in Fig. 4.

It is observed in Fig. 4a that during the launching of VMs,
first eight VMs are created on Edge1 due to availability of
sufficient RAM capacity. From ninth to onward all VMs are
launched on Edge2, Edge3, and Edge4 (physical hosts) in a
sequence because of spread technique evenly distributes the

VMs in order to manage the RAM. In addition, in Fig. 4b
VMs are not deployed based on RAM criteria. This fig-
ure shows that VMs are placed based on CPU utilization
factor as explained in Fig. 5. At the deployment of seventh
and eighth VM both VMs are deployed on EEdge3 host
which shows that VM sequence is not same as represented
in Fig. 4a. In addition, Fig. 5 is mapped based on the number
of VM deployment as presented on x-axis in Fig. 4a and
Fig. 4b and CPU utilization across that deployment on y-
axis. Performance degradation is highlighted in Fig. 5 when
multiple co-located VMs compile extensive computational
tasks. The performance of each single VM is measures by
running a CPU intensive application to impose load upon a
particular vCPU. We have observed an increasing vCPU load
of 25%, 50%, 75%, and 99% when the number of VMs are
increased on every single physical server such as Edge and
EEdge nodes. For the existing scheduler the graph is showing
that upto point 8 at x-axis VMs are continuously deployed on
Edge1 (as indicated with triangle) which increase the CPU
utilization factor upto 99%. Moreover, the value from 9 to
32 at x-axis is showing that there is a specific deployment
sequence which is followed for other compute nodes with
the increased CPU load value. Furthermore, for the proposed
scheduler VMs are deployed on the different EEdge nodes
and shows the equal range of CPU utilization for each phys-
ical host.

In existing technique for the deployment of sixth, seventh,
and eighth VM only one host Edge1 is selected which shows
the 75.4%, 79.5% and 86.0% CPU utilization. In compar-
ison of existing scheduler, EEdge4, EEdge2, EEdge3, and
EEdge1 are selected for the deployment of same VMs with
the CPU load 50%, 50.3%, and 50.5%, respectively. In this
scenario, equal load is generated on deployed VMs in order
to generate sameCPU load as discussed in sectionV-A. Based
on Fig. 5, it is observed that Edge1 has maximum RAM,
therefore in existing technique the deployment sequence is
dependent on RAMwhile the proposed study shows that VMs
are deployed based of CPU utilization factor as first eight
VMs are not directly deployed to EEdge1 and for other VMs
the sequence of physical host is not repeated as presented for
existing technique in Fig. 4a.

B. DYNAMIC LOAD BASED VM DISTRIBUTION
CONSIDERING CPU UTILIZATION AS A FACTOR
In second experiment, VMs are deployed using OpenStack
existing and proposed scheduler and number of applications
are executed on each VM while considering the random
load generator function. Each VM is deployed using the
2 vCPUs and load is generated based on random function
values. In said Fig. 6, number of core utilization across the
VM deployment sequence is represented to highlight that on
which edge node VMs are deployed at sequence interval T as
shown in and Fig. 6b. Moreover, Fig. 6 shows the relationship
between core CPU utilization and VM deployment sequence
on four physical servers including Edge1, Edge2, Edge3, and
Edge4 for existing technique and EEdge1, EEdge2, EEdge3,

145772 VOLUME 8, 2020



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

FIGURE 4. Static load distribution behavior of existing and proposed techniques.

FIGURE 5. VM distribution vs CPU load.

and EEdge4 for proposed technique. In Fig. 6a at x-axis
number of VMs are plotted with respect to CPU utilization
behavior for each physical server. Further, based on pro-
posed method, first four VMs among a sequence of VMs
are deployed on EEdge4, EEdge2, EEdge3, and EEdge1 as
shown in Fig. 6b. This happened due to random load gen-
eration, which causes each VM to have dissimilar CPU uti-
lization. In the said figure, second VM on EEdge2 presents
minimum CPU utilization as no execution profile is running
on it because of the lowest load generated by the random
function generator.

Based on deployment sequence in Fig. 6b, the CPU uti-
lization is minimum for EEdge2 as compared to rest of the
nodes. Therefore, seventh and eighth VMs are deployed on
EEdge2 in order to balance the load factor. Furthermore, ninth
VM that is second VM for EEdge3 shows the maximum CPU
utilization as it executes four different execution profiles.
Therefor, after third, seventh, and eighth VM’s deployment,
EEdge2 again leverages minimum load due to random load
generation. As a result, tenth VM is also deployed on EEdge2.
Based on comparison VM deployment sequence of proposed
algorithms is not same as in existing algorithm presented
in Fig. 6a.

In Fig. 4b, VM deployment sequence is plotted across
CPU usage at x-axis and y-axis. Based on Existing scheduler,
first eight VMs are deployed on Edge1, which increases the
aggregate CPU usage capacity to 95.90%. At the time of
deployment of the ninth VM, the load on the edge2 reaches to
25.2%. For the Edge3 and Edge4, the load rises to 39.1% and
25.6%, respectively. When twelfth, thirteenth, and fourteenth

VMs are deployed on Edge2, Edge3, and Edge4 reaches to
their peak CPU load. At the deployment of fifteen VM based
on placement criteria, VM is deployed on the maximum
loaded host without considering the CPU utilization as shown
in Fig. 7 and its deployment sequence is shown in Fig. 6a.
For the proposed scheme Fig.7 represents that when initial
VM is deployed on EEdge1, the CPU utilization is 5%. After
first VM placement, the other compute hosts are loaded with
minimum load compared to EEdge1. However, the second,
third, and forth VMs are placed on EEdge4, EEdge3, and
EEdge2, respectively. After the deployment of first four VMs,
GDE (Fig. 2) perceived that EEdge1 has a minimum load.
Therefore, it chooses EEdge1 to place next incoming VM.
Moreover, at the time of ninth and tenth VM, the CPU uti-
lization is 23% and 45%, respectively.

Based on experimental outcomes (static and dynamic load
based sceneries) it is perceived that OpenStack scheduler
does not observe the CPU utilization. Moreover, the number
of CPUs associated with VMs and the available RAM are the
major contributing factors which affects the decision making
of a particular physical host. However, there is a need to
balance the CPU load at the deployment of VMs in order to
efficiently utilize the OpenStack cloud resources as presented
in the proposed scheduler.

C. EXECUTION TIME ANALYSIS
In order to analyze the existing and proposed schedulerś per-
formance we have analyzed the application execution time of
each host while the deployment of VMs with repect to static
and dynamic load factor as explained in Fig. 4 and Fig. 6.

Based on static load distribution, as mapped in Fig. 4a, and
Fig. 4b application execution time is plotted in order to check
the performance of existing and proposed schedulers named
as filter scheduler and extended scheduler. In order to under-
stand the results we have plotted the graph of each physical
nodewhere Filter_Scheduler Edge2, Filter_Scheduler Edge3,
and Filter_Scheduler Edge4 represents the results of Edge2,
Edge3 and Edge4 using the existing OpenStack scheduler.
In contrast Extended_Scheduler Edge2, Extended_Scheduler
Edge3, and Extended_Scheduler Edge4 shows the result
while considering our proposed solution for nodes EEdge2,
EEdge3, and EEdge4. Fig. 8 shows that existing and extended

VOLUME 8, 2020 145773



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

FIGURE 6. Dynamic load distribution behavior of existing and proposed techniques.

FIGURE 7. VM distribution vs CPU load.

FIGURE 8. Execution time based on static load.

schedulers behavior is same when the load distribution nature
depends on static load. As every single machine is deployed
using the 2vCPUs and each vCPU is running with the
compute intensive application which fully utilize the CPU
resources. Therefore, for existing and proposed study each
physical host shows the 100% utilization of CPU resources
when all VMs are deployed on them and take same time for
the completion of the tasks as running inside the VMs.

Fig. 9 shows the execution time when the VMs are
deployed using the dynamic load generation function as
shown in Fig. 6a, and Fig. 6b. In addition, Fig. 9 is reflect-
ing the minimum execution time for each compute node
when the load is distributed based on dynamic load dis-
tribution (Fig. 6a, and Fig. 6b). In comparison of existing
scheduler, our proposed scheduler enhanced the performance

FIGURE 9. Execution time based on dynamic load.

of Edge2, Edge3, and Edge4 up-to 50%, 33%, and 44%,
respectively. Based on result’s analysis, it is concluded that
Extended_Scheduler efficiently utilize the CPU resources.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this paper, our focus is to critically analyze theOpenStack’s
scheduler for VM placement in a controlled environment in
perspective of small-scale private cloud. In order to enable
this experiment, we presented the lightweight extension of
OpenStack compute service, which is based on three mod-
ules: a) Request Handler, b) Global Decision Engine, and
c) Local Monitoring Engine. This extension allowed us to
compare our experimentation results with the OpenStack
benchmark Nova scheduler according to load distribution
principles. Finally, our proposed VM deployment architec-
ture evaluation shows the effectiveness of our implementation
in achieving the load balancing objectives. The findings from
this research can be summarized as follows: a) the deci-
sion making of existing schedulers for the initial placement
of VMs to the physical servers did not consider the CPU
utilization. b) The number of CPUs and RAM capacity at
the time of VM deployment are the most important param-
eters in all types of schedulers. c) The application execution
time is minimum when initial VM deployment considers
the CPU utilization factor. Using our existing set of exper-
iments, we concluded that considering the load as a metric
for VM deployment is more feasible compared to existing
metric of non-utilized RAM. Our current research covers the

145774 VOLUME 8, 2020



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

computational resources. Though, in future we will extend
our work considering the network and storage as a resource.
Further, we can consider the optimized DC solutions for
emerging blockchain workloads through cloud in order to
provide the interconnected and truly transparent network.
Moreover, Internet of Things (IoT) requires cloud computing
paradigm to respond the resource requirements whereas load
balancing plays a vital role to achieve the resource efficiency
during the execution of IoT applications.

REFERENCES
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, ‘‘Cloud

computing and emerging IT platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility,’’ Future Generat. Comput. Syst., vol. 25,
no. 6, pp. 599–616, 2009.

[2] Y. Jararweh, M. Jarrah, M. Kharbutli, Z. Alshara, M. N. Alsaleh, and
M. Al-Ayyoub, ‘‘CloudExp: A comprehensive cloud computing experi-
mental framework,’’ Simul. Model. Practice Theory, vol. 49, pp. 180–192,
Dec. 2014.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtualization,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Dec. 2003.

[4] J. Espadas, A. Molina, G. Jiménez, M. Molina, R. Ramírez, and D. Con-
cha, ‘‘A tenant-based resource allocation model for scaling software-as-a-
service applications over cloud computing infrastructures,’’ Future Gener.
Comput. Syst., vol. 29, no. 1, pp. 273–286, Jan. 2013.

[5] A. K. Sidhu and S. Kinger, ‘‘Analysis of load balancing techniques in
cloud computing,’’ Int. J. Comput. Technol., vol. 4, no. 2, pp. 737–741,
2013.

[6] H. Chen, F. Wang, N. Helian, and G. Akanmu, ‘‘User-priority guided
Min-Min scheduling algorithm for load balancing in cloud computing,’’ in
Proc. Nat. Conf. Parallel Comput. Technol. (PARCOMPTECH), Feb. 2013,
pp. 1–8.

[7] S.-C. Wang, K.-Q. Yan, W.-P. Liao, and S.-S. Wang, ‘‘Towards a load
balancing in a three-level cloud computing network,’’ in Proc. Int. Conf.
Comput. Sci. Inf. Technol., vol. 1, Jul. 2010, pp. 108–113.

[8] K. Etminani and M. Naghibzadeh, ‘‘A min-min max-min selective algori-
htm for grid task scheduling,’’ in Proc. 3rd IEEE/IFIP Int. Conf. Central
Asia Internet, Sep. 2007, pp. 1–7.

[9] O. M. Elzeki, M. Z. Reshad, and M. A. Elsoud, ‘‘Improved max-min
algorithm in cloud computing,’’ Int. J. Comput. Appl., vol. 50, no. 12,
pp. 22–27, 2012.

[10] O. Litvinski and A. Gherbi, ‘‘Openstack scheduler evaluation using
design of experiment approach,’’ in Proc. 16th IEEE Int. Symp.
Object/Compon./Service-Oriented Real-Time Distrib. Comput. (ISORC),
Jun. 2013, pp. 1–7.

[11] G. Patel, R. Mehta, and U. Bhoi, ‘‘Enhanced load balanced min-min
algorithm for static meta task scheduling in cloud computing,’’ Procedia
Comput. Sci., vol. 57, pp. 545–553, Jan. 2015.

[12] G. Ming and H. Li, ‘‘An improved algorithm based on max-min for
cloud task scheduling,’’ in Recent Advances in Computer Science and
Information Engineering. Berlin, Germany: Springer, 2012, pp. 217–223.

[13] M. Adhikari and T. Amgoth, ‘‘Heuristic-based load-balancing algorithm
for IaaS cloud,’’ Future Gener. Comput. Syst., vol. 81, pp. 156–165,
Apr. 2018.

[14] M. H. U. Rehman, E. Ahmed, I. Yaqoob, I. A. T. Hashem, M. Imran,
and S. Ahmad, ‘‘Big data analytics in industrial IoT using a concentric
computing model,’’ IEEE Commun. Mag., vol. 56, no. 2, pp. 37–43,
Feb. 2018.

[15] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, ‘‘Consolidate
IoT edge computing with lightweight virtualization,’’ IEEE Netw., vol. 32,
no. 1, pp. 102–111, Jan./Feb. 2018.

[16] S. Zahoor, N. Javaid, A. Khan, B. Ruqia, F. J. Muhammad, and M. Zahid,
‘‘A cloud-fog-based smart grid model for efficient resource utilization,’’
in Proc. 14th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC),
Jun. 2018, pp. 1154–1160.

[17] K. Mills, J. Filliben, and C. Dabrowski, ‘‘Comparing VM-placement algo-
rithms for on-demand clouds,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput.
Technol. Sci., Nov./Dec. 2011, pp. 91–98.

[18] W. Iqbal, M. N. Dailey, and D. Carrera, ‘‘Black-box approach to capacity
identification for multi-tier applications hosted on virtualized platforms,’’
in Proc. Int. Conf. Cloud Service Comput., Dec. 2011, pp. 111–117.

[19] G. Kousiouris, T. Cucinotta, and T. Varvarigou, ‘‘The effects of scheduling,
workload type and consolidation scenarios on virtual machine performance
and their prediction through optimized artificial neural networks,’’ J. Syst.
Softw., vol. 84, no. 8, pp. 1270–1291, 2011.

[20] Q. Wang and C. A. Varela, ‘‘Impact of cloud computing virtualization
strategies on workloads’ performance,’’ in Proc. 4th IEEE Int. Conf. Utility
Cloud Comput., Dec. 2011, pp. 130–137.

[21] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
‘‘Efficient resource provisioning in compute clouds via VMmultiplexing,’’
in Proc. 7th Int. Conf. Autonomic Comput., 2010, pp. 11–20.

[22] A. Beloglazov and R. Buyya, ‘‘OpenStack neat: A framework for
dynamic and energy-efficient consolidation of virtual machines in Open-
Stack clouds,’’ Concurrency Comput., Pract. Exper., vol. 27, no. 5,
pp. 1310–1333, 2015.

[23] A. Corradi, M. Fanelli, and L. Foschini, ‘‘VM consolidation: A real
case based on OpenStack Cloud,’’ Future Gener. Comput. Syst., vol. 32,
pp. 118–127, Mar. 2014.

[24] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis, ‘‘Schedule opti-
mization for data processing flows on the cloud,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2011, pp. 289–300.

[25] L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee, ‘‘An empirical
analysis of scheduling techniques for real-time cloud-based data process-
ing,’’ in Proc. IEEE Int. Conf. Service-Oriented Comput. Appl. (SOCA),
Dec. 2011, pp. 1–8.

[26] S. Sotiriadis, N. Bessis, F. Xhafa, and N. Antonopoulos, ‘‘Cloud virtual
machine scheduling: Modelling the cloud virtual machine instantiation,’’
in Proc. 6th Int. Conf. Complex, Intell., Softw. Intensive Syst., Jul. 2012,
pp. 233–240.

[27] M. García-Valls, T. Cucinotta, and C. Lu, ‘‘Challenges in real-time virtu-
alization and predictable cloud computing,’’ J. Syst. Archit., vol. 60, no. 9,
pp. 726–740, 2014.

[28] S. J.Mullender, ‘‘Predictable cloud computing,’’Bell Labs Tech. J., vol. 17,
no. 2, pp. 25–39, Sep. 2012.

[29] A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas,
M. Staškūnienė, and G. Davidavičius, ‘‘Development of cloud services
for patient-specific simulations of blood flows through aortic valves,’’
Adv. Eng. Softw., vol. 103, pp. 57–64, Jan. 2017.

[30] A. L. Garcia, L. Zangrando, M. Sgaravatto, V. Llorens, S. Vallero,
V. Zaccolo, S. Bagnasco, S. Taneja, S. D. Pra, D. Salomoni, and
G. Donvito, ‘‘Improved Cloud resource allocation: How INDIGO-
DataCloud is overcoming the current limitations in cloud sched-
ulers,’’ 2017, arXiv:1707.06403. [Online]. Available: https://arxiv.org/abs/
1707.06403

[31] G. Einziger, M. Goldstein, and Y. Sa’ar, ‘‘Faster placement of virtual
machines through adaptive caching,’’ in Proc. IEEE INFOCOM-IEEE
Conf. Comput. Commun., Apr./May 2019, pp. 2458–2466.

[32] D.-N. Le, B. Seth, and S. Dalal, ‘‘A hybrid approach of secret sharing
with fragmentation and encryption in cloud environment for securing
outsourced medical database: A revolutionary approach,’’ J. Cyber Secur.
Mobility, vol. 7, no. 4, pp. 379–408, 2018.

[33] V. N. Van, N. Q. Long, G. N. Nguyen, and D.-N. Le, ‘‘A performance
analysis of openstack open-source solution for IaaS cloud computing,’’
in Proc. 2nd Int. Conf. Comput. Commun. Technol. New Delhi, India:
Springer, 2016, pp. 141–150.

[34] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, ‘‘Comparison of open-source
cloud management platforms: OpenStack and OpenNebula,’’ in Proc. 9th
Int. Conf. Fuzzy Syst. Knowl. Discovery, May 2012, pp. 2457–2461.

[35] G. V. Laszewski, J. Diaz, F.Wang, and G. C. Fox, ‘‘Comparison of multiple
cloud frameworks,’’ inProc. IEEE 5th Int. Conf. CloudComput., Jun. 2012,
pp. 734–741.

[36] M. Liaqat, S. Ninoriya, J. Shuja, R. W. Ahmad, and A. Gani, ‘‘Vir-
tual machine migration enabled cloud resource management: A challeng-
ing task,’’ 2016, arXiv:1601.03854. [Online]. Available: https://arxiv.org/
abs/1601.03854

[37] B. Hu and H. Yu, ‘‘Research of scheduling strategy on OpenStack,’’ in
Proc. Int. Conf. Cloud Comput. Big Data, Dec. 2013, pp. 191–196.

[38] A.-M. Ammar, J. Luo, Z. Tang, and O. Wajdy, ‘‘Intra-balance virtual
machine placement for effective reduction in energy consumption
and SLA violation,’’ IEEE Access, vol. 7, pp. 72387–72402,
2019.

VOLUME 8, 2020 145775



M. Liaqat et al.: Characterizing Dynamic Load Balancing in Cloud Environments Using VM Deployment Models

[39] X. Xiao, Y. Xia, F. Zeng, W. Zheng, X. Sun, Q. Peng, Y. Guo, and X. Luo,
‘‘A novel coalitional game-theoretic approach for energy-aware dynamic
VM consolidation in heterogeneous cloud datacenters,’’ in Proc. Int. Conf.
Web Services. Cham, Switzerland: Springer, 2019, pp. 95–109.

[40] M. Liaqat, V. Chang, A. Gani, S. H. A. Hamid, M. Toseef, U. Shoaib, and
R. L. Ali, ‘‘Federated cloud resource management: Review and discus-
sion,’’ J. Netw. Comput. Appl., vol. 77, pp. 87–105, Jan. 2017.

[41] O. Litvinski and A. Gherbi, ‘‘Experimental evaluation of OpenStack com-
pute scheduler,’’ Procedia Comput. Sci., vol. 19, pp. 116–123, Jan. 2013.

[42] S. Latif, S. M. Gilani, R. L. Ali, M. Liaqat, and K.-M. Ko, ‘‘Distributed
meta-brokering P2P overlay for scheduling in cloud federation,’’ Electron-
ics, vol. 8, no. 8, p. 852, 2019.

MISBAH LIAQAT received the B.S. degree
(Hons.) in computer science fromCOMSATSUni-
versity, Pakistan, in 2013, and the Ph.D. degree
from the University of Malaya, Kuala Lumpur,
Malaysia, in 2017. She was associated as a BSP
RA with the Center for Mobile Cloud Comput-
ing Research (C4MCCR), University of Malaya,
during her Ph.D. degree. She is currently an
Assistant Professor with Air University Islamabad,
Pakistan. Her research interests include cloud

scheduling, cloud resource management, mobile cloud computing, sensor
cloud, VM migration, the Internet of Things, and wireless sensor networks.

ANJUM NAVEED received the bachelor’s degree
(Hons.) in engineering (software engineering)
from the National University of Sciences and
Technology, Pakistan, and the Ph.D. degree from
the University of New South Wales, Australia,
in 2009. He is currently a Postdoctoral Researcher
with the University of Malaya (UM), Malaysia.
His topic was Channel Assignment in MR-MC
Wireless Mesh Networks. Since 2009, he has been
an Assistant Professor with the National Univer-

sity of Sciences and Technology. He has worked on a number of research
as well as research and development projects. He has completed research
projects worth USD 400K. He has also completed industrial projects worth
approximately USD 200K. During his stay at NUST, Pakistan, he has
supervised two Ph.D. students and 14 master’s students. He is currently
supervising three Ph.D. and five master’s students. His research interests
include resource allocation in mobile clouds, VM migration in mobile
clouds, network performance analysis and optimization, and interference
analysis in wireless networks.

RANA LIAQAT ALI received the M.Sc. degree
in electronics from Quaid-I-Azam University,
in 1999, the M.S. degree in electrical engineering
from Air University Islamabad, Pakistan, in 2006,
and the Ph.D. degree from the Department of
Electrical Engineering, COMSATS, Islamabad,
in 2013, with a research work at Lancaster Univer-
sity (InfoLab21), U.K. He was a System Engineer
with Panasonic, in 1999. After that, he joined Air
University Islamabad. He is currently an Assistant

Professor with the Department of Physics (Electronics), CIIT, Islamabad.
He is also with DigiSys and RF Systems Research groups, COMSATS.
His research interests include adaptive systems, including array processing,
beamforming, Mic arrays and Smart arrays, wireless networks, and cloud
computing.

JUNAID SHUJA received the M.S. degree from
the COMSATS Institute of Information Technol-
ogy (CIIT), Abbottabad, in 2012, and the Ph.D.
degree from the University of Malaya, in 2017.
He is currently an Assistant Professor with CIIT.
His primary research interests include ARM emu-
lation and SIMD instruction cross-platform execu-
tion and other research interests include data center
energy efficiency, sustainable cloud computing,
ARM and GPU-based servers for energy efficient

cloud computing, and cloud computing in general.

KWANG-MAN KO received the B.S. degree from
Wonkwang University, in 1991, and the M.S.
and Ph.D. degrees in computer engineering from
Dongguk University, in 1993 and 1998, respec-
tively. He was a Professor with KwangjuWomen’s
University, from March 1998 to August 2001.
He joined the faculty in September 2001. He is
currently a Professor with the School of Com-
puter and Information Engineering, Sangji Uni-
versity. His current research interest includes

Energy-oriented Architecture Description Language (EoADL). He con-
structs a programmable architecture and generates an energy-oriented SDK
through the structural, behavioral, and energy consumption management
information in embedded systems, and SoC design areas.

145776 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	PROPOSED SOLUTION
	COMPUTE LOAD
	LOAD ANALYZER
	LOAD FILTER

	SYSTEM MODEL OF VM ALLOCATION ALGORITHM
	EXPERIMENTAL SETUP
	LOAD DISTRIBUTION BEHAVIOR STUDY

	PERFORMANCE ANALYSIS OF EXISTING AND PROPOSED APPROACHES
	STATIC LOAD BASED VM DEPLOYMENT AND CPU UTILIZATION
	DYNAMIC LOAD BASED VM DISTRIBUTION CONSIDERING CPU UTILIZATION AS A FACTOR
	EXECUTION TIME ANALYSIS

	CONCLUSION AND FUTURE DIRECTIONS
	REFERENCES
	Biographies
	MISBAH LIAQAT
	ANJUM NAVEED
	RANA LIAQAT ALI
	JUNAID SHUJA
	KWANG-MAN KO


