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ABSTRACT Cloud computing is generally considered as a special energy-efficient form for the Internet of
Things (IoT) resource usage. Dedicated server systems for cloud services, better capacity utilization and
economies of scale because of the use of larger and more energy-efficient data centers are the reasons
why cloud solutions typically use less energy than traditional on-premise systems. To scientifically and
rationally configure the hardware and software resources of the cloud computing, the research on forecasting
a cloud computing resource load becomes a research focus. However, the widely-used single forecasting
model cannot contain all the characteristics of the cloud computing resource load sequence, resulting in
inaccurate forecasting results. In this paper, a combined forecasting approach of cloud computing resource
load based on wavelet decomposition is proposed, which combined the grey model and cubic exponential
smoothing model. It can well preserve details and reduce noise. Firstly, the cloud computing resource load
sequence is decomposed into several frequencies by the wavelet decomposition method. The decomposed
load sequences with different characteristics are divided into different resolution scale subspaces in deferent
frequencies. The noise of the load sequences is reduced by the wavelet threshold denoising method. And
then, the load sequences are reconstructed according to the wavelet coefficients. The reconstructed load
sequence not only contains less noise but also reserves detailed information. Consequently, it is closer to
the real data and more regular. Experimental results show that our proposed combined forecasting model
with wavelet decomposition can provide more accurate forecasting results than each single forecasting
model or the combined forecasting model without using the wavelet decomposition method. Thus, our
proposal is demonstrated to be efficient for forecasting the cloud computing resource load and helping to
reduce energy consumption.

INDEX TERMS Cloud computing resource load, wavelet decomposition, combined forecasting model, grey

model, cubic exponential smoothing model.

I. INTRODUCTION

The IoT is one of the major revolutions of Information and
Communication Technology (ICT) following the invention
of computers and the Internet. Most of the IoT send their
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processing, storing and running applications and data to the
cloud. Cloud computing is a blend of conveyed, parallel,
multitenant computing model established on various
advancements, for example, virtualization, network, benefit
and autonomic computing. Cloud computing innovation
enables clients to get solid computing and memory assets and
in the meantime, the user isn’t keen on the area and settings
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of these assets [1]. With the development of cloud comput-
ing, the processing is transferred to the cloud means that
data centers and transmission networks need more capacity,
which brings new resource integration and usage patterns [2].
Research shows that energy consumption in data centers is
increasing due to cloud services [3]. Data centers consume
five times energy as much as the devices themselves. From
2010 to 2025, the energy consumption of networks and
data centers is expected to increase substantially. Energy
consumption of the German network is expected to increase
by 89% and data centres by 56%. The extrapolated global
development has even increased network and data centers
by 142% and 107%, respectively. How to rationally allocate
and schedule resources (such as CPU utilization, memory
utilization, network load, etc.), reduce energy consumption
and improve the utilization of cloud computing resources has
become a challenge for the industry [4]. Then, the research
on forecasting a load of cloud computing resource is carried
out. A load sequence of cloud computing resource has two
characteristics: On the one hand, a resource load sequence
shows a trend of growth on a large time scale, while it shows
obvious randomness and volatility on a small time scale, and
such fluctuations are also periodic and regular in a certain
time scale; On the other hand, the information contained in a
load sequence of the cloud computing resource collected in
practice is usually incomplete and uncertain, and the collected
resource load sequence cannot represent a complete business
logic relationship [5], [6].

Since cloud computing resources are easily affected by
complex and changeable factors, some random perturbation
errors will inevitably exist in the collected resource load
sequences over time, resulting in low forecasting accuracy.
To solve the above problems, considering the advantages
of wavelet in time-frequency domain analysis, Mallat intro-
duced the idea of multiscale analysis into wavelet analysis,
proposed a concept of multiresolution analysis, and pro-
posed a corresponding fast algorithm of decomposition and
reconstruction, namely Mallat algorithm [7]. The data pre-
processing algorithm of wavelet decomposition is applied
to the cloud computing resource load sequence. The cloud
computing resource load sequence is decomposed into sev-
eral frequencies by the wavelet decomposition method. The
decomposed load sequence with different characteristics is
divided into different resolution scale subspaces in different
frequencies. And then, the load sequence is reconstructed
according to the wavelet coefficients. The reconstructed load
sequence not only contains less noise, but also reserves the
detailed information, and thus which is more regular and
closer to the real data [8]. That provides a good data source
for forecasting the load of cloud computing resource in the
next step.

At present, the familiar cloud computing resource load
forecasting methods are regression analysis method, fuzzy
logic method, exponential smoothing method, gray forecast-
ing method, time series method, support vector machine
method, and artificial neural network method, etc. Among
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them, the regression analysis method can better describe the
overall changing trend of cloud computing resource load
sequence, but it cannot well reflect the random components,
and its forecasting result is not accurate [9]. The fuzzy logic
method transforms cloud computing resource load sequences
into a fuzzy rule base [10]. Since the learning ability of fuzzy
forecasting is weak and the theory of fuzzy system identifica-
tion is not complete, the single fuzzy method is not perfect to
forecast cloud computing resources. The exponential smooth-
ing method has both the characteristics of the whole period
average and the moving average [11]. It does not discard the
past data, but it gradually weakens the influences, that is,
with the data moving away, it gives a weight to gradually
converge them to zero. The time series forecasting method
forecasts the future load level that may be reached in the
next period or in the next several years, according to the
development process, direction or trend, which are reflected
by the cloud computing resource load sequence [12]. The
grey forecasting method seeks for the changing regularities
by processing the original data of cloud computing resource
load, which generates a resource load sequence with strong
regularity, and then establishes a corresponding differential
equation model to forecast the development trend of resource
load [13], [14]. The artificial neural network method and the
support vector machine method have strong fitting ability for
the complex factors of cloud computing resource [15]-[17].
But for the data sequences with different structures, the fore-
casting results have great differences and the stability of the
forecasting effect is low.

The above familiar load sequence forecasting methods
have their own advantages, but there are also some limita-
tions in the forecasting of cloud computing resource load
sequence. In view of the characteristics of cloud computing
resource load sequence, this paper selects the grey forecast-
ing method and the cubic exponential smoothing forecasting
method to respectively forecast the historical load sequences
of cloud computing resource. Among them, the grey forecast-
ing method is a method to study the problems of minority
data, poor information and uncertainty, which can effectively
describe the incompleteness and uncertainty of cloud com-
puting resource load sequence [18]. The grey forecasting
method directly seeks the inherent regularity of the cloud
computing resource load sequence and forecasts the unknown
field through the known information, so as to understand
the load of the whole cloud computing resources. The cubic
exponential smoothing method is quite effective for non-
linear and non-stationary cloud computing resource load
forecasting, and can adjust the forecasting value continu-
ously with the trend change of cloud computing resource
load sequence. The cubic exponential smoothing method
considers the timeliness of the cloud computing resource
load sequence, which is beneficial to the forecasting of the
randomness and volatility of the resource load sequence on
a small time scale. However, a single forecasting model
cannot contain all the characteristics of cloud computing
resource load sequence, and the forecasting error is big.

149543



IEEE Access

H.-A. Li et al.: Combined Forecasting Model of Cloud Computing Resource Load for Energy-Efficient loT System

Combined forecasting model

Grey forecasting model

\

Cloud computing resource
history load sequence

y
Data pre-processing by
Wavelet decomposition method

Cubic exponential smooth
forecasting model

A

\
Results of the combined forecasting model

FIGURE 1. Combined forecasting model with Wavelet decomposition.

Therefore, the development direction of cloud computing
resource load forecasting is the combination forecasting
model [19], that is, according to the characteristics of multi-
farious forecasting methods, the combined forecasting model
is established with the idea of complementary advantages to
improve the forecasting accuracy.

To sum up, on the one hand, due to the load sequences
collected in the field have much noise, the forecasting results
are not often accurate. Therefore, the denoising technology
should be adopted to preprocess the original data; On the
other hand, there are some limitations in the application of
a single forecasting model, and the accuracy of forecasting
result is low. In order to solve the above problems, a combined
forecasting model with wavelet decomposition is proposed.
The modeling steps are shown in Figure 1. Firstly, the cloud
computing resource history load sequence is processed by
the wavelet decomposition method to weaken the fluctuation
of data sequence and reduce the randomness. Then, the grey
forecasting model and the cubic exponential smooth forecast-
ing model are used for forecasting analysis, and the Induced
Ordered Weighted Average (IOWA) operator [20], [21] is
introduced to replace the equal weight in the combined fore-
casting model. The optimal weight coefficients are given to
each single forecasting model according to the forecasting
accuracy order. The minimal sum of error square value is
as a practical guideline to establish the combined forecasting
model.

The structure of this paper is organized as follows. Section I
introduces the current research background of forecasting
models of cloud computing resource load for energy-efficient
IoT system. Section II presents wavelet theories in detail and
how to use them in our proposal. In Section III, two single
forecasting models and the combined model are put forward.
The experiment and analysis are presented in Section I'V, and
we compare our proposed model with other several popular
models. Section V concludes this paper.
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Il. WAVELET THEORY

The wavelet theory provides an adaptive local multires-
olution analysis method in the time domain and the
frequency domain, which can well describe the instability
characters of load sequence. The theory of wavelet decompo-
sition and reconstruction proposed by Mallat is an important
kind of the wavelet theory. Firstly, this paper introduces the
theory of Mallat’s wavelet decomposition and reconstruction.
Secondly, based on Mallat’s wavelet theory, the wavelet
threshold denoising method is applied to the cloud computing
resource load sequence [22].

A. MALLAT'S WAVELET THEORY

1) WAVELET DECOMPOSITION

Firstly, the wavelet decomposition algorithm is applied to the
cloud computing resource load sequence s to generate two
coefficient sets: the low-frequency coefficient set cA; and
the high-frequency coefficient set cD1, as shown in Figure 2.
Where, Lo_D is the low-pass filter and Hi_D is the high-
pass filter. cA; is obtained by convolving s with the low-pass
filter Lo_D. cD is obtained by convolving s with the high-
pass filter Hi_D, and | 2 denotes that the down-sampling
scale is 2.

The same framework is used to further decompose the
low-frequency coefficient cA| into two parts, that is, cAj is
replaced with cA, and c¢D;, and so on. The flow chart
of multilayer wavelet decomposition algorithm is shown
in Figure 3.

Using the above method, the low-frequency part is decom-
posed again as a load sequence, and the decomposition struc-
ture of load sequence s on thejth layer is [cAj, cDhj, ..., ch].
For example, if j = 3, the decomposition structure is shown
in Figure 4. Where, C is the wavelet decomposition vector
and L is the length vector of the corresponding wavelet
component.
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2) WAVELET RECONSTRUCTION

In the load sequence, the low-frequency component rep-
resents the characteristics of the load sequence, while the
high-frequency component contains noise. After the high-
frequency parts ( e.g. cD1, cD3, cD3) being processed with
a given threshold, which are decomposed under each scale,
then the load sequence is reconstructed by composing them
with cAs. The load sequence of cloud computing resource
without noise is obtained.

The reconstruction algorithm is an inverse process of
the decomposition algorithm. Its principle is to reintegrate
the components obtained by decomposition into the orig-
inal load sequence without any loss of information. The
wavelet decomposition process includes filtering and down-
sampling, then it is necessary to carry out reconstruction fil-
tering and up-sampling in the wavelet reconstruction process.
Up-sampling is realized by inserting zero values between
adjacent sampling points. The length of load sequence
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CDj+I

components is doubled to reach the same length of sampling
data consistent with the load sequence that needs to be
reconstructed. The wavelet reconstruction algorithm is shown
in Figure 5. Where, Lo_R is the reconstructed low-pass filter,
Hi_R is the reconstructed high-pass filter, and 1 2 denotes
that the scale of up-sampling is 2. cAj;1 and cDj; are the
low-frequency coefficient and high-frequency coefficient of
the (j + 1) layer respectively, and cA; is the low-frequency
coefficient of the /™ layer obtained by reconstruction.

B. WAVELET THRESHOLD DENOISING THEORY

Based on Mallat’s wavelet theory, the wavelet decompo-
sition and reconstruction algorithm can be used to reduce
the noise of the load sequence. There are several kinds
of wavelet denoising methods, such as spatial domain cor-
relation denoising method, modulus maximum reconstruc-
tion denoising method, and wavelet threshold denoising
method. Among them, the spatial domain correlation denois-
ing method is easy to increase the false alarm probability and
keep the noise as the load sequence. The modular maximum
reconstruction denoising method requires the use of complex
alternating projection method for reconstruction, which is
easy to cause the deviation of reconstruction load sequence,
and the algorithm is complex and slow. Therefore, the wavelet
threshold denoising method is adopted in this paper for cloud
computing resource load sequence denoising [23].

The process of wavelet threshold denoising method is
divided into three steps, as shown in Figure 6.

Step 1. Wavelet decomposition. According to the practical
needs of data, the appropriate wavelet basis is selected and
the number of layers of corresponding wavelet decomposi-
tion is determined, and then the n-layer wavelet decompo-
sition is carried out for the cloud computing resource load
sequence [24].
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Step 2. Threshold quantification. An appropriate threshold
is selected to quantize the high-frequency coefficients of each
layer. The coefficient below the threshold is set to 0, and the
coefficient above the threshold is retained [25].

Step 3. Wavelet reconstruction. According to the low-
frequency coefficients of the last layer of wavelet decom-
position and the high-frequency coefficients of each layer
after quantizing, the load sequence is reconstructed, and then
the denoised cloud computing resource load sequence is
obtained.

1) WAVELET DECOMPOSITION

In the process of wavelet decomposition, the key step is
how to select an appropriate wavelet basis, which is directly
related to the quality of denoising. Generally speaking, there
are five aspects ought to be considered for selection the
wavelet basis function: (1) Orthogonality; (2) Symmetry;
(3) Compact support; (4) Regularity; (5) Vanishing moment
[26], [27]. The orthogonality can make analysis simple and
is beneficial to accurately reconstruct the load sequence. The
symmetry makes the wavelet filtering linearly so that the load
sequence will not be distorted, and it can improve the speed
of the algorithm. The compact support can avoid leakage in
the time domain and can avoid the influence of cross-terms
in the frequency domain, which can ensure good space local
properties. The regularity determines the smoothness effect
of load sequence reconstruction and affects the resolution in
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the frequency domain. The longer the support set is, the better
the regularity will be. The vanishing moment reflects the con-
centration of energy, and a high enough vanishing moment is
beneficial to detect the singularity of the signal [28].

Considering the characteristics of cloud computing
resource load sequence comprehensively, there must be two
requirements for the wavelet basis function: (1) It has good
frequency domain resolution, that is, the wavelet basis func-
tion has good regularity; (2) The wavelet basis function must
be symmetric to ensure that the load sequence is not distorted.
From the above requirements, the wavelet basis function with
better performance can be selected according to the actual
situation.

2) THRESHOLD QUANTIFICATION

In the wavelet denoising process of cloud computing resource
load sequence, the selection of threshold value is directly
related to the effect of denoising. If the threshold value
is too large, some useful information will be removed as
noise. If the threshold value is too small, a lot of noise
will remain in the load sequence. Therefore, the selection
of threshold is the key to the whole wavelet analysis
process.

There are two ways to select the threshold, namely the
global threshold and the hierarchical threshold. The method
of global threshold value is to make unbiased likelihood
estimation for the load sequence, and then determine a thresh-
old value according to the principle of minimum variance
between the noise reduction load sequence and the original
load sequence in the worst case, and then apply the thresh-
old value to the coefficients of each layer. The hierarchical
threshold is determined according to the estimated noise
intensity. Different thresholds are selected in different scales
to refine the wavelet decomposed load sequence, which is
more consistent with the actual situation and is benefit to
the improvement of noise smoothing effect. In this paper,
the Birge-Massart strategy [29] is selected to determine the
hierarchical threshold of each layer in the wavelet denoising
process. The steps are as following:

Step 1. For each decomposition layer j, the coefficients of
the layer greater than j are all retained;

Step 2. For the ith (1 < i <) layer, only n; coefficients
with the largest absolute value are retained, and n; is deter-
mined by Equation 1.

ni=M(G+2-i)P €5)
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where, B, M are empirical coefficients, and B is selected for
the purpose of compression or noise reduction, and in this
paper B = 2 is selected for the denoising purpose.

The action mode of threshold is as that after the threshold
value is obtained, there are two ways to apply the threshold
value on the cloud computing resource load sequence: the
hard threshold value and the soft threshold value. Let the
selected threshold be A, «; is the wavelet coefficient estima-
tion, and d; is the wavelet coefficient before processing [30].
The action mode of hard threshold is:

di |di| = X
by | 1= .
0 |di|l <A
The action mode of soft threshold is:
) sign(di)(|di| — 1) |dil = A
o = 3)
0 |di| < A
where,
1 t>0
on(f) — > 4
sign() {_1 o @)

Both of the threshold modes are widely used. However,
the wavelet coefficient of the hard threshold action mode will
be discontinuous at A, and the reconstructed load sequence
maybe oscillate. Therefore, the soft threshold action mode is
selected in this paper.

Wavelet reconstruction is an inverse process of the wavelet
decomposition, so we will not describe it in detail again.

IIl. FORECASTING MODEL

A. SINGLE FORECASTING MODEL

1) GREY FORECASTING MODEL

The grey forecasting model (GM(1,1) model) makes a sys-
tem, which with unclear and insufficient overall information,
clear on the aspects of structure, model and relation. The
GM(1,1) model is a dynamic sequence processing method in
the grey system theory [13], [14]. Let x© be a non-negative
sequence:

L0 — {X(O) 1), x9 @), ...,

where, x© *k) >0, k=1,2,....
accumulation sequence of x(©:

O wl o ®

xM is the first-order

=L@,V ©

k
>xO@), k=1,2,...,n

=1
The correspondin g differential equation of GM(1,1) model
is:

where, x(D k) =

dxD (1)
dt
where, « is the development grey number, u is the grey action

+axV@)y=u, t=1,2,....n N

value. The parameter vector A = can be solved by the
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least square method:

A= (BTB>_1 BTy, 8)
where,
1
2 (x® M
% ) 1 02
B=| ;P @+xP@3) 1 B C)
. ) @
—% (x(l) (n—1)+x® (n)) 1

Substitute the calculated parameters « and u into Eq. (7),
and solve the equation, and take x( (0) = x(@ (1). Then the
grey forecasting model is obtained:

2 t+1) = [x(o) () — Z] e 4 u )
o o

According to Eq. (9), the simulated values of successively
accumulated values £V (r + 1) are obtained, and then the
real forecasted values are obtained by one more subtraction:

9+ =D c+1)-3D @ (10)

where,t =1,2,...,n.

2) CUBIC EXPONENTIAL SMOOTHING FORECASTING
MODEL
The exponential smoothing method is used to smooth the
historical data to eliminate the influence of random fac-
tors. The cubic exponential smoothing method is needed
when the historical parameter sequence has a curvilinear
tendency [11]. Let the load sequence be X1, X2, X3, ..., X,
and let S denote the exponential smoothing value. The
first exponential smoothing value in the first ™ period is
denoted as Sl(l), the second exponential smoothing value is
denoted as S,(z) , and the third exponential smoothing value
is denoted as S,(3). The initial smoothing value is:
Xi+X+X
S(gl) _ S(()z) _ S(§3) _4 32 3 (a0

The equations for calculating the exponential smoothing

values are:

SV =X, + (1 —a)s® (12)
5P =ast + (1 —a)s?, (13)
S = as? + (1 —a)s?, (14)

where, o € [0, 1] is the smoothing coefficient, which is deter-
mined by the actual situation. Generally, it is selected accord-
ing to the minimum mean square error, that is, exponential
smoothing forecasting is made for different « values, and
the mean square errors are calculated respectively, and then
the minimum mean square error « is taken as the smoothing
coefficient.
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For the forecasted index value Y; 7 with the forecasting
cycle of T days and the base number of ™ day, the mathe-
matical model of the cubic exponential smoothing model is:

Yior = a; + b,T + ¢, T? (15)

where, a;, by, ¢; are the smoothing coefficients and the calcu-
lation equations are:

a = 35" —35® 435 (16)
__“ M @ 3)
,—m[(6—5a)S, —2(5—4a) SP+(4—3a) S| ]

)
2
o (1 2) 3)

o= —2 [sh_25® 4 18

= a8 - s (18)

B. COMBINED FORECASTING MODEL

The combined forecasting model comprehensively considers
the results of several single forecasting models and makes
a forecast using an appropriate weight coefficient to weight
each model. In the actual forecasting process, the forecasting
accuracy of each single forecasting model is not invariable,
and the randomness of the forecasting accuracy at each time
point leads to the fact that the value of the objective func-
tion of the traditional combined forecasting model is not the
optimal square sum of global errors, which has some defects.
Then in this paper, the IOWA operator is introduced [21],
and the weight of each single forecasting model is assigned
according to the order of forecasting accuracy at the corre-
sponding forecasting time point, and the combination fore-
casting model based on IOWA operator is established by
taking the minimum square sum of errors as a criterion.

1) IOWA OPERATOR
Let (vi,a1), (v2,a2),
arrays, and let:

, (Vin, a) be m two-dimensional

m
Sw (v1,ar), (v2, a2) ,<meam>)=ZWiav7index(i)
i=1

(19)

where, f,, is an m — dimension IOWA operator, which is
generated by vi, va, ..., vy, and v; is the induced value of a;.

W = [wi,wo,..., wm]T is the weighted vector of IOWA,
m

meeting the following conditions: Y w; = 1,w; > 0,
i=1

i =1,2,...,m; v — index (i) denoltes the subscript of the

i" largest number in vy, va, ...,
from large to small.

vy according to the order

2) STEPS OF THE COMBINED FORECASTING MODEL
Let{x;,, t=1,2,...,N}astheobservation sequences, there
are m kinds of feasible single forecasting models to forecast
them, and x;; (=1,2,...,m, t=1,2,...,N) denotes
the forecasted value of the i forecasting model on the t™ day.
x; denotes the actual value of cloud computing resource load
on the ™ day.
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The concrete modeling steps of the combined forecasting
model are as following:

Step 1. Calculate the forecasting accuracy v;; € [0, 1] of
the i™ kind of single forecasting model on the ! day:

_ 1_|(xt_xit)/xt| |(Xt—xit)/xt|<1
Vie =
0 |(xz—xit)/xt| > 1

where,i=1,2,...,m, t=1,2,...,N.

The forecasting accuracy v; is regarded as the induced
value of the forecasted value x;, so that the forecast-
ing accuracy of m kinds of single forecasting models on
the r" day and the forecasted values of their correspond-
ing sample sections constitute m two-dimensional arrays:
Wir, x1e) s (Vars X2) ooy (Vines X ).

Step 2. Calculate the IOWA operator value of the combined
forecasting model on the ™ day:

(20)

s Vit s Xime )

= Zwixvfindex(il) (21)

Siowa (Vir, X1¢) 5 (var, X2r)

where v — index (it) denotes the subscript of the th

largest forecasting accuracy in vis, Vs, ...,V W =
[wi, wa, ..., wyu]T denotes the weight coefficient of each
single forecasting model in the combined forecasting model.
Obviously, in the cloud computing resource forecasting pro-
cess, the IOWA value is the forecasted value of the combina-
tion forecasting model on the ™ day.
Step 3. Calculate the forecasting error of the combined
forecasting model on the ™ day:
m
€y—index(it) = X1 — frowa = X; — Zwixv—index(it) (22)
i=1
Step 4. Take the minimum error square sum S (w) of N days
combined forecasting model as the objective function to con-
struct the optimization programming model.

N N m 2
minS (w) = Zef = Z (xt - Z Wixvindex(it)>

t=1 t=1 i=1

m m
= ZZ Wiwj (Z €y—index(it) €v— mdex(]t))
i=1 j=1 =1
m
dowi=1, i=12....m
w1 | & (23)
w; >0, i=1,2,...,m

Step 5. Calculate the weighting coefficient of a single fore-
casting model in the combined forecasting model according
to the above optimization programming model.

= [wi, w2, .y Wl 24)

Step 6. According to the calculated weighted coefficients,
substitute them into Eq. (21) to obtain the combined forecast-
ing values of cloud computing resource load sequence.
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FIGURE 7. CPU utilization of cloud computing resource load sequence.

IV. EXPERIMENT AND ANALYSIS

In order to test and evaluate the forecasting effect of the
combined forecasting model based on wavelet decomposi-
tion applied to the cloud computing resource load sequence.
This paper takes the cloud computing resource load (CPU
utilization) sequence of a company from January 2009 to
January 2012 as an example to make forecasting. One day
is an observation period, and there are 1095 days observation
data. The trend is shown in Figure 7. Firstly, the CPU uti-
lization load sequence from day 1 to day 1090 was selected,
and combined with the wavelet decomposition principle, the
CPU utilization load sequence from day 1091 to day 1095 is
forecasted. Secondly, the forecasting results of each forecast-
ing model are compared with the actual data to find out the
forecasting model whose forecasting accuracy is the highest.

A. WAVELET DENOISING

In the process of wavelet decomposition, there are two prob-
lems: how to choose the best wavelet basis and how to
determine the number of decomposition layers. The compact
support and the regularity are contradictory. The shorter the
compact support set is, the better the time domain localiza-
tion is. While, the worse the regularity is, the worse the fre-
quency domain localization will become. Therefore, to select
appropriate vanishing moment parameters, db4, sym4 and
coif4 are selected as wavelet basis in this paper [27]. The
more wavelet decomposition layers are, the better the stability
of approximation signals and the stability of detail signals are,
and the more the accuracy of the forecasted value will be.
However, in fact, due to the calculation error in the decompo-
sition process itself, the more layers there are, the greater the
error will be. Therefore, the number of decomposition layers
usually adopts 3-5 [31].

The Root Mean Square Error (RMSE) and the Signal to
Noise Ratio (SNR) are used to compare the denoising effects
when we use different wavelet bases and different decompo-
sition layers, which can determine the optimal wavelet basis
and decomposition layers, as shown in Table 1.
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TABLE 1. Denoising effects’ comparison among different wavelet bases
and different decomposition layers.

\K;)a;?let Decc;;r;[;c;:ition RMSE SNR
db4 3 3.1615 15.21
db4 4 3.1472 14.33
db4 5 3.0926 19.13
sym4 3 3.1609 15.83
sym4 4 3.1498 14.11
sym4 5 3.1068 18.27
coif4 3 3.1612 15.98
coif4 4 3.1522 14.61
coif4 5 3.1008 16.83

In the wavelet denoising performance indexes, the smaller
the RMSE is, the better the denoising effect is. The higher the
SNR is, the better the denoising effect is. It can be seen from
Table 1 that when the db4 wavelet is selected as the wavelet
basis and the number of decomposition layers is 5, the denois-
ing effect is the best. Then, the db4 wavelet basis function is
adopted for 5-layer wavelet decomposition, and the thresh-
old values of each layer coefficients are determined accord-
ing to the Birge-Massart strategy [29]. Moreover, the soft
threshold is applied to coefficients of each layer, and the
load sequence after denoising is obtained through wavelet
reconstruction. The CPU utilization of the cloud computing
resource load sequence before and after denoising are shown
in Figure 8. Obviously, the CPU utilization of the cloud com-
puting resource load sequence after denoising is beneficial to
improve the noise smoothing effect.

149549



IEEE Access

H.-A. Li et al.: Combined Forecasting Model of Cloud Computing Resource Load for Energy-Efficient loT System

Original signal

80 T T T T T T & 1 T T ]
i i A P U B P er
3 f‘ a’\ fi: S L I | R | I I AN A
R A L L IS
2 -J ' | Sl L T L MY
g \ A \/ i PN VLY { A1 e {0 i
= Sl ¥ . i % b s e e R
0 anlsah ol T L R, O [ TR 8 PR D -
= \[ '.l,' ¥ !II,‘: kit .ﬁ {7 LR '|||,-: |
o \[ | ! Ilr : b \ [ Vil \io
1. : VoY \ K PV Vi |
0 i | l [ | l | | | | N S
20001 20094 20097 2009.10 2010.1 20104 20107 201010 20111 20114 20117 2011.10 20121
Time series (days)
Signal after denoising
60
A O N B
g h b g ek 5 N ;
< \ ENC w : ] A : A .
e v o W T - ey
= IERWAY £ \ | L Y ik
g [ I T S o
= ! /i H T G O . a1 f
B 20| T B G T TR R R LN S AW et
3 VAR AV BV AR VAl ' A
N | | | | | | | | | | |
20001 20094 20007 2009.10 2010.1 20104 20107 201010 20111 20114 20117 2011.10 20121

Time series (days)

FIGURE 8. CPU utilization of cloud computing resource load sequence before and after denoising.

B. ACCURACY OF EACH FORECASTING MODEL

1) GREY FORECASTING MODEL

In the grey forecasting process, firstly, the least square
method is used to solve the value of parameter vector
A = (BTB)"'BTY,, of the grey forecastirf model. Secondly,

according to the parameter vector A = , the results of

the grey number « and grey action u can be obtained. The
parameter a, u is substituted into Eq. (7) to solve the grey
forecasting response function. Finally, according to the grey
forecasting response function, the results of grey forecasting
model can be calculated. The parameters and test results of
the grey forecasting model are shown in Table 2.

TABLE 2. Comparison of parameters and test results for the grey
forecasting model.

Grey forecasting Without After wavelet

wavelet ..
model denoisi denoising
enoising
Grey number « 0.0441 0.0553
Grey action u 33.2871 35.6521
Posterior variance
. 0.2132 0.1582
ratio C

Small error 88.94% 93.57%

probability P

The evaluation of the grey forecasting model is related
to the posterior variance ratio C and the small error
probability P. The smaller the C value is, and the larger
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the P value is, the better the result is. It can be seen from
Table 2 that the grey forecasting model based on wavelet
denoising is superior to the grey forecasting model without
wavelet denoising in terms of the posterior square difference
ratio C and the small error probability P.

2) CUBIC EXPONENTIAL SMOOTHING FORECASTING
MODEL
(1) The load sequence without wavelet denoising is used for
the cubic exponential smoothing forecasting model. Firstly,
determine the initial smoothing value: Sol) = S(()z)
583) = M = 36.272. The different mean square error
value « is between [0, 1], at an interval of 0.02, and they
are calculated respectively. Through experiments, the min-
imum mean square error value ¢ = 0.68 is taken as the
smoothing coefficient. Assume that the forecasting period is
T (T=1,2,...,5) days, and the forecasted value Y1090+T1
of the base data on the ™  (r = 1090) day is plugged in
the smoothing coefficient equation. Calculate the smoothing
coefficients arnon 40.1290, b]og() —1.2260, C1090
0.0860, then the equation of the cubic exponential smoothing
forecasting model is Yio90+7 = 40.1290 — 1.2260 T +
0.08607>.

(2) The load sequence after wavelet denoising is used for
the cubic exponential smoothing forecasting model. Firstly,
determine the initial smoothing value S(() ) S(()z)

S(()3) = M = 35.951. The different mean square error
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TABLE 3. Forecasting results of cloud computing resource load sequence.

Grey forecasting model

Cubic exponential smoothing

Combined forecasting model

forecasting model

Time Actual CPU
series utilization . . .
/ day / % Without After wavelet Without After wavelet Without After wavelet
wavelet .. wavelet - wavelet ..
.. denoising .. denoising . denoising
denoising denoising denoising
1091 37.157 35.618 36.987 38.989 38.221 36.720 37.575
1092 36.044 34.332 35.667 38.021 37.032 35.538 36.317
1093 35.086 32.987 34.992 37.225 36.112 34.372 35.525
1094 34.276 32.112 33.876 36.601 35.461 33.580 34.631
1095 33.606 31.231 32.775 36.149 35.079 32.839 33.872
Mean absolute error / % 5.65 1.08 6.17 3.27 1.79 0.99
40 T T r
—— Actual data
—+— Grey forecasting model based on Wavelet de-noising
B +— Cubic exponential smoothing forecasting model based on Wavelet de-noising
—+— Combined forecasting model based on Wavelet de-noising
Bl . — —Traditional grev forecasting model
Traditional cubic exponential smoothing forecasting moedel
;\5\ - — — —Traditional combined forecasting model
: b
g % -
] —
=
= ¥
=
2wl
]

Time series (days)

FIGURE 9. CPU utilizations’ comparison among different forecasting models in cloud computing.

value « is between [0, 1], at an interval of 0.02, and they
are calculated respectively. Through experiments, the min-
imum mean square error value « = 0.74 is taken as the
smoothing coefficient. Assume that the forecasting period is
T (T=1,2,...,5) days, and the forecasted value Y1090+
of the base data on the ™ (r = 1090) day is plugged in
the smoothing coefficient equation. Calculate the smoothing
coefficients a9 = 39.6790, b1090 = —1.5925, C1090 =
0.1345, then the equation of the cubic exponential smoothing
forecasting model is Yioo0+7 = 39.6790 — 1.5925 T +
0.134572.

3) COMBINED FORECASTING MODEL

The results of the two single forecasting models are taken
as the input sequence xy;, xp; of the combined forecasting
model, and the IOWA operator is used to forecast the CPU
utilization of the cloud computing resource load sequence
from 1091 to 1095 days. The optimal weight coefficients of
the combined forecasting model without wavelet denoising
are w; = 0.6731, wp = 0.3269 and the forecasting value is:
0.6731 xx1;+0.3269 x x3;. The optimal weight coefficients of
the combined forecasting model based on wavelet denoising
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are w; = 0.5238, wy = 0.4762, and the forecasting value is
0.5238 x x1; + 0.4762 x x2;. The forecasting results and the
mean absolute error of each single forecasting model and the
combined forecasting model are shown in Table 3.

From Table 3 we can find: (1) The mean absolute error
of each single forecasting model based on wavelet denoising
is smaller than that of the single forecasting model without
wavelet de-nosing, which verifies the necessity of wavelet
denoising in the forecasting model. (2) The mean absolute
error of the combined forecasting model based on wavelet
denoising is smaller than that of the single forecasting model
and the combined forecasting model without wavelet denois-
ing, which indicates that the combined forecasting model
based on wavelet denoising is more suitable for the forecast-
ing of cloud computing resources.

The CPU utilizations’ comparison diagram among various
forecasting models is shown in Figure 9. Among the seven
forecasting value fitting curves in Figure 9, the curve of
the combined forecasting model based on wavelet denoising
is the closest to the real value curve, which fully demon-
strates that the combined forecasting model based on wavelet
denoising can improve the forecasting accuracy.
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V. CONCLUSION

In this paper, a combined forecasting model of cloud com-
puting resources based on wavelet denoising is proposed.
On the one hand, the noise of cloud computing resource
load sequence has been reduced, and the necessity of wavelet
denoising in the combined forecasting model is verified.
On the other hand, it shows that the combined forecasting
model has advantages over the traditional single forecasting
model, and it can improve the forecasting accuracy of cloud
computing resource load sequence. Therefore, the further
exploration of the wavelet denoising theory and the combined
model is significant to forecast the load of cloud computing
resource.

The present contribution provides data to help to rea-
sonably allocate and schedule cloud computing resources
to improve the utilization of cloud computing resource and
reduce energy consumption. In the overall evaluation of cloud
computing, we also should consider the potential of cloud
solutions (green-by-cloud) to save resources in the IoT.
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