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ABSTRACT Aerodynamic shape optimization (ASO) of hypersonic lifting body has become a significant
research topic due to its significant performance advantages. As a universal parameterization, the free form
deformation (FFD) technique has benefits including geometric independence, random deformation, and
mesh synchronization. In this paper, an effective design method to apply the FFD technique in the ASO
of a hypersonic lifting body is presented. Some commonly used basis functions are researched in FFD
modeling of the windward side of a typical lifting body, including the Bernstein polynomial, the B-spline
function, and the non-uniform rational B-spline (NURBS) function. An efficient aerodynamic simulation
method combining Euler equations (non-viscous component) and skin friction drag (viscous component
based on the compressible turbulence model) is then developed to minimize computational requirements.
The accuracy of the proposed method is validated, and a significant decrease in processing time is observed.
In addition, a kriging surrogate model combined with infilling sampling expected improvement (EI) criterion
is developed to improve optimization efficiency. To obtain a lifting body with high lift-to-drag ratio that
satisfies inner loading constraint, a baseline is optimized by manipulating its shape using the NURBS-based
FFD technique. The results show that the optimal shape displays outstanding aerodynamic performance, and
the effective design method can provide practical support for ASO of the hypersonic lifting body.

INDEX TERMS Aerodynamic shape optimization, hypersonic lifting body, free form deformation,
surrogate-based optimization.

I. INTRODUCTION
A hypersonic lifting body is generally capable of atmospheric
reentry and unpowered glide [1]. Therefore, aerodynamic
shape plays a crucial role in determining its performance,
influencing thermal protection, flight trajectory, stability,
maneuverability, aerodynamic capabilities, and structure.
The lift-to-drag ratio (L/D) has a particularly important
influence on flight performance, so a large L/D is a design
objective. During gliding, the windward side of the lifting
body has the largest contact area with the incoming flow,
providing nearly all of the lift force, so it is the key compo-
nent that affects aerodynamic performance [2]. To make the
lifting body with a large L/D, this paper will optimize the
aerodynamic performance of the windward side.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Li .

The parametric modeling method plays a crucial role in the
aerodynamic shape design of a lifting body [3], influencing
all aspects of the performance, particularly the L/D. Con-
trasting to traditional vehicles, the unique geometric char-
acteristics of a lifting body require the parametric modeling
method to provide adequate design space in the initial design
stage, and high flexibility in the iterative design stage. More-
over, during the optimization process, the parametric model
coupled with mesh deformation can improve the design effi-
ciency, and the simple shape parameters can further minimize
design variables.

There are many researches on parametric modeling of a
lifting body. The common modeling methods include the
B-spline method, non-uniform rational B-spline (NURBS)
method, class/shape function transformation (CST) method,
and free form deformation (FFD) technique [4]. Among these
methods, the CST method has some advantages in wide
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design space and smooth curve fitting, but it only works
out better on simple curves of smooth connection [5], and
the parameters are sensitive to global curves, so it is not
flexibility enough to iterative design. By contrast, the FFD
technique can be used in arbitrary geometrical models and
it also can create random theoretical deformation results,
thereby the FFD technique will provide a wide design space.
Most importantly, the FFD technique can create new shapes
globally or locally andmore details can be expressed. In addi-
tion, the FFD technique can be coupled with mesh deforma-
tion [6], [7], so it is highly suitable for parametric modeling
of the lifting body shape.

Current research on the free form deformation (FFD) tech-
nique is mostly focused on traditional aircrafts mechanisms
such as airfoils and wings, while few studies have consid-
ered advanced lifting body shapes. In this work, an exam-
ple using the shape of an HTV-2 is used to introduce the
FFD technique. Analysis of the characteristics of common
FFD techniques is then conducted, including the Bernstein-
based FFD technique [8], B-spline-based FFD (BFFD) tech-
nique [9], and NURBS-based FFD (NFFD) technique [10].
The results acquired in this study provide a guide for future
FFD modeling of the lifting body.

A conflict exists between accuracy and efficiency when
predicting aerodynamic performance in ASO problems, espe-
cially in a multiple iterative process. High fidelity compu-
tational fluid dynamics (CFD) such as Reynolds-averaged
Navier-Stokes (RANS) equations have been commonly
employed, however, they have high computational require-
ments. With hundreds or thousands of iterations in ASO
works, the high amount of numerical results and time required
is impractical. In order to minimize computation, a number
of engineering estimation methods have also been widely
used in ASO [11], such as the Newtonian method, Dahlem-
Buck method, and Prandtl–Meyer method. With hypersonic
speed and high altitude, the viscosity effect has a significant
influence on the aerodynamic performance of a lifting body.
The present challenge is that engineering estimation method
is high efficiency but low fidelity with non-viscous, while
credible CFD methods are accurate but time-consuming.
Therefore, an efficient aerodynamic simulation method must
be developed to produce a credible result with minimum
computational requirements.

Using surrogate-based optimization is another effective
strategy to reduce costs [12]. The main concept of surrogate-
based optimization is to construct a highly functioning surro-
gate model to replace time-consuming CFD simulation [13].
Several popular surrogate models including polynomials,
radial basis functions, kriging, and support vector regression
can be used in surrogate-based optimization. Among these,
the kriging model [14] has advantages in approximating
nonlinear and multi-modal functions used for the ASO of
vehicles. The surrogate models are first trained by initial
sample points, which can be generated by experiments such
as the design explorer orthogonal array (DEOA) method
and Latin hypercube sampling (LHS) method. During the

TABLE 1. Shape parameters of the typical hypersonic lifting body.

optimization process, the surrogate models are updated by
an infill criterion at every step. Commonly used infill crite-
rions include the expected improvement (EI) criterion [15],
probability of improvement (PI) criterion, and lower confi-
dence bounding (LCB) criterion. Using surrogate-based opti-
mizationmethods can significantly improve design efficiency
without much loss of accuracy.

Considering the challenges detailed above, an effective
ASO method for a hypersonic lifting body is developed in
this paper, consisting of a feasible FFD technique, an effi-
cient aerodynamic simulation method, and a surrogate-based
optimization method.

This paper is organized as follows. The next section intro-
duces the FFD technique for a typical hypersonic lifting
body. In Section 3, we analyze three FFD techniques by
modeling of a line and a windward side with different basis
functions. In Section 4, we introduce an efficient aerody-
namic simulation method and surrogate-based optimization
method. Section 5 describes the optimization problem of a
constrained aerodynamic shape of a lifting body based on
NFFD technique. Then, we validate and discuss this approach
in an L/D maximization case of a lifting body in Section 6.
Section 7 completes the paper with the conclusion.

The novelty of this paper is the first time the FFD technique
is applied in the local model of a hypersonic lifting body, and
an efficient aerodynamic shape design method is developed
by the NFFD technique, the efficient aerodynamic simulation
method and the surrogate-based optimization method.

II. FFD TECHNIQUE FOR LIFTING BODY
The FFD is a universal parametric modeling technique which
is widely used in ASO for aircrafts. In this section, the
FFD-based parametric modeling for hypersonic lifting body
is discussed and some commonly used basis functions are
introduced.

A. GEOMETRIC MODEL
To specify the FFD technique, a typical hypersonic lifting
body mimicking the aerodynamic shape of HTV-2 is used as
an example, as shown in Fig. 1. Due to the constraint of the
thermal environment, the leading edge has been blunted with
radius r = 10 mm. The main shape parameters of the typical
hypersonic lifting body model are provided in Table 1.

The typical lifting body vehicle has a total length of 4.0 m,
a total width of 2.0 m, and a total height of 0.6 m. As previ-
ously mentioned, the windward side provides nearly all the
lift force and exerts the most influence on the aerodynamic
performance of the lifting body vehicle. Thus, the ASO of
the windward side is the focus of this paper.
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FIGURE 1. Geometric model of a typical hypersonic lifting body.

FIGURE 2. The control lattice and local coordinate system.

B. DEFINITION
The FFDmethod takes an elastic control lattice to contain the
to-be-deformed lifting body vehicle, and creates a suitable
mapping relation between the geometric mesh points and
control points. The shape of lifting body vehicle will be
deformed together with the movement of control points.

The parallel hexahedral control lattice is commonly used
during the FFD modeling, and it should contain the lifting
body vehicle, as shown in Fig. 2. The control lattice consist
of red control points and black wireframe.

The FFD is defined in the local coordinate systemX0−STU
of a unit cube, so we should transfer the coordinates (x, y, z)
to local coordinates (s, t , u).

EX = EX0 + sES + t ET + u EU (1)

where s, t , u (0 ≤ s, t, u ≤ 1) are the local coordinates of EX .
The control points EPi,j,k are located on the control lattice,

and the number of control points along the axial vectors of ES,
ET , and EU are (l + 1), (m+ 1), and (n+ 1) respectively. Any
control point EPi,j,k can be defined as

EPi,j,k = EX0 +
i
l
ES +

j
m
ET +

k
n
EU (2)

where i, j, and k (i = 0, 1, · · · , l; j = 0, 1, · · · ,m;
k = 0, 1, · · · , n) are the sequences of the control points along
the axial vectors of ES, ET , and EU .

The deformation of the geometric model is controlled by
moving the control points EPi,j,k , so the deformation mapping
between the geometric mesh points and control points is key
in FFD method. In particular, the deformation mapping is
mainly based on the basis function R(·), and the deformation
mapping between themesh point EX and the control point EPi,j,k
is generally written as

EX =
l∑
i=0

m∑
j=0

n∑
k=0

Ri(s)Rj(t)Rk (u) · EPi,j,k (3)

where Ri(s), Rj(t), and Rk (u) are the basis functions along the
axial vectors of ES, ET , and EU .

C. DIFFERENT BASIS FUNCTIONS
The basis function R(·) of the FFD method plays an impor-
tant role in the deformation mapping. Commonly used basis
functions include Bernstein polynomial, B-Spline function,
and the NURBS function.

1) BERNSTEIN POLYNOMIAL
As mentioned in Eq. (3), the Ri(s), Rj(t) and Rk (u) are basis
functions of FFD method along different directions, which
has similar expressions. Take the Ri(s) along ES direction as an
example, the expression of basis function based on Bernstein
polynomial is

Ri(s) = C i
l s
i(1− s)l−i =

(l)!
(i)! (l − i)!

si(1− s)l−i (4)

So the deformationmapping relation between control point
EPi,j,k and mesh point EN (x, y, z) can be demonstrated as

EN (x, y, z) =
l∑
i=0

C i
l s
i(1− s)l−i

 m∑
j=0

C j
mt

j(1− t)m−j

×

[
n∑

k=0

Ck
n u

k (1− u)n−k · EPi,j,k

]]
(5)

where s, t , and u are local coordinates of the geometric mesh
points, and i, j and k are sequences of the control points
along ES, ET and EU directions. The number of control points are
(l + 1), (m+ 1), and (n+ 1).

2) B-SPLINE FUNCTION
Take the B-spline function Bi,p(s) as the basis function, the
B-spline-based FFD method can be called as the BFFD
method. The expression of Ri(s) in BFFD method can be
written as

Ri(s) =
Bi,p(s)
l∑

a=0
Ba,p(s)



Bi,0(s) =

{
1, si ≤ s ≤ si+1
0, others

Bi,p(s) =
s− si

si+p − si
Bi,p−1(s)

+
si+p+1 − s

si+p+1 − si+1
Bi+1,p−1(s), p ≥ 2

(6)
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So the deformation mapping relation of BFFD method
between control point EPi,j,k and mesh point EB(x, y, z) can be
demonstrated as

EB(x, y, z) =
l∑
i=0

Bi,p(s)
l∑

a=0
Ba,p(s)

 m∑
j=0

Bj,q(t)
m∑
b=0

Bb,q(t)

×

 n∑
k=0

Bk,r (u)
n∑
c=0

Bc,r (u)
· EPi,j,k


 (7)

where s, t and u are local coordinate values of geometric
mesh points, and i, j and k are sequences of the control points
along ES, ET and EU directions. The number of control points are
(l + 1), (m + 1), and (n + 1), the orders of B-spline basis
function are p, q, and r.

3) NURBS FUNCTION
Taking the NURBS function Ni,p(s) as the basis function, the
NURBS-based FFD method can be referred to as the NFFD
method. The Ni,p(s) is a non-uniform rational Bi,p(s), and
it introduce the weight factor ω to control the deformation,
so the expression of Ri(s) in NFFD method can be expressed
as

Ri(s) =
ωiNi,p(s)
l∑

a=0
ωaNa,p(s)

×



Ni,0(s) =

{
1, si ≤ s ≤ si+1
0, others

Ni,p(s) =
s− si

si+p − si
Ni,p−1(s)

+
si+p+1 − s

si+p+1 − si+1
Ni+1,p−1(s), p ≥ 2

(8)

The deformation mapping relation of the NFFD method
between control point EPi,j,k and mesh point EN (x, y, z) can
then be denoted as

EN (x, y, z) =
l∑
i=0

ωiNi,p(s)
l∑

a=0
ωaNa,p(s)

 m∑
j=0

ωjNj,q(t)
m∑
b=0

ωbNb,q(t)

×

 n∑
k=0

ωkNk,r (u)
n∑
c=0

ωcNc,r (u)
· EPi,j,k


 (9)

where s, t , and u are local coordinate values of geometric
mesh points, and i, j and k are sequences of the control points
along ES, ET , and EU directions. The number of control points
are (l + 1), (m + 1), and (n + 1), the orders of the NURBS
basis function are p, q, and r , andωi,ωj, andωk are the weight
factors of the design point.

FIGURE 3. Deformed curves of a line based on different FFD techniques.

III. FFD MODELING ANALYSIS
Based on the above-mentioned FFD techniques with different
basis functions, various mapping relations can be set between
control points and mesh points, which means that differ-
ent geometric deformations will be created under the same
displacements of control points. To analyze the differences
among the FFD techniques (original FFD technique, BFFD
technique, and NFFD technique), the FFD modeling of a line
and the windward side of a hypersonic lifting body are used
as analytical examples.

A. FFD MODELING OF A LINE
As a simplified example, a line with an interval of [1, 10] is
used to analyze the different deformed results among three
FFD techniques, as shown in Fig. 3. The FFD control points
P0 ∼ P11 are evenly distributed at an interval of [0, 11].

Under the same displacement change of 1EP6 = 1.0, the
lines are deformed to various curves based on different FFD
techniques. The basis function orders of the BFFD and NFFD
techniques are all r = 2. The deformed curves are provided
in Fig. 3, in which the red curve is created by the original FFD
technique, the blue curve is created by the BFFD technique,
the green solid curve is created by the NFFD technique with
weight factor of ω = 2, and the green dotted curve is created
by the NFFD technique with weight factor of ω = 0.5.

The deformed curves in Fig. 3 illustrate that all three
FFD techniques have the same deformation tendency on the
line, while their deformation range and degrees vary. Specif-
ically, the original FFD technique causes global deformation
with moderate deformation degree, as seen in the red curve
in Fig. 3, while the BFFD and NFFD techniques focus on
the local deformation with large deformation degree, as illus-
trated by the blue and green curves.

In addition, the weight factor ω of the NFFD technique
gives the deformed curves more flexibility and wider defor-
mation space [16] (when ω = 1, it is the BFFD technique).

B. FFD MODELING OF THE WINDWARD SIDE
The FFD modeling of a line demonstrates the deformation
differences visually. The windward side of a hypersonic
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FIGURE 4. The irregular control lattice and distribution of design points.

TABLE 2. The sequences and displacements of the design points.

lifting body then used to conduct depth analysis. Taking the
typical windward side in Fig. 1 as an example, we take a
border-based FFD control surface [17] to replace the tradi-
tional FFD control lattice in this paper. The border-based FFD
control surface takes the projected edge of the windward side
as the boundary of the control lattice, as shown in Fig. 4.
As an irregular control lattice, the border-based FFD control
surface is geometrically consistent with the to-be-deformed
windward side, so it can improve operational efficiency and
geometric continuity [17].

The total number of control points is 9× 2× 9 (ES×ET× EU ),
and six design points P1 ∼ P6 are selected on the control
lattice, as shown in Fig. 4. To simplify the deformation,
the displacements of design points in the EY direction are
manipulated. The sequence (i, j, k) in the local coordinate
system of the design points P1 ∼ P6 and their displacements
1EP1 ∼ 1EP6 are listed in Table 2.
Under the same displacements of1EP1 ∼ 1EP6, the original

FFD, BFFD, and NFFD techniques are adopted to create
deformation on the windward side. The basis function orders
of the BFFD and NFFD techniques are all q = 2, and defor-
mation results of the windward side are provided in Fig. 5.
To further analyze the deformation ranges and degrees on
the windward side, the contours of the Y coordinate on the
windward side under different FFD techniques are shown
in Fig. 6.

Both Fig. 5 and Fig. 6 illustrate that under the same dis-
placements of the design points 1EP1 ∼ 1EP6, the deforma-
tion range and degrees on the windward side of three FFD
techniques are different. The deformation of the original FFD
technique is not obvious, and the BFFD andNFFD techniques
focus on local deformation with a large deformation degree.
Although the deformation tendencies of the BFFD and NFFD

FIGURE 5. Deformation results of the windward side under the different
FFD techniques: (a) Original FFD technique; (b) BFFD technique; (c) NFFD
technique with weight factor ω1 = (2, 5, 5, 3, 8, 8); (d) NFFD technique
with weight factor ω2 = (3, 5, 5, 2, 0.5, 0.5).

FIGURE 6. Contours of the Y coordinate on the windward side under
different FFD techniques.

techniques are same, the weight factor ω equips the NFFD
technique with wider deformation space.

By comparison, it is clear that the basis function R(·) plays
an important role in deformation. Among three techniques,
the NFFD technique not only includes the characteristics
of the other FFD techniques, but also introduces an addi-
tional weight factor ω to enable a more flexible and wider
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design space. Thus, it is more suitable for deformable mod-
eling of the windward side.

IV. SIMULATION AND OPTIMIZATION METHODS
The aerodynamic design and optimization of the hypersonic
lifting body can be further advanced by NFFD modeling of
the windward side. To balance time cost and calculation accu-
racy, an efficient aerodynamic simulation method is adopted
to calculate the aerodynamic force, and the surrogate-based
optimization method is used to search the optimal solution.
The simulation and optimization methods are introduced as
follows.

A. EFFICIENT SIMULATION METHOD
The tradeoff between time cost and calculation accuracy is
a persistent issue in aerodynamic design. The Euler plus
friction drag method has been demonstrated to be the best
technique through its use in the design of the hypersonic vehi-
cle HIFiRE-4 [18]. In this paper, an efficient aerodynamic
simulation method is introduced which combines Euler equa-
tions (non-viscous component) and skin friction drag (vis-
cous component based on compressible turbulence model),
and its accuracy is validated.

1) EFFICIENT AERODYNAMIC SIMULATION METHOD
Euler equations are first used to calculate the three-
dimensional compressible and non-viscous aerodynamic
force. When the incoming fluid is the perfect gas, the Euler
equations can be written as:∫

�

∂ EQ
∂t
dV +

∫
∂�

(
EF ·En
)
ds = 0 (10)

where � is the control volume, t is the time, EQ is the state
vector which consists of flow variables, EF is the flux vector,
and En is a unit vector.

The skin friction coefficient Cf is then adopted to cal-
culate the viscous aerodynamic force. For the compressible
turbulence model, Schlichting [19] proposed a skin friction
coefficient which can be written as:

Cf =
0.02296
Re∗0.139

(
ρ∗

ρe

)0.861 (
µ∗

µe

)0.139

(11)

where Cf is the skin friction coefficient, Re∗ is the reference
Reynolds number, ρ∗ is the reference density, µ∗ is the
reference viscosity coefficient, ρe is the density at the edge
of the boundary layer, and µe is the viscosity at the edge of
the boundary layer.

The reference enthalpy method [20] is used next to calcu-
late the values of Re∗, ρ∗ and µ∗. The most popular refer-
ence enthalpy method proposed by Eckert [21] and Meador
and Smart [20] was developed directly from compressible
boundary-layer equations solutions. The expression of the
Meador’s reference enthalpy method is:

H∗

He
= 1+ 0.5

(
Hw
He
− 1

)
+ 0.16r

γ − 1
2

Ma2e (12)

FIGURE 7. Mesh of typical hypersonic lifting body.

where H∗ is the reference enthalpy, Hw is the enthalpy on the
wall,He is the enthalpy at the edge of the boundary layer,Mae
is the Mach number at the edge of the boundary layer, r is the
recovery factor that depends on the Prandtl number, and γ is
the ratio of specific heats.

In this paper, the table-look-up method is used to obtain
the reference values, and the Sutherland formula corrected
by Keyes [22] is utilized to determine the reference viscosity
coefficient:

µ∗

µe
=

(
T ∗

Te

)1.5
(
Te + 122.1× 10−

5
T∞

T ∗ + 122.1× 10−
5
T ′

)
(13)

where T ∗ is the reference temperature, and Te is the temper-
ature at the edge of the boundary layer.

2) VALIDATION
In this section, the efficient aerodynamic simulation method
is used simulate the aerodynamic performance of a typ-
ical hypersonic lifting body. As an accurate reference,
the CFD result is simulated by three-dimensional RANS
equations [23] using the shear-stress transport (SST k − ω)
turbulence model. In the computation of the CFD process,
the air is assumed to be perfect gas, and the viscosity coeffi-
cient is calculated by Sutherland law.

The surface mesh is created by the Delaunay method, and
consists of 7.93 × 104 nodes and 1.58 × 105 triangular
elements, as shown in Fig. 7(a). The volume mesh for an
efficient aerodynamic simulation method is created by the
adaptive Cartesian methods, and the number of total elements
is 1.89× 106. The volumemesh for RANS equations contains
a boundary layer close to the surface mesh, and the number
of total elements is 4.08 × 106, as shown in Fig. 7(b).

The computational states chosen in this paper include a
flight height of 40 km, a Mach number of 8.0, and angles of
attack of −2◦/0◦/2◦/5◦/8◦/10◦. Taking the results of RANS
equations as the accurate reference, the calculation accuracy
of the efficient aerodynamic simulation method proposed in
this paper is validated. As the viscous effect mainly causes
a difference in axial force coefficient Ca, and the L/D is the
main factor to reflect the aerodynamic performance, compar-
ison curves of Ca and L/D are provided in Fig. 8.

147996 VOLUME 7, 2019



B. Zhang et al.: Efficient ASO of the Hypersonic Lifting Body Based on FFD Technique

FIGURE 8. Comparison of the aerodynamic results for RANS equations
and efficient aerodynamic simulation method.

As illustrated in Fig. 8, the aerodynamic results of the
efficient aerodynamic simulation method correspond reason-
ably well with the RANS equations, while the attack angle
α varies from −2◦ to 10◦. Although the Ca of the effi-
cient aerodynamic simulation method are all less than the
RANS equations, they exhibit the same variation tendency.
More importantly, the characteristics of the L/D between the
RANS equations and the efficient aerodynamic simulation
method are in good accordance.

Detailed aerodynamic results of the concrete errors
between the RANS equations and efficient aerodynamic sim-
ulation method are provided in Table 3. In addition, the Error
is introduced to evaluate the relative errors between the results
of efficient aerodynamic simulation method and the RANS
equations, which can be written as

Error =
Efficient+ − RANS

RANS
× 100% (14)

where Error is the relative error of the aerodynamic results,
Efficient+ is the aerodynamic results of the efficient aero-
dynamic simulation method, and RANS is the aerodynamic
results of the RANS equations.

As Table 3 shows, the Errors of Ca are within 6.8% and
the Errors of L/D are within 4% for all computational states,
and the errors between the efficient aerodynamic simulation
method and the RANS equations can be maintained stably

for both Ca and L/D. The results confirm that the efficient
aerodynamic simulation method can be accurately applied
for evaluating aerodynamic performances within the specific
design states.

In addition, the computation time of one design state
required nearly 50 hours on 4 central processing units (CPUs)
for the RANS equations, but only 0.5 hours on 1 CPU for
the efficient aerodynamic simulationmethod. Compared with
RANS, the efficient aerodynamic simulation method has
higher efficiency.

B. SURROGATE-BASED OPTIMIZATION METHOD
To obtain themaximum improvement in the aerodynamic per-
formance of the hypersonic lifting body, an infilling expected
improvement (EI) criterion together with the multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
method [24] is used in this paper. Besides, a kriging surrogate
model is used to improve the optimization efficiency.

1) KRIGING SURROGATE MODEL
The kriging surrogate model has been widely used for
aerodynamic design problems due to its accuracy and
robustness [25]. In this study, the kriging surrogate model is
constructed to reduce computational costs. Before building
the surrogate model, there must be enough initial sample
points to fill the design space. They are then calculated by
the efficient aerodynamic simulation method proposed in this
paper.

For an expensive function y = f (x) , x ∈ Rn, the response
values Y s =

{
y1, . . . , yk

}T
(such as aerodynamic force

coefficients Cl and Cd are respect to the k sample points
X =

{
x1, . . . , xk

}
∈ Rn (xi (i = 1, . . . , n) is n-dimensional

vector). The kriging model assumes the response value and
the variable subject to the Gaussian stochastic process, which
defined as [12]

y = µ+ ε (x) (15)

where µ is the deterministic part, and ε (x) is a Gaussian
stochastic process.

Then based on the collected sample points (X,Y s), the best
linear unbiased predictor of the predicted point is as follows

ŷ (x) = µ̂+ rTR−1
(
y− 1µ̂

)
(16)

where µ̂ =
(
1TR−11

)−1
1TR−1Ys, R is a k × k

correlation matrix whose (i, j)-element is c
(
xi, xj

)
, and

r =
[
c
(
x, x1

)
, . . . , c

(
x, xK

)]T
The c

(
xi, xj

)
is the correla-

tion function that depends on the distance between two points(
xi, xj

)
, and the Gaussian function is used in this paper.

The kriging model can also give the mean squared error of
the estimated value, and that is

s2 (x) = σ̂ 2

[
1+

(
1− 1TR−1r

)
1TR−11

2

− rTR−1r

]
(17)

where σ̂ 2
=
(Ys−1µ̂)

TR−1(Ys−1µ̂)
k .
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TABLE 3. Results of RANS equations and efficient aerodynamic simulation method.

The kriging surrogate model N
(
ŷ (x) , s2 (x)

)
can give the

response value yi at x i for i = 1, . . . , k , which can be
regarded as a predictive distribution for the time-consuming
CFD simulation.

2) INFILLING CRITERION
After constructing the kriging surrogate model based on ini-
tial sample points, the new sample points should be added to
update the model, which will improve the predictive accuracy
and approximate the optimal solution. During each cycle in
the iterative optimization, a current optimal solution is cal-
culated by the CFD method and added to the sample points,
cycle by cycle, until the optimum is obtained.

Currently, the most popular infilling criteria is the expected
improvement (EI) in the efficient global optimization (EGO)
method [12]. This method is most likely to obtain the global
optimal solution of the EI criteria, and has been widely used
in aircraft design. Based on above kriging surrogate model
N
(
ŷ (x) , s2 (x)

)
, the expected improvement is

E [I (x)] =


[(
ymin − ŷ (x)

)]
8

(
ymin − ŷ
ŝ (x)

)
+ ŝ (x) φ

(
ymin − ŷ
ŝ (x)

)
ŝ > 0

0 ŝ = 0

(18)

where ymin is the minimal value of all evaluated points.
A well compromise of exploration and exploitation [26]

is the mainly advantage of the EI criteria. In detail,
the term

[(
ymin − ŷ (x)

)]
8
(
ymin−ŷ
ŝ(x)

)
in Equation (17) reflects

the local search with less uncertainty, and the term
ŝ (x) φ

(
ymin−ŷ
ŝ(x)

)
reflects the global search with much uncer-

tainty.
Then compromising the global and local search, we define

a two objective optimization problem by maximizing the
expected improvement, and it is defined as

maxF =
([(

ymin − ŷ (x)
)]
8

(
ymin − ŷ
ŝ (x)

)
+ ŝ (x) φ

(
ymin − ŷ
ŝ (x)

))T
, x ∈ � (19)

The main goal of this optimization problem is to tend to
find a point that its predicted value smaller that ymin and/or
there is much uncertainty associated with the prediction. But
the global search and local search are usually conflicting,
so the multi-objective optimization algorithm is needed to
solve the MOP. In this study, the multiobjective evolutionary
algorithm based on decomposition (MOEA/D)method [24] is
employed for solving the MOP, which performs much better
than other multiobjective evolutionary algorithms. The main
idea is to decompose theMOP into some single objective sub-
problems and then optimizes them in a collaborative way.

V. LIFTING BODY SHAPE OPTIMIZATION
A. OPTIMIZATION PROBLEM
The typical hypersonic lifting body shown in Fig. 1 was
chosen as the baseline and its geometry parameters are listed
in Table 1. Designing a hypersonic lifting body is systematic,
with most of the flight performances directly related to the
L/D, including aerodynamic capabilities, trajectory, range,
and maneuverability. In this section, the L/D was selected
as the optimization objective.

The aerodynamic performance of the baseline was ana-
lyzed with the flight height of 40 km, Mach number of 8.0,
and an angle of attack of 8◦ as the design point, which has
a maximum L/D = 3.73, as shown in Table 3. Adequate
volume for inner loading requirements is also important for
the design of a factual hypersonic lifting body [27]. As a
design constraint, the volume of inner loading Vloading is
added into the optimization problem, as shown in Fig. 9.
Without loss of generality, a loading of frustum (yellow in
color) was set inside the lifting body, with geometric param-
eters of l = 2000mm, h1 = 175mm, and h2 = 450mm.
During optimization, the lower limit of Vloading corresponds
to the value of baseline Vloading_base, so the volume constraint
of inner loading is Vloading ≥ Vloading_base.

In this case, aerodynamic results such as lift force, drag
force, and L/D, can be calculated by the efficient aerody-
namic simulation method, which has been validated with
credible accuracy and high efficiency. Based on the surrogate-
based optimization method, the maximum L/D of the typical
hypersonic lifting body is obtained by manipulating its shape
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FIGURE 9. Inner loading of the typical hypersonic lifting body.

TABLE 4. Description of ASO problem.

using the NFFD technique, while satisfying the volume con-
straint of inner loading Vloading ≥ Vloading_base.

The description of the ASO problem of the hypersonic
lifting body is listed in Table 4.

B. NFFD MODELING
During NFFD modeling, an irregular control lattice of
30 × 2 × 20 (ES × ET × EU ) is used to parameterize the
typical hypersonic lifting body, and various design points are
within the yellow zone, as shown in Fig. 10. The sequences
(i, k) of the design points along ES and EU directions are
presented near the control lattice, and the design points along
ET direction are overlapped with sequences j = 0, 1.
During optimization, the order of NURBS basis function

is chosen as q = 8 to achieve fairing deformation. In order to
simplify the optimization problem, only the Y coordinates of
the design points can be manipulated.

To reduce the design space, all the design points consist of
six design variables X1 ∼ X6. The sequences (i, j, k) of the
design points on NFFD lattice are shown in Table 5. Because
a volume constraint was included for inner loading, there are

FIGURE 10. Irregular control lattice and control points.

no design points with sequences k = 9, 10, resulting in no
deformation in the middle of the windward side.

C. OPTIMIZATION CONDITION
Before the optimization operation, an initial sample of 65 is
generated by the LHS method. The lower/upper bounds and
design ranges of the design variables X1 ∼ X6 are shown
in Table 6.

With the initial surrogate model, infilling EI criterion is
applied to add new samples and predict the optimal result.
During the surrogate-based optimization, the Gauss function
is taken as the correlation function, and themaximum number
of optimization iterations is 70. The conditions of the opti-
mization problem are listed in Table 7.

The process of the ASO based on NFFD modeling is
illustrated by the flowchart in Fig. 11. The detailed process of
NFFD modeling is described in the blue dotted box. By inte-
grating the efficient aerodynamic simulation method and the
surrogate-based optimization method proposed in this paper,
the optimal shape of the lifting body can be determined.

VI. RESULTS AND DISCUSSION
The constrained aerodynamic shape of the lifting body is
optimized based on the flowchart in Fig. 11. Next, 65 (refer to
11n-1, n is the number of design variables) initial samples are
generated in the six-dimensional space and the aerodynamic
shape is optimized on 60 optimization iterations, which con-
tain a total of 125 steps.

As illustrated in Fig. 12, the convergent result of the max-
imum L/D versus process step is reasonable. After estab-
lishing the sampling model, the L/D increases sharply when
optimization begins, then gradually increases until the con-
vergence of max (L/D)Optimal = 4.31 at step = 102.

Detailed data of the design variables X1∼ X6 and the max-
imum L/D during optimization is also provided in Table 8.
It can be observed that all design variables are positive, and
many design variables have reached or are approaching the
upper bounds. At this point, the volume constraint of the
inner loading restricts further improvement of aerodynamic
performance.

Figure 13 provides a comparison of the geometric mod-
els between the base shape and the optimal shape, and
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TABLE 5. Sequences of the design points on NFFD lattice (j = 0, 1).

TABLE 6. Lower/upper bounds and design ranges of the design variables.

TABLE 7. Optimization condition of the ASO problem.

Fig. 14 shows the comparison of the Y coordinate contour on
the windward side. As illustrated in the figures, both sides
of the optimal windward side significantly cave inward of
the lifting body, especially in red zones of the Y coordinate
contours.

As illustrated in Fig. 15, a typical section shows that the
optimal shape still satisfies the inner loading constraint. If the
inner loading constraint is not added in this case, the entire
windward side would be caved in toward the body.

Table 9 shows the comparison of aerodynamic perfor-
mance between the base shape and the optimal shape for the
axial force coefficient Ca, normal force coefficient Cn, lift

FIGURE 11. Flowchart of the ASO based on NFFD modeling.

force coefficient Cl, drag force coefficient Cd, and the L/D.
In addition, Delta is introduced to evaluate the relative
changes between the base shape and the optimal shape, which
can be written as

Delta =
Optimization− Base

Base
× 100% (20)

where Delta is the relative change of the aerodynamic per-
formances, Optimization is the aerodynamic results of the
optimal shape, and Base is the aerodynamic performances of
the base shape.
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FIGURE 12. Convergent result of the maximum L/D versus step.

TABLE 8. Design variables X1 ∼ X6 and the maximum L/D during
optimization.

FIGURE 13. Comparison of the geometric model.

As observed in Table 9, all aerodynamic forces are reduced
by optimization, and the reduced range of the Cd is larger
than the Cl, meaning the L/D has been increased with the
Delta = 15.47%. To further observe the aerodynamic differ-
ences between the base and optimal shape, Fig. 16 shows a
comparison of the pressure contour on the windward side.

FIGURE 14. Comparison of the Y coordinate contour on the windward
side.

FIGURE 15. Comparison of the inner loading at a typical section.

TABLE 9. Comparison of aerodynamic performances.

FIGURE 16. Comparison of the pressure contour on the windward side.

By comparison, the windward pressure of the optimal shape
is generally smoother than that of the base shape. In detail,
the pressure on the posterior segment of the optimal shape is
larger than the base shape, and the pressure near the leading
edge is smaller.

VOLUME 7, 2019 148001



B. Zhang et al.: Efficient ASO of the Hypersonic Lifting Body Based on FFD Technique

FIGURE 17. Comparison of the pressure contour on a typical section.

A comparison of the pressure contour on a typical section
(x = 3.0 m) is provided in Fig. 17. It is apparent that the
pressure distribution on the leeward sides of the two shapes
are similar, but on the windward side, the shock waves are
obviously reduced from the base shape to the optimal shape,
resulting in a drag reduction. By comparison, the windward
pressure distribution of base shape is centralized on both
edges, but the optimal shape has a nearly uniform pressure
distribution.

To summarize, the optimal shape has a larger L/D than
the base shape with Delta = 15.47%, while satisfying the
inner loading constraint. All results illustrate that the pro-
posedmodel is both efficient and effective, providing a design
method that is helpful to ASO of the hypersonic lifting body.

VII. CONCLUSION
An effective method for applying FFD technique in ASO
of a hypersonic lifting body was presented in this paper.
The commonly used FFD techniques of BFFD, NFFD, and
the original FFD technique were analyzed, and NFFD-based
parametric modeling of the lifting body was carried out. The
NFFD technique not only allows for a wide design space, but
also introduces a weight factor ω to provide a more flexible
modeling of the windward side.

An efficient aerodynamic simulation method combining
Euler equations (non-viscous component) and skin friction
drag (viscous component based on the compressible tur-
bulence model) was developed, and its accuracy validated.
Within the specific design states, the errors of L/D were
within 4% between the efficient aerodynamic simulation
method and the RANS equations, but the time cost of the
efficient aerodynamic simulation method was less than 1%
of that for RANS equations. A kriging surrogate model com-
bined with infilling EI criterion was then applied to conduct
a surrogate-based optimization method.

Using six design variables, the maximum L/D of a base
lifting body was obtained by manipulating its shape using
the NFFD technique. With initial samples generated by the
LHD method, an optimal shape with (L/D)Optimal = 4.31
was achieved when the optimization converged. The optimal
shape had a larger L/D than base shape withDelta= 15.47%,
while satisfying the inner loading constraint.

The principal goal of this study was to provide an efficient
ASO of the hypersonic lifting body based on FFD Technique.
While the optimization procedures are successful, the NFFD

technique can enlarge the design space and obtain more
feasible solutions. In addition, the efficient aerodynamic
simulation method and surrogate-based optimization method
provide a more effective design solution. Subsequent work
will focus on developing a more advanced parametric model-
ing technique and investigating related research of simulation
and optimization methods for hypersonic vehicles.
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