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ABSTRACT Learning from class-imbalanced data is a challenging problem as standard classification
algorithms are designed to handle balanced class distributions. Scholars solve this problem by modifying
classifiers or and generating artificial data by oversampling. The former usually design corresponding
classifier to adapt them to the imbalanced data, while the latter exploits the sampling algorithm, which
are the data preprocessing steps independent of the classifier. In this paper, we propose a novel synergistic
oversampling algorithm to combine the oversampling and classification into one without training the
classifier repeatedly, which can generate new pertinent samples according to the classification performance
of the classifier without repeat training or deep understanding of the classifier, so the generated samples can
guarantee the performance improvement of the classifier. Moreover, The proposed framework enclosures
the oversampling method without traditional parameters in oversampling methods. Experimental results on
several real-life imbalanced datasets demonstrate the effectiveness and efficiency of the proposed algorithm
in binary classification problems.

INDEX TERMS Imbalanced classification, oversampling algorithm, variational auto-encoder, synergistic
architecture, expected classifier.

I. INTRODUCTION
Imbalanced data refers to data set that exhibits an imbalanced
class distributions, which have appeared in many fields, such
as the medical diagnosis [1], [2], facial age estimation [3] and
credit card fraud detection [4], image processing [32], [36],
anomaly detection [33], where some data that occur with a
low frequency but require more attention. Classification is
one of the most common tasks of machine learning, and the
standard learning algorithms have created much knowledge
and discovery in many fields. However, when it comes to
imbalanced data, the standard learning algorithms can easily
ignore the class with fewer samples, because the standard
learning algorithms assume balanced class distributions or
equal misclassification costs [5]. The imbalanced classifica-
tion has drawn much attention because the realistic data is
more possible to be imbalanced due to the nature of data or
the unequal misclassification costs [34], [35].
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Imbalanced data usually present with sample rarity [6].
On the one hand, the absolute rarity, when there are few
minority samples in the dataset, leads to the inadequate
information of the minority class [7]. On the other hand,
the relative rarity, when the size of theminority data is enough
for training but relatively smaller than that of the majority
data, increases classifier bias towards the majority class [8].
Inevitably, in the imbalanced classification, the noise will
have a great impact on the standard learning algorithms
[9], [9]. Furthermore, boundary sample overlapping [10] and
data fragmentation [11] alsomake the classifier more difficult
to represent the distributive characteristics of the data.

Solutions of the imbalanced classification consist of two
aspects: the data level and the algorithm level. The algorithm
level solutions try to design suitable learning algorithms in
the imbalanced problems, which needs a deep understand-
ing of the data and the classifier. The data-level methods
balance data distribution, including oversampling, undersam-
pling [12], and hybrid sampling, etc. Since the data-level
methods exist as the data preprocessing, it has a wider range
of applications. Moreover, oversampling focus more on the
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minority by generating artificial data without losing precious
information and has more stable performance, thus, it is
favored in the imbalanced classification.

A. SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUES
SMOTE (synthetic minority over-sampling technique) [13]
generates new samples by random interpolation between the
minority samples and its neighbors. However, SMOTE may
add some noise into the dataset, the Borderline-SMOTE [14]
selects borderline minority data to be sampled. To avoid noise
generated in the oversampling process, the CB-SMOTE [15]
uses the local distribution of the boundary data to remove the
noise points appearing in boundary and determine the over-
sampling rate for each sample. These algorithms can partly
solve absolute rarity, but don’t work in the data complexity.

B. DISTRIBUTION-BASED OVERSAMPLING ALGORITHM
Chen et al. [16] proposed a distribution-based oversampling
algorithm to model the probability distribution function of
minority data, and then use the model for oversampling.
There are similar works such as Gauss distribution [16]–[18]
and Weibull distribution [19]. However, they always assume
a prior distribution, and they are limited. To avoid the
limitations of the prior distribution, scholars use Varia-
tional auto-encoder [20], [21] and generative adversarial net-
work [22] to generate new samples. As a result, the original
minority subset is largely expanded. However, the indepen-
dent oversampling architecture cannot guarantee to get the
best recognition rate of the minority samples.

C. THE CLASSIFIER CHARACTERISTIC BASED SAMPLING
Zhang et al. [23] proposed an improved SMOTE in the
Hilbert space rather than the Euclidean space when using
SVM as the classifier. Zhang et al. [24] proposed CGMOS to
guarantee the performance improvement of the oversampling
algorithm when using the Bayesian classification. These
algorithms need deep understanding for the classifier, and
cannot generate exact samples to improve the classification
performance.

D. THE CLASSIFICATION RESULT BASED SAMPLING
The above algorithms separate the oversampling process
from the classification process, as they generate new samples
at first, and use the expanded dataset to train the final clas-
sifier. However, the synergistic framework leads to a defect
that the generated data does not guarantee the performance
improvement of the classifier. For this purpose, there are also
some genetic oversampling algorithms using classification
performance as fitness. In GASMOTE [25], The genetic
algorithm is used to optimize the oversampling rate of each
minority sample. The new sample set is used to train the clas-
sifier, and the test Gmean of the original dataset is designed
as the fitness; The MAHAKIL [26] algorithm simulates the
reproductive process in the genetics to generate samples
around the boundary rather than the whole original dataset;
Guo et al. [27] proposed a hybrid sampling method based on

the co-evolutionary algorithm. The classification result based
sampling usually have good classification results, but it takes
an expensive computational complexity, as it needs to train
new classifier repeatedly with different training sets.

In this paper, we propose a novel framework that com-
bines the oversampling with the classification process beyond
the limitation of domain-knowledge, and it consists of three
parts, the generation network, the present classifier, and
the expected classifier. The Variational Auto-Encoder (VAE)
model [28] is used as the generation network. To measure
the quality of generated samples accurately, we creatively
propose the expected classifier network, a temporal classifier
updated with the generated samples upon the present clas-
sifier. To generate exact new samples, the proposed frame-
work simultaneously trains the oversampling model and the
classifier model, and both models interact with each other
according to the loss function. We theoretically proved the
rationality of the proposed framework, and the good perfor-
mances in experimental results illustrate the superiority of the
algorithm. The contributions of this work are as follows:
• The proposed framework combines the sampling pro-
cess and the classifying process into one, and it mea-
sures the generated samples by the performance of the
expected classifier to produce targeted samples.

• In the proposed framework, the generation network can
interact with the classification network to guarantee the
improvement of the classification performance.

• The proposed framework enclosures the oversampling
method without traditional parameters, but automati-
cally adjust the generation network according to the per-
formance changes of the classifier, so it is more robust
than traditional oversampling algorithms.

The rest of this work is organized as follows. Section II
reviews the related work. Section III presents proof of the
expected classifier and the proposed framework.We show the
experimental results in Section IV and Section V concludes
the paper as well as the future work.

II. RELATED WORK
In this section, some preliminaries about the variational
auto-encoder based oversampling (VAEOS) and Logistic
Regression (LR) classifier are offered in the proposed frame-
work.

A. OVERSAMPLING ALGORITHM BASED ON
VARIATIONAL AUTO-ENCODER
The oversampling network uses the variational auto-encoder
(VAE) as the model of the probability density function of the
minority samples in the dataset. The network architecture is
as Fig.1, and the loss function is defined as follows.

Lg =
1
2
‖X − f (z)‖22 (1)

KL =
1
2

(
1+ log

(
σ 2
)
− µ2

− σ 2
)

(2)

loss = Lg + λKL (3)
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FIGURE 1. VAEOS network architecture.

FIGURE 2. Structure diagram of logistic regression.

B. LOGISTIC REGRESSION
The Logistic Regression (LR) is used as the classifier network
as shown in Fig.2. Let w be the weight, x be the current input,
y be the real class label corresponding to x, the output and
loss functions are (4) and (5), respectively, and the activation
function of the neural network is shown as (6).

ŷ = sigmoid
(
wT x + b

)
(4)

loss = −(y log ŷ+ (1− y) log(1− ŷ)) (5)

sigmoid(x) = s(x) =
1(

e−x + 1
) (6)

III. VCOS ALGORITHM
A. ARCHITECTURE OF VCOS METHOD
The architecture of VCOS method is shown in Fig.3, it con-
sists of four networks: the oversampling network encoder (E)
and decoder (D), the classifier (C) and the expected classifier
(EC). In this framework, the oversampling network regards
the CVAE [30] (E and D) as the probability density function
model of the data set. The quality of newly generated samples
is measured by the performance of an expected classifier
(EC), which is calculated on newly generated samples by
random gradient descent based on the classifier trained by the
original data. The classifier C collects advanced changes of
new samples on EC and is the final classifier. In the following
parts, we will give the concept and definition of the expected
classifier EC, the gradient of EC loss on the oversampling
network parameter E and G, and the overall framework in
more detail, respectively.

FIGURE 3. Architecture of VCOS.

B. THE EXPECTED CLASSIFIER EC
The impact of newly generated samples on classifier per-
formance is achieved by updating the network parameters
(w, b), if w and b calculated by newly generated samples
have the same gradient direction as that of based on the
original samples, they will reduce the loss value of the new
network parameters with the input of original samples. The
corresponding updated parameters with the input of newly
generated samples are shown in formula (7), (8):

w = w− η
∂ loss
∂w

(x = xnew) (7)

b = b− η
∂ loss
∂b

(x = xnew) (8)

Cross-entropy is used as the classification cost function,
which is defined as:

dŷ = −
y
ŷ
+

1− y
1− ŷ

(9)

z = wT x + b (10)

ŷ = s(z) (11)

dz = ŷ(1− ŷ)× dŷ = ŷ− y (12)

db = dz = ŷ− y (13)

dw = xdz = (ŷ− y)x (14)

Assuming that xo is the original data for training and the
newly generated data is xn. The parameters of the expected
classifier before updating are (wo, bo), and zo is the out-
put of the activation function with respect to the input xo.
After updating with Stochastic Gradient Descent (SGD),
the parameters of the classifier are (wn, bn), and then the
output of the activation function with the input xo turn into
zn. Note that generated examples xn are only used to update
parameters, the final results are calculated by the original
samples xo. That is, the performance of the expected classifier
with respect to xo is used to measure the quality of generated
samples xn. According to the definition of SGD:

wn = w− ηdw (x = xn) (15)

bn = b− ηdb (x = xn) (16)

where η indicates learning rate, and we get:

dw = (s (woxn + bo)− yo) xo (17)

db = s (woxn + bo)− yo (18)
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C. LOSS OF EXPECTED CLASSIFIER EC
Suppose the distribution of the new samples is consistent with
the original one, and the class label is also the current hypo-
thetical class label, positive. Then there comes the essential
assumption of the proposed algorithm that the performance of
the expected classifier would be improved if above suppose
is given. From a qualitative point of view, this hypothesis
is reasonable, as the power of the classifier will be stronger
after adding reasonable new information. Based on formulas
(17) and (18), in order to evaluate the quality of the generated
samples, the classifier network parameters need to be updated
with generated samples xn in time, hence LR is used. To mea-
sure the quality of the generated data, the original data cannot
be mixed with the new data.

wn = w− ηx0 [s (w0xn + b0)− y0] (19)

bn = b− η [s (woxn + bo)− yo] (20)

According to formula (19) and (20), the parameters of the
expected classifier are (wn, bn) after the SGD based on the
new samples. The loss of expected classifier of the known
data xo is shown in formula (23):

zn = wnxo + bn (21)

ŷn = s (zn) (22)

lossexp = loss
(
y0, ŷn

)
(23)

With the chain rule, the gradient of generator parameters
by the expected classifier is shown in equation (24).

∂ lossexp
∂θg

=
∂ lossexp
∂xn

∂xn
∂θg

=
∂ lossexp
∂zn

∂zn
∂xn

∂xn
∂θg

=
∂ lossexp
∂ ŷn

∂ ŷn
∂zn

∂zn
∂xn

∂xn
∂θg

(24)

where ∂ lossexp
∂ ŷn

∂ ŷn
∂zn
= dzn = ŷn−y0, and

∂xn
∂θg

are the backprop-
agation derivation of generator network G.

∂zn
∂xn
=
∂ (wnxo + bn)

∂xn

= xo
∂wn
∂xn
+
∂bn
∂xn

(25)

∂wn
∂xn
=
∂ (w− ηxo [s (woxn + bo)− yo])

∂xn
= −ηxowos (woxn + bo) (1− s (woxn + bo)) (26)

∂bn
∂xn
=
∂ (w− η [s (woxn + bo)− yo])

∂xn
= −ηwos (woxn + bo) (1− s (woxn + bo)) (27)

Formula (25) to (27) is substituted into formula (24) to
obtain the gradient of the final expected classifier error to the
new samples xn.

D. DETAILS OF TRAINING VCOS
Corresponding to the above theoretical analysis, we proposed
a novel synergistic over-sampling algorithm based on con-
ditional variational auto-encoder (CVAE) and classifier per-
formance, which is name Variational auto-encoder Classifier
Oversampling VCOS. Thanks to this architecture, the perfor-
mance of the classifier can directly feedback to the generator,
to generate new samples with pertinence and improve the
F1 score of minority data. In order to improve the classifica-
tion performance focusing on the minority data, the feedback
of LR classifier is used to guide the fine-tuning process of
the oversampling model to obtain more pertinent generated
samples in this architecture. The effect of the generated sam-
ples on the classifier is a continuous process, and the classifier
accepts the fine-tuning from the generated samples during the
process with a certain probability.

The LR classifier and generator are used in the framework
to evaluate the performance of the over-sampling algorithm
and adjust the model parameters of the generator in time to
generate better samples. Firstly, a classifier and a generator
with relatively acceptable ability are trained to generated
samples. The performance of the classifier in the next iter-
ation is determined by the updating direction of the expected
classifier on the new examples, which in turn measures the
quality of the newly generated samples. It means that good
generated data should improve the classification performance
of classifiers on minority data.

In order to guarantee the fundamental performance of
the generator and the classifier, pre-trained operations are
needed. Step1: The basic VAEmodel and LR classifier should
be trained. VAE model references VAEOS. Step2: A batch
of generated samples xn are sampled from the generator, and
then the classifier is updated with the generated samples with
data label as the condition c in the generation process. The
temporarily updated parameters are regarded as the expected
classifier under the generated samples xn. Step3: Calculate
the loss function of the expected classifier based on the
original training data set xo, updating the parameters of the
generator to minimize the expected classifier loss function.
Step4: The classifier parameters are replaced by the expected
classifier parameters with certain probability if the generated
samples xn can reduce the loss of classifier.
In order to generate pertinent samples, in addition to the

Kullback-Leibler divergence and the reconstruction loss of
examples, the objective function of the generator in VCOS
also includes the expected classifier loss lossexp.

lossc = KL +
∥∥x − x ′∥∥2 + lossexp (28)

During which, the calculation of KL and square error are
the same as that of VAEOS. The effect of xn on the expected
classifier is calculated by the formula (24).

In the proposed method, we use the idea of the adversarial
network, the parameters of the classifier are modified when
the classification performance of the original minority data
can be improved with the expected classifier. Otherwise,
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Algorithm 1 VCOS Algorithm
Require:

Training set X = {xi, yi} , i = 1, 2 · · ·m, yi ∈ {0, 1},
batch size m, initializes parameters of network θe, θg, θc,
learning rate η, testing datasetXtest , training epoch epoch.

Ensure:
The predicted output of the testing dataset Ypred

Pre-train
1: the conditional Variational auto encoder θe, θg

Pre-train
2: the classifier θc
3: for i = 0, i < epoch, i++ do
4: Sample m samples from the real dataset {Xr , c} ∼ Pr
5: Lc←− log (P (c|Xr ))
6: z ∼ E (Xr , c)
7: Sample according to the standard normal distribution

zp ∼ Pε
8: Lkl ← KL (Q (z|xr , c) ‖Pz)
9: Xf ← G(z, c)
10: Xp← G

(
zp, c

)
11: Lg = 1

2

∥∥Xr − Xf ∥∥22
12: Calculate θcexp according to formula (7) and (8)
13: Lexp← lossexp

(
c, θcexp

)
14: θc← θc − η

∂Lc
∂θc

15: θg← θg − η
∂(Lg+Lexp)

∂θg

16: θe← θe − η
∂(Lkl+Lg)

∂θe
17: end for
18: Ypred = C (Xtest)

the parameters of the generator are modified. Under such a
greedy strategy mentioned above, LR classifier is prone to
fall into local minimum points, so Simulate Anneal strategy
is used in this paper to accept some local minimum solutions
with a certain probability.

Detailed algorithm pseudocode is shown in algorithm 1,
VCOS uses VAE as the model in oversampling. In the phase
of training classifier, the LR classifier, in the form of a
single-layer neural network, is used to estimate the modifi-
cation direction of the classifier on new samples. When the
classification performance of the expected classifier is poor,
the modification direction of new samples to the classifier is
likely to be wrong, so the parameters of the generator are to be
modified. When generating new samples, the application of
CVAEmakes it unnecessary to consider the reasonableness of
the label in the phase of training in that the current samples are
generated according to the condition label, and there must be
some internal correlations. In the step of updating generator
parameters, z and c in the VAE still remain unchanged, only
the generator model is adjusted. Meanwhile, z is sampled
from a uniform Gaussian distribution in Cumulative Dis-
tribution Function (CDF) to avoid the deviation of model
adjustment based random sampling.

TABLE 1. Description of datasets.

TABLE 2. Confusion matrix.

IV. EXPERIMENTAL RESULTS
A. DATASETS
In order to prove the effectiveness of the proposed algorithm,
16 benchmark data sets in UCI and KEEL are used in this
paper. The details are shown in Table 1, where the imbalanced
rate is the sample size ratio. For the sake of ensuring the
fairness of the experimental results, each data set was prepro-
cessed uniformly in advance. What’s more, the average value
of 10-fold cross-validation is compared.

In this paper, we focus on the binary classification on
imbalanced datasets. Choosing one class of the multi-class
dataset as the minority class and combines other data into the
majority class to obtain the highly imbalanced dataset.

B. PERFORMANCE EVALUATION
In the imbalanced binary classification, the confusion matrix,
as shown in Table 2, is used to calculate the classification
status of each class of samples. The following three metrics
are used for analyzing the performances of the proposed
algorithm: F1 score [31] of the minority samples, F1 score
of majority samples, and Gmean. Formula (29) to Formula
(32) are some commonly used evaluation criteria.

recall =
TP

TP+ FN
(29)

precision =
TP

TP+ TP
(30)

F1 =
2× Recall× Precision
Recall+ Precision

(31)

Gmean =

√
TP

TP+ FN
×

TN
TN+ FP

(32)
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TABLE 3. F1 scores of the minority from LR classifier.

TABLE 4. F1 scores of the majority from LR classifier.

C. EXPERIMENTAL RESULTS
LR is used as a classifier to verify the rationality of VCOS.
As an aside, the hyperparameters settings such as learning
rate are also consistent with the VCOS. To compare the per-
formance with different classifiers, SVM and random forest
is also used and the hyperparameters are set as follows.

SVM: the data are normalized to [-1,1], radial basis func-
tion (rbf) kernel is used and gamma is set as 1/nfeatures. LR:
the learning rate is 0.001. Random forest 1: the number of
trees is 100, and the criterion is Gini. Random forest 2: the
number of trees is 250, and the criterion is Gini. All these
classifiers are implemented with sklearn [37].

As we can see from Table 3, 4, 5, the borderline-SMOTE
performs better in these compared oversampling except the
proposed one, because the LR classifier is affected by the
distribution of the borderline samples.

The results in Table 6, 7, 8 show that SVM needs more
complex generated minority samples compared with LR,
because the SVM divides the samples into different classes in
Hilbert space while theses oversampling methods determine
the nearest neighbors of samples in Euclidean space.

In table 9, 10, 11, the random forest 1 shows its power in
classification and the proposed only gets 9 highest Gmean as

TABLE 5. Gmean of LR classifier.

TABLE 6. F1 of the minority from SVM classifier.

TABLE 7. F1 of the majority from SVM classifier.

an ensemble classifier. The random forest is more balanced
in the F1 scores of the two classes so that it gets highest
Gmean in some datasets. CGMOS performs best in the rest
of oversampling methods, as it is designed in Bayes network
classifier, which is more suitable for the random forest.

Results of Table 12, 13, 14 also show the superiority of the
proposed method, and the CGMOS gains 3 highest F1 scores.
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TABLE 8. Gmean of SVM classifier.

TABLE 9. F1 score of the minority from random forest 1 classifier.

TABLE 10. F1 score of the majority from random forest 1 classifier.

Considering that the Gini of each leaf node is calculated when
the random forest splits the leaf nodes, which is related to the
Bayesian probability of the data distribution.

D. HYPOTHESIS TESTING
For a clearer analysis of the experimental comparison results,
we use the Wilcoxon signed-rank test. The null hypothesis is

TABLE 11. Gmean of random forest 1 classifier.

TABLE 12. F1 score of the minority from random forest 1 classifier.

TABLE 13. F1 score of the majority from random forest 2 classifier.

that the overall performance of the two methods on different
data sets is the same. Alternative hypothesis is that the overall
performance of the two methods on different data sets is
different. Here the significance level α is taken as 0.05.

As we can see from Table 15, the p-value in the table is
much smaller than α, we can conclude the VCOS is definitely
better than the CGMOS. What’s more, the classifier does
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TABLE 14. Gmean of random forest 2 classifier.

TABLE 15. Result of hypothesis testing in F1 scores for minority samples.

TABLE 16. Result of hypothesis testing in Gmean.

FIGURE 4. Comparison of oversampling frameworks based on different
classifiers.

have an influence on the classification result with a same
oversampling method, and a stronger classifier can reduce
this impact such as the ensemble classifier random forest,
and different oversampling may change the classification
performance. Results in Table 16 show that the proposed
method has superiority in comparison of Gmean.

E. COMPARISON OF CLASSIFIERS
Fig. 4 shows the classification performance comparison of
CGMOS algorithm in the case of Naive Bayesian Model
and Logical regression model. From the experimental results,

FIGURE 5. Effects of different prob on classification performance.

we can find that the results of our algorithm are better than
other frameworks. The combination of oversampling and its
suitable classifier proves the effectiveness of VCOS and the
synergistic oversampling algorithm.

F. PARAMETER ANALYSIS
As we can see from Fig. 5, prob is the probability of updating
the parameters of C with those of EC, which is constantly
updated by new samples. There is a huge difference between
the F1 scores of the minority and majority samples, and
this is the specific form of imbalanced problems. Different
probabilities in updating C result in classifiers with different
performance, and a best prob is set as 0.5.

V. CONCLUSION
In this paper, a synergistic training framework for genera-
tion and classification is proposed creatively to adjust the
parameters of the generator pertinently according to the clas-
sification performance of the expected classifier, to ensure
the promotion of the generated samples to the classifier.
The framework integrates the step of oversampling into the
process of classifier training. Note that it does not need to set
the oversampling rate, to avoid the negative impact caused by
the improper oversampling rate. The final experimental result
shows that the proposed network can effectively improve
the F1 score of the minority samples, the hypothesis test-
ing proves the correctness of the conclusion. The proposed
method is designed on the binary imbalanced classification,
we are going to improve it in multi-class classification with
less limitation of the classifier.
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