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ABSTRACT Learning from class-imbalanced data is a challenging problem as standard classification
algorithms are designed to handle balanced class distributions. Scholars solve this problem by modifying
classifiers or and generating artificial data by oversampling. The former usually design corresponding
classifier to adapt them to the imbalanced data, while the latter exploits the sampling algorithm, which
are the data preprocessing steps independent of the classifier. In this paper, we propose a novel synergistic
oversampling algorithm to combine the oversampling and classification into one without training the
classifier repeatedly, which can generate new pertinent samples according to the classification performance
of the classifier without repeat training or deep understanding of the classifier, so the generated samples can
guarantee the performance improvement of the classifier. Moreover, The proposed framework enclosures
the oversampling method without traditional parameters in oversampling methods. Experimental results on
several real-life imbalanced datasets demonstrate the effectiveness and efficiency of the proposed algorithm
in binary classification problems.

INDEX TERMS Imbalanced classification, oversampling algorithm, variational auto-encoder, synergistic

architecture, expected classifier.

I. INTRODUCTION

Imbalanced data refers to data set that exhibits an imbalanced
class distributions, which have appeared in many fields, such
as the medical diagnosis [1], [2], facial age estimation [3] and
credit card fraud detection [4], image processing [32], [36],
anomaly detection [33], where some data that occur with a
low frequency but require more attention. Classification is
one of the most common tasks of machine learning, and the
standard learning algorithms have created much knowledge
and discovery in many fields. However, when it comes to
imbalanced data, the standard learning algorithms can easily
ignore the class with fewer samples, because the standard
learning algorithms assume balanced class distributions or
equal misclassification costs [5]. The imbalanced classifica-
tion has drawn much attention because the realistic data is
more possible to be imbalanced due to the nature of data or
the unequal misclassification costs [34], [35].
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Imbalanced data usually present with sample rarity [6].
On the one hand, the absolute rarity, when there are few
minority samples in the dataset, leads to the inadequate
information of the minority class [7]. On the other hand,
the relative rarity, when the size of the minority data is enough
for training but relatively smaller than that of the majority
data, increases classifier bias towards the majority class [8].
Inevitably, in the imbalanced classification, the noise will
have a great impact on the standard learning algorithms
[9], [9]. Furthermore, boundary sample overlapping [10] and
data fragmentation [11] also make the classifier more difficult
to represent the distributive characteristics of the data.

Solutions of the imbalanced classification consist of two
aspects: the data level and the algorithm level. The algorithm
level solutions try to design suitable learning algorithms in
the imbalanced problems, which needs a deep understand-
ing of the data and the classifier. The data-level methods
balance data distribution, including oversampling, undersam-
pling [12], and hybrid sampling, etc. Since the data-level
methods exist as the data preprocessing, it has a wider range
of applications. Moreover, oversampling focus more on the
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minority by generating artificial data without losing precious
information and has more stable performance, thus, it is
favored in the imbalanced classification.

A. SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUES
SMOTE (synthetic minority over-sampling technique) [13]
generates new samples by random interpolation between the
minority samples and its neighbors. However, SMOTE may
add some noise into the dataset, the Borderline-SMOTE [14]
selects borderline minority data to be sampled. To avoid noise
generated in the oversampling process, the CB-SMOTE [15]
uses the local distribution of the boundary data to remove the
noise points appearing in boundary and determine the over-
sampling rate for each sample. These algorithms can partly
solve absolute rarity, but don’t work in the data complexity.

B. DISTRIBUTION-BASED OVERSAMPLING ALGORITHM
Chen et al. [16] proposed a distribution-based oversampling
algorithm to model the probability distribution function of
minority data, and then use the model for oversampling.
There are similar works such as Gauss distribution [16]—[18]
and Weibull distribution [19]. However, they always assume
a prior distribution, and they are limited. To avoid the
limitations of the prior distribution, scholars use Varia-
tional auto-encoder [20], [21] and generative adversarial net-
work [22] to generate new samples. As a result, the original
minority subset is largely expanded. However, the indepen-
dent oversampling architecture cannot guarantee to get the
best recognition rate of the minority samples.

C. THE CLASSIFIER CHARACTERISTIC BASED SAMPLING
Zhang et al. [23] proposed an improved SMOTE in the
Hilbert space rather than the Euclidean space when using
SVM as the classifier. Zhang et al. [24] proposed CGMOS to
guarantee the performance improvement of the oversampling
algorithm when using the Bayesian classification. These
algorithms need deep understanding for the classifier, and
cannot generate exact samples to improve the classification
performance.

D. THE CLASSIFICATION RESULT BASED SAMPLING

The above algorithms separate the oversampling process
from the classification process, as they generate new samples
at first, and use the expanded dataset to train the final clas-
sifier. However, the synergistic framework leads to a defect
that the generated data does not guarantee the performance
improvement of the classifier. For this purpose, there are also
some genetic oversampling algorithms using classification
performance as fitness. In GASMOTE [25], The genetic
algorithm is used to optimize the oversampling rate of each
minority sample. The new sample set is used to train the clas-
sifier, and the test Gmean of the original dataset is designed
as the fitness; The MAHAKIL [26] algorithm simulates the
reproductive process in the genetics to generate samples
around the boundary rather than the whole original dataset;
Guo et al. [27] proposed a hybrid sampling method based on
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the co-evolutionary algorithm. The classification result based
sampling usually have good classification results, but it takes
an expensive computational complexity, as it needs to train
new classifier repeatedly with different training sets.

In this paper, we propose a novel framework that com-
bines the oversampling with the classification process beyond
the limitation of domain-knowledge, and it consists of three
parts, the generation network, the present classifier, and
the expected classifier. The Variational Auto-Encoder (VAE)
model [28] is used as the generation network. To measure
the quality of generated samples accurately, we creatively
propose the expected classifier network, a temporal classifier
updated with the generated samples upon the present clas-
sifier. To generate exact new samples, the proposed frame-
work simultaneously trains the oversampling model and the
classifier model, and both models interact with each other
according to the loss function. We theoretically proved the
rationality of the proposed framework, and the good perfor-
mances in experimental results illustrate the superiority of the
algorithm. The contributions of this work are as follows:

o The proposed framework combines the sampling pro-
cess and the classifying process into one, and it mea-
sures the generated samples by the performance of the
expected classifier to produce targeted samples.

« In the proposed framework, the generation network can
interact with the classification network to guarantee the
improvement of the classification performance.

o The proposed framework enclosures the oversampling
method without traditional parameters, but automati-
cally adjust the generation network according to the per-
formance changes of the classifier, so it is more robust
than traditional oversampling algorithms.

The rest of this work is organized as follows. Section II
reviews the related work. Section III presents proof of the
expected classifier and the proposed framework. We show the
experimental results in Section IV and Section V concludes
the paper as well as the future work.

Il. RELATED WORK

In this section, some preliminaries about the variational
auto-encoder based oversampling (VAEOS) and Logistic
Regression (LR) classifier are offered in the proposed frame-
work.

A. OVERSAMPLING ALGORITHM BASED ON

VARIATIONAL AUTO-ENCODER

The oversampling network uses the variational auto-encoder
(VAE) as the model of the probability density function of the
minority samples in the dataset. The network architecture is
as Fig.1, and the loss function is defined as follows.

1 2
Ly, = EIIX @l e
_ 1 2 2 2
KL_§(1+log(a)—M —o) )
loss = L, + AKL 3)
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FIGURE 1. VAEOS network architecture.

FIGURE 2. Structure diagram of logistic regression.

B. LOGISTIC REGRESSION

The Logistic Regression (LR) is used as the classifier network
as shown in Fig.2. Let w be the weight, x be the current input,
y be the real class label corresponding to x, the output and
loss functions are (4) and (5), respectively, and the activation
function of the neural network is shown as (6).

y = sigmoid (wa + b) )
loss = —(ylogy + (1 —y)log(1 =)  (5)
1

(6)

sigmoid(x) = s(x) = m

Ill. VCOS ALGORITHM

A. ARCHITECTURE OF VCOS METHOD

The architecture of VCOS method is shown in Fig.3, it con-
sists of four networks: the oversampling network encoder (E)
and decoder (D), the classifier (C) and the expected classifier
(EC). In this framework, the oversampling network regards
the CVAE [30] (E and D) as the probability density function
model of the data set. The quality of newly generated samples
is measured by the performance of an expected classifier
(EC), which is calculated on newly generated samples by
random gradient descent based on the classifier trained by the
original data. The classifier C collects advanced changes of
new samples on EC and is the final classifier. In the following
parts, we will give the concept and definition of the expected
classifier EC, the gradient of EC loss on the oversampling
network parameter E and G, and the overall framework in
more detail, respectively.
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FIGURE 3. Architecture of VCOS.

B. THE EXPECTED CLASSIFIER EC

The impact of newly generated samples on classifier per-
formance is achieved by updating the network parameters
(w, b), if w and b calculated by newly generated samples
have the same gradient direction as that of based on the
original samples, they will reduce the loss value of the new
network parameters with the input of original samples. The
corresponding updated parameters with the input of newly
generated samples are shown in formula (7), (8):

0 loss
w=w-—rn (X = Xpew) @)
ow
0 loss
b=b—n ab (X = Xpew) (8)

Cross-entropy is used as the classification cost function,
which is defined as:

dy=-24 172 ©
y lI-=y

c=wlx+b (10)

3 =s(2) (11)

dz=31-y xdy=y—y (12)

db=dz=y—y (13)

dw =xdz = — y)x (14)

Assuming that x, is the original data for training and the
newly generated data is x,. The parameters of the expected
classifier before updating are (w,, b,), and z, is the out-
put of the activation function with respect to the input x,.
After updating with Stochastic Gradient Descent (SGD),
the parameters of the classifier are (w,, b,), and then the
output of the activation function with the input x, turn into
z,. Note that generated examples x,, are only used to update
parameters, the final results are calculated by the original
samples x,,. That is, the performance of the expected classifier
with respect to x, is used to measure the quality of generated
samples x;,,. According to the definition of SGD:

wp = w—ndw (x = xy) (15)
b, = b—ndb(x = x;,) (16)
where 7 indicates learning rate, and we get:
dw = (s WoXn + bo) — yo) Xo (17
db = s (Woxn + by) — yo (18)
145437
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C. LOSS OF EXPECTED CLASSIFIER EC

Suppose the distribution of the new samples is consistent with
the original one, and the class label is also the current hypo-
thetical class label, positive. Then there comes the essential
assumption of the proposed algorithm that the performance of
the expected classifier would be improved if above suppose
is given. From a qualitative point of view, this hypothesis
is reasonable, as the power of the classifier will be stronger
after adding reasonable new information. Based on formulas
(17) and (18), in order to evaluate the quality of the generated
samples, the classifier network parameters need to be updated
with generated samples x;, in time, hence LR is used. To mea-
sure the quality of the generated data, the original data cannot
be mixed with the new data.

wp = w — nxg [s (Woxn + bo) — yol (19)
by, =b—n[sWex, + by) — Yol (20)

According to formula (19) and (20), the parameters of the
expected classifier are (w,, b,) after the SGD based on the
new samples. The loss of expected classifier of the known
data x, is shown in formula (23):

Zn = WnXo + by (21)
Vn = 5(20) (22)
lossexp = loss (vo, 9) (23)

With the chain rule, the gradient of generator parameters
by the expected classifier is shown in equation (24).

0 lossexp 0 lossexp 0xy,
30,  Ox, 96,
. 0 lossexp 07, 0xy
T 9z 0, 96,

0 10SSexp 3V 0z Oxp

= (24)
0y, 0z, 0x, 00,

9 10SSexp 99, ~
where 225 Bn — g7 — 5, — o, and 22 are the backprop-
8yn 0z a6,

agation derivation of generator network G.

0zn 0 (WnXo + by)
Xy, dxy,
awy, dby,
Xo
0xy, 0x,
owp 0 (W — nxo [s Woxn + b)) — yol)
0x, 0xy,,
= —NXoWoS (WoXn + bo) (1 — s Woxp + by)) (26)
0by 0w —n[sWoxu + bo) — Yol)
Xy Xy,
= —nWoS WoXn + bo) (1 — s (Woxy + b)) (27)

(25)

Formula (25) to (27) is substituted into formula (24) to
obtain the gradient of the final expected classifier error to the
new samples x;,.

145438

D. DETAILS OF TRAINING VCOS

Corresponding to the above theoretical analysis, we proposed
a novel synergistic over-sampling algorithm based on con-
ditional variational auto-encoder (CVAE) and classifier per-
formance, which is name Variational auto-encoder Classifier
Oversampling VCOS. Thanks to this architecture, the perfor-
mance of the classifier can directly feedback to the generator,
to generate new samples with pertinence and improve the
F1 score of minority data. In order to improve the classifica-
tion performance focusing on the minority data, the feedback
of LR classifier is used to guide the fine-tuning process of
the oversampling model to obtain more pertinent generated
samples in this architecture. The effect of the generated sam-
ples on the classifier is a continuous process, and the classifier
accepts the fine-tuning from the generated samples during the
process with a certain probability.

The LR classifier and generator are used in the framework
to evaluate the performance of the over-sampling algorithm
and adjust the model parameters of the generator in time to
generate better samples. Firstly, a classifier and a generator
with relatively acceptable ability are trained to generated
samples. The performance of the classifier in the next iter-
ation is determined by the updating direction of the expected
classifier on the new examples, which in turn measures the
quality of the newly generated samples. It means that good
generated data should improve the classification performance
of classifiers on minority data.

In order to guarantee the fundamental performance of
the generator and the classifier, pre-trained operations are
needed. Step1: The basic VAE model and LR classifier should
be trained. VAE model references VAEOS. Step2: A batch
of generated samples x,, are sampled from the generator, and
then the classifier is updated with the generated samples with
data label as the condition ¢ in the generation process. The
temporarily updated parameters are regarded as the expected
classifier under the generated samples x,. Step3: Calculate
the loss function of the expected classifier based on the
original training data set x,, updating the parameters of the
generator to minimize the expected classifier loss function.
Step4: The classifier parameters are replaced by the expected
classifier parameters with certain probability if the generated
samples x,, can reduce the loss of classifier.

In order to generate pertinent samples, in addition to the
Kullback-Leibler divergence and the reconstruction loss of
examples, the objective function of the generator in VCOS
also includes the expected classifier loss l0sseyy.

losse = KL + |x — x’ ||2 + l0$Sexp (28)

During which, the calculation of KL and square error are
the same as that of VAEOS. The effect of x,, on the expected
classifier is calculated by the formula (24).

In the proposed method, we use the idea of the adversarial
network, the parameters of the classifier are modified when
the classification performance of the original minority data
can be improved with the expected classifier. Otherwise,

VOLUME 7, 2019



C. Zhang et al.: VCOS: Novel Synergistic Oversampling Algorithm in Binary Imbalance Classification

IEEE Access

Algorithm 1 VCOS Algorithm
Require:
Training set X = {x;,y;},i = 1,2---m, y; € {0, 1},
batch size m, initializes parameters of network 6, 0, 0.,
learning rate ), testing dataset X, training epoch epoch.
Ensure:
The predicted output of the testing dataset Yyeq
Pre-train
1: the conditional Variational auto encoder 6., 0,
Pre-train
2: the classifier 6,
3: fori=0,i < epoch, i+ + do
4:  Sample m samples from the real dataset {X,, c} ~ P,
L. < —log (P (c|Xy))
z~E X, 0
Sample according to the standard normal distribution
Zp ~ Pe
8 Ly < KL(Q(zlxr, ¢) |P)
9: Xy < G(z,0)
100 X, < G(zp.0)
Lo =3 X = X3
12:  Calculate 8.y, according to formula (7) and (8)
13: Leyp < 108Sey, (c, Gcexp)
14: 6, <6, — N 36:
(LitLow)
T/ —

~N O W

15: 9g < 9g —

d(Liy+L
16: Oy < 0, — n—( 'g; )
17: end for

18: Ypred = C (Xrest)

the parameters of the generator are modified. Under such a
greedy strategy mentioned above, LR classifier is prone to
fall into local minimum points, so Simulate Anneal strategy
is used in this paper to accept some local minimum solutions
with a certain probability.

Detailed algorithm pseudocode is shown in algorithm 1,
VCOS uses VAE as the model in oversampling. In the phase
of training classifier, the LR classifier, in the form of a
single-layer neural network, is used to estimate the modifi-
cation direction of the classifier on new samples. When the
classification performance of the expected classifier is poor,
the modification direction of new samples to the classifier is
likely to be wrong, so the parameters of the generator are to be
modified. When generating new samples, the application of
CVAE makes it unnecessary to consider the reasonableness of
the label in the phase of training in that the current samples are
generated according to the condition label, and there must be
some internal correlations. In the step of updating generator
parameters, z and ¢ in the VAE still remain unchanged, only
the generator model is adjusted. Meanwhile, z is sampled
from a uniform Gaussian distribution in Cumulative Dis-
tribution Function (CDF) to avoid the deviation of model
adjustment based random sampling.
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TABLE 1. Description of datasets.

No. Datasets #EX. #Atts. IR
1 breastw(malignant) 699 9 1.9
2 heart2 303 13 1.18
3 diabetesO 768 8 1.87
4 yeastl 1484 8 2.46
5 vehicle2 846 18 2.88
6 vehicle3 846 18 2.99
7 vehiclel 846 18 2.99
8 vehicle0 846 18 3.25
9 ecolil 336 7 3.36
10 segment-challenge(brick face) 1500 19 6.32
11 yeast6 1484 8 8.1
12 yeast3 1484 8 8.1
13 satimage4 6435 36 8.15
14 yeast-0-2-5-7-9_vs_3-6-8 1004 8 9.14
15 yeast-0-2-5-6_vs_3-7-8-9 1004 8 9.14
16 cardiotocography1 2126 23 11.08

TABLE 2. Confusion matrix.

Predicted label
0 1
0 TP(True Positive) FN(False Negative)
1 FP(False Positive) TN(True Negative)

Confusion Matrix

Real label

IV. EXPERIMENTAL RESULTS

A. DATASETS

In order to prove the effectiveness of the proposed algorithm,
16 benchmark data sets in UCI and KEEL are used in this
paper. The details are shown in Table 1, where the imbalanced
rate is the sample size ratio. For the sake of ensuring the
fairness of the experimental results, each data set was prepro-
cessed uniformly in advance. What’s more, the average value
of 10-fold cross-validation is compared.

In this paper, we focus on the binary classification on
imbalanced datasets. Choosing one class of the multi-class
dataset as the minority class and combines other data into the
majority class to obtain the highly imbalanced dataset.

B. PERFORMANCE EVALUATION

In the imbalanced binary classification, the confusion matrix,
as shown in Table 2, is used to calculate the classification
status of each class of samples. The following three metrics
are used for analyzing the performances of the proposed
algorithm: F1 score [31] of the minority samples, F1 score
of majority samples, and Gmean. Formula (29) to Formula
(32) are some commonly used evaluation criteria.

TP
recall = —— (29)
TP + FN
... TP (30)
precision = TP+ TP
2 x Recall x Precision
Fl = — (€29
Recall + Precision
TP TN
Gmean = X (32)
TP+FN TN+ FP
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TABLE 3. F1 scores of the minority from LR classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos
[13]  [14] [17] 1[19] Kkil[26] [24] [20]
82.10 7846 79.93 79.81 82.10 81.83 79.34 81.88 81.88
62.81 67.18 67.53 67.05 63.78 6748 67.14 68.03 68.31
9531 9598 9549 9598 9531 9553 9437 9511 96.43
49.60 5872 5871 5850 NA  NA 5799 5846 93.85
91.80 93.70 93.53 93.28 76.37 9450 87.48 94.55 92.51
4480 59.34 67.83 56.12 2394 59.18 47.18 59.80 96.17
4343 59.87 65.08 59.48 4253 61.00 4747 6220 97.98
91.44 9278 9341 9256 90.82 9191 89.21 91.98 92.81
9539 9523 91.16 9538 93.86 NA 9593 9521 96.14
10 98.69 98.69 9846 98.69 NA NA 93.07 9897 99.23
11 7194 7399 7293 7359 NA NA 7374 7203 74.34
12 63.61 76.60 74.06 7572 6738 NA 3571 78.64 95.90
13 9408 9391 9572 93.83 92.61 9328 93.24 94.06 94.53
14 7818 79.99 43.06 79.28 73.00 NA 8046 77.77 96.17
15 38.64 5929 6249 59.72 4341 NA 5815 4998 9251
16 81.29 8331 83.40 8490 82.81 8547 83.59 83.51 83.57

NeNLIEN e WU I SNRUVE S R

TABLE 4. F1 scores of the majority from LR classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos
[13] [14] [17] 1[19] kil[26] [24] [20]
85.51 80.05 8249 81.29 85.51 84.54 79.63 85.12 85.03
83.40 79.58 77.48 79.29 8348 80.63 7423 81.74 78.02
97.48 97.79 9742 9779 9748 97.58 96.73 97.37 97.99
83.59 7949 7327 8021 NA NA  78.65 80.29 99.30
. 9776  97.67 97.59 9321 97.98 94.80 98.08 99.35
86.05 84.22 8472 8329 8581 80.23 83.67 8591 99.67
86.60 84.81 8325 84.54 8691 8297 83.07 86.05 99.85
9737 97.64 97.79 97.56 97.12 9732 96.16 97.51 97.74
96.67 96.20 91.07 9631 9460 NA 96.82 96.44 97.13
10 99.81 99.81 99.77 9981 NA NA 98.79 99.85 99.23
11 96.89 96.69 9570 96.65 NA NA 9696 9594 96.99
129657 97.29 9575 97.05 96.61 NA 9541 9730 99.64
13 99.28 99.23 9947 99.22 99.11 99.13 99.15 99.28 99.34
14 97.80 9790 8840 97.73 97.71 NA 97.71 97.73 99.67
15 9471 95.60 93.81 9552 9532 NA 96.24 91.92 99.35
16 97.11 97.04 96.74 97.28 97.36 97.17 98.18 97.25 97.36

O 0NN B W —
e
=
N
(98]

C. EXPERIMENTAL RESULTS

LR is used as a classifier to verify the rationality of VCOS.
As an aside, the hyperparameters settings such as learning
rate are also consistent with the VCOS. To compare the per-
formance with different classifiers, SVM and random forest
is also used and the hyperparameters are set as follows.

SVM: the data are normalized to [-1,1], radial basis func-
tion (rbf) kernel is used and gamma is set as 1/Afeqmres. LR:
the learning rate is 0.001. Random forest 1: the number of
trees is 100, and the criterion is Gini. Random forest 2: the
number of trees is 250, and the criterion is Gini. All these
classifiers are implemented with sklearn [37].

As we can see from Table 3, 4, 5, the borderline-SMOTE
performs better in these compared oversampling except the
proposed one, because the LR classifier is affected by the
distribution of the borderline samples.

The results in Table 6, 7, 8 show that SVM needs more
complex generated minority samples compared with LR,
because the SVM divides the samples into different classes in
Hilbert space while theses oversampling methods determine
the nearest neighbors of samples in Euclidean space.

In table 9, 10, 11, the random forest 1 shows its power in
classification and the proposed only gets 9 highest Gmean as
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TABLE 5. Gmean of LR classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos
[13]  [14] [17] 1[19] kil[26] [24] [20]

83.32 79.11 80.93 80.35 83.32 82.84 79.57 83.14 8295

70.05 7444 7450 7433 70.86 74.62 7359 7502 75.21

96.29 97.02 97.17 97.02 96.29 96.50 96.68 96.19 97.72

60.46 70.20 69.88 69.89 NA NA 70.37 70.04 99.31

O 00~ WU A~ WK —
Ne)
@
N}
K
O
[*)}
—_
(=)
O
[*)}
)
=
Nel
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el
K
©
(=}
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Ne}
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[}
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Ne)
K
[
—
Ne)
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W
%
o
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wm
\=}

TABLE 6. F1 of the minority from SVM classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos
[13]  [14] [17] 1[19] kil[26] [24] [20]
79.84 80.78 81.56 81.36 80.42 81.05 79.93 80.66 81.88
63.27 67.86 66.67 66.58 38.60 67.58 67.74 66.70 68.31
9531 9533 95.07 9533 8032 95.11 9454 9553 96.43
40.40 5843 57.64 58.66 40.73 NA 5893 59.10 93.85
91.87 93.04 93.73 92.86 88.57 92.06 90.00 90.97 92.51
46.79 62.50 63.55 6229 4599 62.62 59.98 61.67 96.17
5549 64.79 6651 6547 56.10 65.10 61.86 63.92 97.98
92.83 93.09 91.94 9282 90.02 92.65 87.61 91.59 92.81
9544 9523 93.67 9563 8431 NA 9593 9510 96.14
10 9897 9897 97.83 9897 NA NA 9327 9872 99.23
11 7062 7526 67.87 7551 NA NA 6883 7236 74.34
12 71.83 76.04 6592 7545 NA NA 71.88 72.85 95.90
13 9401 93.83 8238 93.64 91.53 93.60 94.95 94.12 94.53
14 7737 7694 48.69 77.06 7658 NA 8350 73.78 96.17
15 2823 53.67 41.76 54.15 29.69 NA 49.61 51.89 92.51
16 82.98 8443 79.71 84.60 79.00 86.33 83.50 84.40 83.57

O 01NN W =

TABLE 7. F1 of the majority from SVM classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos
[13]  [14] [17]1 11[19] kil[26] [24] [20]
83.63 8238 84.06 83.08 83.84 83.85 80.38 82.15 85.03
83.58 80.17 7838 79.31 74.55 80.94 7532 80.77 78.02
97.48 9747 9720 97.47 88.69 97.36 96.85 96.87 97.99
83.96 80.82 73.41 81.05 84.06 NA 80.58 80.01 99.30
97.23 9752 9775 97.43 96.12 97.10 96.02 96.80 99.35
86.69 85.44 83.10 8571 86.73 82.79 8521 82.88 99.67
87.68 85.04 83.45 8539 8849 8337 83.54 8339 99.85
97.74 9771 9731 97.64 96.89 97.55 9538 9586 97.74
96.62 96.26 94.80 96.50 8420 NA 96.76 9635 97.13
10 99.85 99.85 99.65 9985 NA NA 98.83 99.81 99.23
11 96.86 96.88 9382 9692 NA NA 9673 9292 96.99
12 96.89 9696 9337 96.88 NA NA 9692 96.19 99.64
139928 99.22 97.11 99.19 99.00 99.18 99.39 98.74 99.34
14 9779 9724 87.81 9743 97.62 NA 9822 96.65 99.67
15 94.89 9478 8632 9474 9499 NA 96.06 91.67 99.35
16 9730 97.34 96.25 9729 97.50 97.17 98.25 95.89 97.36

O 00NN B WK —

an ensemble classifier. The random forest is more balanced
in the F1 scores of the two classes so that it gets highest
Gmean in some datasets. CGMOS performs best in the rest
of oversampling methods, as it is designed in Bayes network
classifier, which is more suitable for the random forest.
Results of Table 12, 13, 14 also show the superiority of the
proposed method, and the CGMOS gains 3 highest F1 scores.
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TABLE 8. Gmean of SVM classifier.

TABLE 11. Gmean of random forest 1 classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos No. none smote border ndo weibu maha cgmos vaeos vcos
[13]  [14] [17] 1[19] kil[26] [24] [20] [13]  [14] [17] 1[19] kil[26] [24] [20]
1 81.19 81.43 8244 82.02 81.65 81.99 80.26 8126 82.95 1 8292 8229 83.00 81.88 8232 83.76 89.16 83.03 82.95
2 7036 75.02 7395 7397 5092 7473 7435 7406 75.21 2 69.62 7399 7349 7403 7142 7394 71.11 70.74 75.21
3 9629 9649 96.77 96.49 8527 96.17 96.61 9547 97.72 3 9596 9627 96.07 96.29 9572 9595 91.33 96.60 97.72
4 5198 69.64 69.12 69.86 5225 NA 7093 7049 99.31 4 6425 6972 69.51 6595 NA NA 7625 62.80 99.31
5 9413 9571 9623 9578 91.87 9531 9538 9424 98.59 5 9837 9852 98.60 9837 98.15 9829 86.51 9823 98.59
6 5870 7543 7798 7502 57.81 77.00 73.05 76.12 99.40 6 6133 7029 7228 69.87 61.12 7449 79.83 6227 99.40
7 6598 77.60 80.04 78.04 6557 78.65 7542 77.61 99.73 7 6545 7245 7399 7132 66.14 74.12 77.05 64.23 99.73
8 9559 96.63 96.07 9637 9327 96.47 9434 9497 9556 8 96.17 96.61 96.82 97.58 96.33 9695 87.79 97.36 95.56
9 9598 9577 9444 96.15 8443 NA 9652 9574 96.62 9 9596 94.80 9599 96.05 9505 NA 9820 9580 96.62
10 9920 9920 99.22 9920 NA  NA 97.83 98.94 99.45 10 98.72 9898 99.23 9898 NA NA 93.80 9898 99.45
11 78.78 8576 91.64 8579 NA NA 7652 8272 8291 11 81.60 8393 88.74 83.15 NA NA 9323 8222 8291
12 79.65 86.34 9095 8594 NA NA 79.75 86.89 98.89 12 8273 84.66 89.40 8483 NA NA 9380 8095 98.89
13 9581 96.87 96.04 96.78 93.61 97.15 9646 92.02 96.20 139799 9833 97.61 9826 97.94 98.35 9507 98.07 96.20
14 8350 87.19 83.55 86.53 8321 NA 89.80 87.37 99.31 14 82.12 83.05 8538 8597 84.03 NA 9388 86.14 99.31
15 38.87 66.85 72.40 66.85 40.69 NA 59.72 7571 98.59 15 6322 6629 66.56 6921 6552 NA 9390 61.17 98.59
16 89.25 91.00 91.73 91.22 86.63 9341 90.80 85.95 91.95 16 89.49 90.53 87.07 89.97 89.11 90.12 9512 88.16 91.95

TABLE 9. F1 score of the minority from random forest 1 classifier.

TABLE 12. F1 score of the minority from random forest 1 classifier.

No. none smote border ndo weibu maha cgmos vaeos vcos No. none smote border ndo weibu maha cgmos vaeos vcos
(13]  [14] [17] 1[19] kil[26] [24] [20] [13]  [14] [17] 1[19] kil[26] [24] [20]
1 8146 81.58 82.00 80.80 81.19 82.49 89.64 81.70 81.88 1 7979 81.16 79.68 8297 81.08 81.40 89.68 81.76 81.88
2 61.82 6688 66.10 66.84 64.16 66.68 68.53 63.48 68.31 2 6299 6533 67.15 66.07 63.21 67.36 69.04 6390 68.31
3 9484 9494 9454 9496 93.99 94.69 86.44 9554 96.43 3 9533 9538 9472 9495 9399 9534 86.86 95.76 96.43
4 5357 5889 5822 5525 NA NA 66.10 52.23 93.85 4 5422 5937 5826 5558 NA NA 6586 52.61 93.85
5 9792 9750 97.73 9749 97.70 97.28 73.25 97.50 92.51 5 97.68 98.16 97.50 97.73 97.26 9749 73.38 97.46 92.51
6 50.17 5790 59.37 58.17 49.71 6190 6493 50.59 96.17 6 49.71 57.03 59.03 59.11 4890 59.76 64.55 49.61 96.17
7 53.82 6036 61.68 59.06 54.63 62.12 63.03 51.58 97.98 7 5359 5981 61.68 5876 54.12 63.06 62.71 56.52 97.98
8 94.00 9429 93.89 94.68 94.04 9333 7328 95.09 92.81 8 9432 93.83 93.62 94.55 9381 93.57 73.77 93.60 92.81
9 9544 9428 9548 9556 9465 NA 97.78 9542 96.14 9 9544 9584 9490 9530 9428 NA 97.78 9556 96.14
10 98.69 98.96 99.22 9896 NA NA 72.00 98.96 99.23 10 9896 98.96 98.73 99.22 NA NA 7224 98.69 99.23
11 7395 7459 7734 7386 NA NA 6559 7428 7434 11 74.06 7640 77.86 7407 NA NA 65.14 7405 7434
12 7480 7542 7793 7657 NA NA 6746 7320 95.90 12 7520 75.18 77.09 7563 NA NA 67.18 75.02 95.90
13 9647 96.70 96.48 96.63 96.15 96.44 72.03 96.68 94.53 13 9632 96.55 96.34 96.43 9622 96.56 71.96 96.70 94.53
14 7480 7448 76.89 79.08 77.55 NA 6532 78.68 96.17 14 7555 7937 77.07 78.63 79.02 NA 6524 74.68 96.17
15 51.84 5426 54.04 56.60 5558 NA 66.63 49.33 92.51 15 53.88 53.11 5454 56.86 5344 NA 67.06 53.20 92.51
16 8291 82.00 77.76 81.36 81.19 82.15 6897 81.06 83.57 16 83.44 81.19 81.48 8294 8445 81.50 68.77 81.66 83.57
TABLE 10. F1 score of the majority from random forest 1 classifier. TABLE 13. F1 score of the majority from random forest 2 classifier.
No. none smote border ndo weibu maha cgmos vaeos vcos No. none smote border ndo weibu maha cgmos vaeos Vcos
[13] [14] [17] 1[19] kil[26] [24] [20] [13] [14] [17] 1 [19] kil[26] [24] [20]
1 8543 8350 84.98 83.58 8444 8587 8843 8526 85.03 1 83.86 8335 83.14 8530 85.14 84.87 88.44 84.45 85.03
2 82.02 8098 8045 8132 8234 8148 67.09 82.64 78.02 2 8234 80.37 80.73 80.74 82.13 81.77 68.18 82.83 78.02
3 9728 9724 97.02 9725 96.67 97.15 9093 97.58 97.99 3 9747 9745 97.14 9724 96.67 97.47 91.33 97.69 97.99
4 8420 8335 81.86 83.68 NA NA 7350 8429 99.30 4 84.12 82770 8197 8394 NA NA 7322 83.83 99.30
5 9929 99.12 9920 99.12 99.21 99.04 8559 99.13 99.35 5 9921 9937 99.12 99.20 99.05 99.12 85.69 99.13 99.35
6 87.05 8592 8543 86.61 87.03 8598 77.77 86.69 99.67 6 86.83 85.61 8492 8694 86.88 8559 77.29 8598 99.67
7 8643 8576 8535 8549 8638 8595 7444 85.14 99.85 7 86.25 8572 85.11 85.18 86.13 85.70 74.09 8597 99.85
8 98.14 98.21 98.05 98.27 98.13 97.80 87.01 98.43 97.74 8 9821 98.05 9797 9829 98.05 97.88 8742 9797 97.74
9 96.59 9532 96.60 96.51 9557 NA 98.14 96.07 97.13 9 96.59 96.83 9593 96.18 9534 NA 98.14 9651 97.13
10 99.81 99.85 99.88 99.85 NA NA 93.60 99.85 99.23 10 99.85 99.85 99.81 99.88 NA NA 9370 99.81 99.23
11 9711 9698 9698 9695 NA NA 9298 97.11 96.99 11 97.07 97.12 97.01 9690 NA NA 9281 97.07 96.99
12 97.14 97.05 97.05 9725 NA NA 93.60 97.04 99.64 12 97.14 97.06 96.90 97.13 NA NA 9352 97.14 99.64
13 99.56 99.59 99.57 99.58 99.52 99.55 9494 99.59 99.34 13 99.55 99.57 99.56 99.55 99.53 99.57 9492 99.59 99.34
14 97.63 97.34 9744 97.78 97.68 NA 93.68 97.72 99.67 14 97.63 97.77 9749 97.66 97.78 NA 93.69 97.40 99.67
15 9533 9530 95.05 9548 9571 NA 9411 9538 99.35 15 9546 9538 9488 9554 9544 NA 94.17 9548 99.35
16 97.68 97.53 96.19 9746 97.70 95.60 9499 9741 97.36 16 97.83 9739 96.85 97.64 9796 95.57 9495 97.22 97.36

Considering that the Gini of each leaf node is calculated when
the random forest splits the leaf nodes, which is related to the

Bayesian probability of the data distribution.

D. HYPOTHESIS TESTING

For a clearer analysis of the experimental comparison results,
we use the Wilcoxon signed-rank test. The null hypothesis is

VOLUME 7, 2019

that the overall performance of the two methods on different
data sets is the same. Alternative hypothesis is that the overall
performance of the two methods on different data sets is
different. Here the significance level « is taken as 0.05.

As we can see from Table 15, the p-value in the table is
much smaller than «, we can conclude the VCOS is definitely
better than the CGMOS. What’s more, the classifier does
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TABLE 14. Gmean of random forest 2 classifier.

No. none

smote
[13]

border

[14]

ndo
[17]

weibu
11[19]

maha
kil[26]

cgmos
[24]

81.36

O 00NN W —
O
(=)
—_
w

82.08
72.85

81.01
74.37
96.17

83.68
73.40
96.28
66.19

82.64
70.70
95.72
NA
97.99
60.40
65.84
96.25
94.71

82.74
74.42
96.49
NA
98.37

89.19
71.97

TABLE 15. Result of hypothesis testing in F1 scores for minority samples.

none smote [13] borderline [14] ndo [17] cgmos [24] vaeos [20]

SVM 0.0005  0.0131 0.0008 0.0131 0.0008 0.0008
LR 0.0005 0.0023 0.0061 0.0072 0.0005 0.0031
rfl ~ 0.0200  0.0262 0.0437 0.0262 0.0013 0.0200
rf20.0174  0.0340 0.0340 0.0494 0.0013 0.0229

TABLE 16. Result of hypothesis testing in Gmean.

none smote [13] borderline [14] ndo [17] cgmos [24] vaeos [20]
SVM 0.0005  0.0097 0.0061 0.0097 0.0006 0.0004
LR 0.0006 0.0045 0.0174 0.0045 0.0019 0.0041
rfl  0.0032 0.0113 0.0229 0.0151 0.0299 0.0072
f2  0.0052  0.0200 0.0131 0.0229 0.0340 0.0052
1.0 A
0.9 -
>
T 0.81
=
E 0.7
S 0.6
wn
2 0.5
S CGMOSnb
2049 —— ccMmosIr
K~ 53] =¥ VAEOSND
—e— VAEOSIr
0.2 4 —+ vcos
2 4 6 8 10 12 14 16

dataset

FIGURE 4. Comparison of oversampling frameworks based on different
classifiers.

have an influence on the classification result with a same
oversampling method, and a stronger classifier can reduce
this impact such as the ensemble classifier random forest,
and different oversampling may change the classification
performance. Results in Table 16 show that the proposed
method has superiority in comparison of Gmean.

E. COMPARISON OF CLASSIFIERS

Fig. 4 shows the classification performance comparison of
CGMOS algorithm in the case of Naive Bayesian Model
and Logical regression model. From the experimental results,
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FIGURE 5. Effects of different prob on classification performance.

we can find that the results of our algorithm are better than
other frameworks. The combination of oversampling and its
suitable classifier proves the effectiveness of VCOS and the
synergistic oversampling algorithm.

F. PARAMETER ANALYSIS

As we can see from Fig. 5, prob is the probability of updating
the parameters of C with those of EC, which is constantly
updated by new samples. There is a huge difference between
the F1 scores of the minority and majority samples, and
this is the specific form of imbalanced problems. Different
probabilities in updating C result in classifiers with different
performance, and a best prob is set as 0.5.

V. CONCLUSION

In this paper, a synergistic training framework for genera-
tion and classification is proposed creatively to adjust the
parameters of the generator pertinently according to the clas-
sification performance of the expected classifier, to ensure
the promotion of the generated samples to the classifier.
The framework integrates the step of oversampling into the
process of classifier training. Note that it does not need to set
the oversampling rate, to avoid the negative impact caused by
the improper oversampling rate. The final experimental result
shows that the proposed network can effectively improve
the F1 score of the minority samples, the hypothesis test-
ing proves the correctness of the conclusion. The proposed
method is designed on the binary imbalanced classification,
we are going to improve it in multi-class classification with
less limitation of the classifier.
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