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ABSTRACT In this paper, we investigate the power control strategy of intelligent secure communicationwith
statistic channel state information (CSI) for Internet of Things (IoT) networks, where a transceiver and an
attacker with several attack types, including silent, eavesdrop, jamming and spoofing, are considered. In order
to solve the security problem that the transmitter only knows the statistical CSI of attacker, we propose a
power control strategy based on Q-learning. In particular, Alice and Eve can choose their actions flexibly to
maximize their reward under different system state and learn their best strategy according to the proposed
strategy. In addition, the interactions between Alice and Eve are formulated as a zero-sum game, the Nash
equilibrium and its existence conditions are deduced. Simulation results show that the impact of statistical
CSI of attacker on system security performance can be reflected by the cost of attacker to launch attack and
the average channel gain parameters. More importantly, the obtained results also show that the proposed
power control strategy based on statistical CSI of attacker is worse than the scheme based on instantaneous
CSI for statistical CSI leads a performance loss in terms of security.

INDEX TERMS Malicious attackers, statistical CSI, Q-learning, game theory.

I. INTRODUCTION
In recent years, there has been an increasing development
in communication techniques [1]–[3], and the application
scenarios can be fifth generation (5G) wireless communica-
tion [4]–[7] and Internet of Things (IoT) networks [8]–[11].
In the IoT networks, each element (node) can act as both
the receiver and transmitter, and can flexibly communicate
with other nodes in the network [12]. In particular, massive
machine-type communications (mMTC) and ultra-reliable
and low-latency communications (uRLLC) have been con-
sidered as two typical application scenarios [13]. Particularly,
uRLLC needs a low-latency and high-reliability transmis-
sion. And mMTC supports massive connections of Internet
of Things (IoT) devices with limited resource [14], [15].
Hence, the security problems of mMTC and uRLLC become
very important due to their strict safety requirements of
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applications in smart traffic such as autonomous driving,
smart health care, factory automation, etc [16], [17]. Other-
wise, once a security accident occurs in these communica-
tion networks, it may cause communication obstacles among
thousands of people, and bring unpredictable loss of social
value and economic value [18]–[20].

In uRLLC or mMTC, the legitimate information trans-
mitted in the channel is highly vulnerable to be attacked
by malicious attackers for the openness of the wireless
channel, which resulting in information leakage [16], [21].
To solve this problem, many researches have been stud-
ied with Q-learning and game theory [22]–[25]. For exam-
ple, the authors in [22] extended the results of reliable and
secure communication capacity requirements for eavesdrop-
ping attack to a more advanced chosen plain-text attack.
The authors in [23] devised a generic security game, reveal-
ing the existence of several Nash equilibrium strategies.
Moreover, a power control strategy based on Q-learning for
the transmitter to suppress the attack motivation of smart
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attackers in a dynamic version of multiple-input multiple-
output transmission game is proposed in [24]. However, most
of these works are based on assumption that the transmitter
knows the instantaneous perfect or inaccuracy estimated CSI
of attacker, which is impractical due to the rapid change
of channel [26]–[28]. In addition, the transmitter have to
pay more costs to acquire the instantaneous CSI of the
attacker. Hence, it is of vital importance to study an intelligent
secure communication with statistical CSI of attacker, which
motivates our research.

In this paper, we investigate the power control strategy
of intelligent secure communication, which concludes a
transceiver and an attacker, where the attacker can choose
its attack mode from silent, eavesdropping, jamming and
spoofing attacks. Different to [24], [25], [29], more attack
modes with statistical CSI of attackers are considered here.
To study the transmission security problem and the impact
of statistical CSI of attacker, Q-learning and game theory
are introduced. To be specific, according to attacker’s attack
mode, the transmit power of the transmitter can be adap-
tively adjusted through Q-learning to improve the network
secrecy performance against attacks. Furthermore, we for-
mulate the interactions between the transmitter and the
attacker as a zero-sum game, and we deduce the Nash equi-
librium (NE) and its existence conditions of this network.
Finally, we disclose the impact on statistical CSI of attacker at
the transmitter, compared with that with instantaneous CSI of
attacker.

The main contributions of this work can be summarized as
follows:
• The secrecy capacities of the secure communications
attacked by four considered attack modes, including
silent, eavesdropping, jamming and spoofing, with sta-
tistical CSI are derived in closed-form. With the aid
of the developed secrecy capacities, we formulate an
intelligent secure communication game with statistical
CSI of attackers.

• Based on game theory, we derive the NE of the
formulated secure game, and provide the existing
conditions of the equilibrium. It reveals that an opti-
mal secure transmission can be obtained according
to the attack cost and transmission cost of legitimate
transmitter.

• We propose a power control strategy for the secure
communication with statistical CSI of attacker based
on Q-learning technique, and analyse the impact on
only the statistical CSI of attacker known at the
transmitter.

We organize the remainder of this paper as follows.
In Section II, we present the system model and formulate the
secure problem with statistical CSI of attacker. In Section III,
we formulate the intelligent secure communication game
under statistical CSI of attacker, and investigate a power
control strategy in Section IV. In Section V, we pro-
vide the simulation results and give some conclusions in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. MODEL DESCRIPTION
Fig. 1 shows an intelligent secure communication network,
which consists of a legitimate transmitter (Alice), an intended
receiver (Bob) and an attacker (Eve). All of these users have a
single-antenna. When Alice communicates with Bob through
the main channel, Eve might correspondingly choose one
of attack modes, including silent, eavesdrop, jamming and
spoofing, as its action to attack main channel according to
Alice’s transmit power. On the other hand, Alice adjusts the
transmit power to protect network against attacks fromEve by
observing Eve’s current attackmode. In this paper, we assume
the transmit power of Alice is p ∈ [0,P], where P denotes
the maximum transmitter power. The attack modes of Eve
are defined as m = 1, 2, 3, 4, which correspond to silent,
eavesdrop, jamming and spoofing. It means that Eve might
choose to keep silent, eavesdrop on Alice’s signal, send a
jamming signals to obstruct Alice’s transmission or send a
spoofing signal to deceive Bob, respectively.

FIGURE 1. System model of an intelligent secure communication for Alice
and Eve.

B. PROBLEM FORMULATION
In order to protect network against a possible attack fromEve,
Alice has to adjust the transmit power based on the instan-
taneous CSI of Eve. However, acquiring instantaneous CSI
is impractical due to the large feedback delay and the rapid
change of wireless channel [30]. As a result, we consider a
practical case that Alice knows the statistical CSI of Eve.
To be specific, Eve might choose to keep silent, eavesdrop
on Alice’s signal when Alice sends a signal to Bob, send a
jamming signals to obstruct Alice’s transmission or send a
spoofing signal to deceive Bob, respectively. In what follows,
we introduce the secrecy capacities of these four attackmodes
with statistical CSI in detail.
Silent (m = 1): Alice sends a signal xa to Bob and Eve

chooses to keep silent, then the received signal at Bob is
formulated as

y1 =
√
phabxa + nb, (1)

where hab ∼ CN (0, σ 2
ab) is the channel between Alice and

Bob, σ 2
ab = 1/(1+ dζab), dab is the distance between Alice

and Bob, ζ denotes the path loss factor, and nb∼ CN (0, σ 2
n ) is
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the additive white Gaussian noise (AWGN) at Bob [10], [12],
[14], [31]–[33]. Therefore, wewrite the secrecy capacity [34],
as

C1 = log2

(
1+

p|hab|2

σ 2
n

)
. (2)

Eavesdropping (m = 2): Eve chooses to eavesdrop on
Alice’s message when Alice sends a signal xa to Bob. Bob
receives a signal y1 in (1) and Eve receives a signal y2 given
by

y2 =
√
phaexa + ne, (3)

where hae ∼ CN (0, σ 2
ae) is the channel of Alice-Eve link,

σ 2
ae =

1
1+dζae

, dae is the distance between Alice and Eve,

and ne ∼ CN (0, σ 2
n ) is the AWGN at Eve. Thus, the secrecy

capacity is given by

C2 = log2

(
1+

p|hab|2

σ 2
n

)
− log2

(
1+

p|hae|2

σ 2
n

)
. (4)

Note that the instantaneous CSI of Eve is unknown,
we can’t calculate the secrecy capacity C2 directly. However,
if the statistical CSI between Alice and Eve is known, we can
rewrite the secrecy capacity C2 in (4) as [35],

C ′2= log2

(
1+

p|hab|2

σ 2
n

)
−

1
σ 2
ae

∫
+∞

0
log2

(
1+

px1
σ 2
n

)
× exp

(
−
x1
σ 2
ae

)
dx1

= log2

(
1+

p|hab|2

σ 2
n

)
+

1
ln 2

exp
(
σ 2
n

σ 2
aep

)
Ei
(
−
σ 2
n

σ 2
aep

)
,

(5)

where we use the fact that x1 = |hae|2 follows exponential
distribution and Ei(x) =

∫
+∞

−x
e−t
−t dt is the exponential inte-

gral function [35].
Jamming (m = 3): Eve chooses to send a jamming

signal xJ with power PJ to interfere Alice’s transmission,
the received signal at Bob can be given as follows,

y3 =
√
phabxa +

√
PJhbexJ + nb, (6)

where hbe ∼ CN (0, σ 2
be) is the channel parameter of Bob-Eve

link, σ 2
be =

1
1+dζbe

, dbe is the distance between Bob and Eve.

Then the secrecy capacity can be written as

C3 = log2

(
1+

p|hab|2

σ 2
n + PJ |hbe|2

)
. (7)

Similarly, the secrecy capacity C3 in (7) for the case that only
the statistical CSI of Eve is known at Bob is rewritten as

C ′3 =
1

σ 2
be

∫
+∞

0
log2

(
σ 2
n + ph

2
ab+PJ x2

)
exp

(
−
x2
σ 2
be

)
dx2

−
1

σ 2
be

∫
+∞

0
log2

(
σ 2
n +PJ x2

)
exp

(
−
x2
σ 2
be

)
dx2

= log2
(
σ 2
n + ph

2
ab

)
−

1
ln 2

exp

(
σ 2
n + ph

2
ab

PJσ 2
be

)
·

Ei

(
−
σ 2
n + ph

2
ab

PJσ 2
be

)
+

1
ln 2

exp

(
σ 2
n

PJσ 2
be

)
Ei

(
−

σ 2
n

PJσ 2
be

)
,

(8)

where x2 = |hbe|2.
Spoofing (m = 4): Eve chooses to send a spoofing signal

xS with power PS to deceive Bob. The received signal at Bob
is given by

y4 =
√
phabxa +

√
PShbexS + nb. (9)

Then the secrecy capacity can be written as

C4= log2

(
1+

p|hab|2

σ 2
n

)
−γ log2

(
1+

PS |hbe|2

σ 2
n

)
, (10)

where γ reflects the impact of each unit size spoofing signal.
Similar to the previous, the secrecy capacity with the statisti-
cal CSI of the spoofing link can be rewritten as

C ′4 = log2

(
1+

p|hab|2

σ 2
n

)
−

1

σ 2
be

∫
+∞

0
γ log2

(
1+

PSx2
σ 2
n

)
× exp

(
−
x2
σ 2
be

)
dx2

= log2

(
1+
p|hab|2

σ 2
n

)
+
γ

ln 2
exp

(
σ 2
n

PSσ 2
be

)
Ei

(
−

σ 2
n

PSσ 2
be

)
.

(11)

For simplicity, we will replace the noise variance σ 2
n

by 1 directly in the remainder sections.

III. SECURE GAME WITH STATISTICAL INFORMATION
OF ATTACKER
In intelligent secure communication, Alice aims at adjusting
its transmit power to prevent Eve’s attack when she only
knows the statistical information of Eve. In this section,
the interactions between Alice and Eve are formulated as a
security game theory. In the game, Eve can correspondingly
choose one of its attack modes as its action according to
Alice’s transmit power p. Similarly, Alice also can choose a
transmit power as its next action by observing Eve’s current
attack mode m. The cost function of Eve’s attack mode m is
denoted as

f (m) =


0, m = 1,
θE , m = 2,
θJ , m = 3,
θS , m = 4,

where θE , θJ and θS are the cost of Eve to carry out eaves-
dropping, jamming, and spoofing, respectively.

Let Ra denote the reward of Alice, and

Ra(p,m) =

{
ln 2C1 − Cap, m = 1,
ln 2C ′m − Cap, m = 2, 3, 4,

(12)
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whereCa is the cost coefficient of Alice’s transmit power. For
the sake of derivatives and expressions, the secrecy capacity
is multiplied by ln 2 in (12). Again, letRe represent the reward
of Eve, and it can be written as

Re(p,m) = − ln 2Cm − Cef (m), (13)

whereCe is the cost coefficient of Eve’s attack mode. Further,
let (p∗,m∗) denote the NE strategy of the security game,
which can be written as

Ra(p∗,m∗) ≥ Ra(p,m∗), ∀0 ≤ p ≤ P. (14)

Re(p∗,m∗) ≥ Re(p∗,m), ∀m = 1, 2, 3, 4. (15)

Eqs. (14) and (15) disclose that Alice and Eve can obtain
the best reward at their NE strategy, namely, they can not
obtain more rewards by altering their NE strategy. As a
result, no one wants to upset the equilibrium. In addition,
we can deduce an NE (p∗, 1), which is given by the following
Lemma 1.
Lemma 1: An NE (p∗, 1) of security game with statistical

CSI of attacker is given by
|hab|2

1+ p∗|hab|2
= Ca, (16a)

0 ≤ p∗ ≤ P. (16b)

If the following conditions are satisfied

θE ≥
ln(1+ p∗|hae|2)

Ce
, (17a)

θJ ≥
1
Ce

ln(1+
p∗PJ |hab|2|hbe|2

1+ PJ |hbe|2 + p∗|hab|2
), (17b)

θS ≥
γ ln(1+ PS |hbe|2)

Ce
, (17c)

|hab|2

1+ P|hab|2
< Ca < |hab|2. (17d)

Proof: If (17a)-(17c) hold, from (15), we have

Re(p∗, 1)− Re(p∗, 2)

= CeθE − ln(1+ p∗|hae|2)) ≥ 0,

Re(p∗, 1)− Re(p∗, 3)

= CeθJ − ln(1+
p∗PJ |hab|2|hbe|2

1+ PJ |hbe|2 + p∗|hab|2
) ≥ 0,

Re(p∗, 1)− Re(p∗, 4)

= CeθS − γ ln(1+ PS |hbe|2) ≥ 0.

Thus, (15) holds for (p∗, 1). From (14), we have

∂Ra(p, 1)
∂p

=
|hab|2

1+ p|hab|2
− Ca, (18)

∂R2a(p, 1)
∂p2

= −
|hab|4

(1+ p|hab|2)2
≤ 0. (19)

By (19), we know that ∂Ra(p, 1)/∂p amonotonically decreas-
ing function with respect to (w.r.t) p. If (17d) holds, from (18),
we have

∂Ra(p, 1)
∂p

|p=0 = |hab|2 − Ca > 0, (20)

TABLE 1. Main parameter setting for simulations.

∂Ra(p, 1)
∂p

|p=P =
|hab|2

1+ P|hab|2
− Ca < 0. (21)

Eqs. (19)-(21) show that ∂Ra(p, 1)/∂p = 0 has a unique
solution p∗, which is given by (16a). Moreover, it is obvious
that Ra(p, 1) increases in p if 0 ≤ p ≤ p∗, while it decreases
in p if p∗ ≤ p ≤ P. Therefore, (14) holds for (p∗, 1).
At this point, we have completed the proof for Lemma 1 by
proving (14) and (15) hold for (p∗, 1).
The results in Lemma 1 reveal the security transmission

conditions for Alice based on the NE. Furthermore, we can
deduce an NE of the security game when Alice chooses the
maximum transmit power in the following Lemma 2.
Lemma 2: This game has an NE (P, 1), if

θE ≥
ln(1+ P|hae|2)

Ce
, (22a)

θJ ≥
1
Ce

ln(1+
PPJ |hab|2|hbe|2

1+ PJ |hbe|2 + P|hab|2
), (22b)

θS ≥
γ ln(1+ PS |hbe|2)

Ce
, (22c)

|hab|2

1+ P|hab|2
≥ Ca. (22d)

Proof: If (22a)-(22c) hold, from (15), we have

Re(P, 1)−Re(P, 2)=CeθE − ln(1+ P|hae|2)) ≥ 0,

Re(P, 1)−Re(P, 3)=CeθJ−ln(1+
PPJ |hab|2|hbe|2

1+PJ |hbe|2+P|hab|2
) ≥ 0,

Re(P, 1)−Re(P, 4)=CeθS − γ ln(1+ PS |hbe|2) ≥ 0.

Thus, (15) holds for (P, 1). From (18), if (22d) hold, we have

∂Ra(p, 1)
∂p

|p=P =
|hab|2

1+ P|hab|2
− Ca ≥ 0. (23)

Since ∂Ra(p, 1)/∂pmonotonically decreases in p, we can see
that ∂Ra(p, 1)/∂p always greater than or equal to 0, for all
p ∈ [0,P]. Thus, Ra(p, 1) maximizes at P, namely (14) holds
for (P, 1). At this point, we have completed the proof for
Lemma 2 by proving (14) and (15) hold for (P, 1).

IV. A STATISTICAL CSI-BASED POWER CONTROL
STRATEGY
In this section, we propose a power control strategy based
on Q-learning under statistical CSI of Eve. With the aid of
Q-learning, Alice and Eve can choose their actions flexibly to
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FIGURE 2. Algorithm flow diagram of power control strategy.

FIGURE 3. Average secrecy capacity of the considered network over the
cost of eavesdropping.

maximize their reward under different system state and learn
their best strategy. The statistical CSI-based power control
algorithm flow diagram is given in Fig. 2. In this paper,
we consider Alice can choose its action among L+1 levels at
time t , namely pt ∈ {lP/L}0≤l≤L . Before the game, we initial-
ize all parameters and let the system state st = mt−1 at time
slot t . Firstly, Alice chooses the transmit power pt using the
ε-greedy police. Then, through observing the system state st
and its reward under the statistical CSI of Eve, Alice updates
its Q function Qa(st , pt ) and finds the optimal value function
Va(st ) by the following equations.

Qa(st , pt ) = (1− α)Qa(st , pt )+ α(Ra(st , pt ))+ δVa(st+1),

(24)

FIGURE 4. Attack rate of Eve over the cost of eavesdropping.

Va(st ) = max
0≤p≤P

Qa(st , p), (25)

where α ∈ [0, 1] is the learning rate, δ ∈ [0, 1] is the discount
factor. Similarly, Eve updates its Q function by observing the

VOLUME 7, 2019 144485



J. Xia et al.: Intelligent Secure Communication for Internet of Things With Statistical CSI of Attacker

FIGURE 5. Average secrecy capacity of the considered network over the
average channel gain of eavesdropping link.

action of Alice and the reward under the instantaneous CSI
of itself, where the Q function of Eve is given by

Qe(pt ,mt )= (1−α)Qe(pt ,mt )+α(Re(pt ,mt ))+δVe(pt+1),

(26)

and Eve finds the optimal value function:

Ve(pt ) = max
m∈{1,2,3,4}

Qe(pt ,m). (27)

That is, Alice and Eve can learn their best strategy through
the obtained value function in the game.

V. SIMULATION RESULTS
In this section, we will evaluate the system average secrecy
capacities and the attack rates of different type attackers
(m = 1, 2, 3, 4) from Eve with statistical CSI. The obtained
results based on game theory are provided to disclose the
impact on only statistical CSI of Eve known at Alice. The
commonly-used parameters are listed in Table 1. Fig. 3 shows
the average secrecy capacities for the cases that Alice knows
instantaneous or statistical CSI of Eve, where the eavesdrop-
ping cost is range from 1.8 to 2.8, and the step size is 0.2.
In addition, we use the average value at time slot 8000 to show
in Fig. 3. Notice that the time slot is range from 0 to 8000 in
our experiments, and we take the values of 8000 time slots
for they have converged. As observed from Fig. 3, we can
find that the average secrecy capacity with instantaneous
CSI of attacker is increasing as the cost of eavesdropping
increases, and it performs better than that with statistical
CSI.

Fig. 4 presents the eavesdropping rate, jamming rate and
spoofing rate of Eve. It is noted that, the attack rates of
all attack modes (m = 2, 3, 4) with instantaneous CSI are
smaller than that Alice only knows the statistical CSI of
Eve. As shown in Fig. 4(a), we can find that the proba-
bility of Eve choosing to perform eavesdropping becomes

FIGURE 6. Attack rate of Eve over the average channel gain of
eavesdropping link.

smaller with a larger eavesdropping cost, whether Alice
knows Eve’s instantaneous CSI or not. Similarly, Fig. 4(b)
and Fig.4(c) show the jamming rate and the spoofing rate

144486 VOLUME 7, 2019
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of Eve, respectively. It can be seen that the jamming rate
and the spoofing rate with statistical information of attacker
is increasing as the eavesdropping cost increases. In con-
trast with the statistical CSI of attacker, the jamming rate
and the spoofing rate with instantaneous CSI of attacker is
steady as the eavesdropping cost increases. The reason is that
in the former case, Alice can’t obtain Eve’s instantaneous
CSI accurately, so Eve is more inclined to choose to attack.
But in the latter case, it is obvious that the eavesdropping
cost with little influence of the jamming mode and spoofing
mode.

Fig. 5 shows the average secrecy capacity with statistical
CSI of Eve, where the average channel gain hae is range
from 0.5 to 1, and the step size is 0.1. As observed from
Fig. 5, we can find that the average secrecy capacity with
instantaneous CSI of attacker is decreasing as the average
channel gain of hae increases, and it performs better than that
with statistical CSI.

The average channel gain versus the attack rate of Eve is
shown in Fig. 6. It is obvious that the attack rates of all attack
modes (m = 2, 3, 4) are higher when Alice only knows the
statistical CSI of Eve than that whenAlice knows the instanta-
neous CSI. As shown in Fig. 6(a), we can find that the prob-
ability of Eve choosing to perform eavesdropping becomes
bigger with a larger average channel gain hae, whether Alice
knows Eve’s instantaneous CSI or not. Similarly, Fig. 6(b)
and Fig. 6(c) show the jamming rate and the spoofing rate of
Eve, respectively. We can find that the jamming rate and the
spoofing rate with statistical CSI of attacker are decreasing as
the average channel gain hae increases. In contrast, the jam-
ming rate and the spoofing rate with instantaneous CSI of
attacker are steady as the eavesdropping cost increases. This
can be explained because Eve is more inclined to choose to
overhear if it chooses to attack in the former case. But in the
latter case, it is obvious that the eavesdropping link’s average
channel gain with little influence of the jamming mode and
spoofing mode.

VI. CONCLUSION
In this paper, we investigated a statistical CSI-based power
control strategy in an intelligent secure communication net-
work, which concludes a transmitter, a receiver and an
attacker, and the attacker has four attack types, including
silent, eavesdropping, jamming and spoofing. With statistical
CSI of Eve, we proposed a power control strategy based
on Q-learning. In this control strategy, Alice and Eve could
choose their actions flexibly to maximize their rewards under
different system state and learn their best strategies. In addi-
tion, the interactions between Alice and Eve were formulated
as a zero-sum game, the NE and its existence conditions of
this network were deduced. Simulation results showed the
impact on the statistical CSI of attacker known at the transmit-
ter in secure communications. By comparing with that with
instantaneous CSI of attacker, we find that the transmission
performance with instantaneous CSI of attacker has better
performance under same environment. In the future works,

we’re going to investigate some intelligent algorithms such
as the deep learning based algorithm [36]–[38] for the con-
sidered system to improve the transmission performance with
statistical CSI of attacker, and take this question: ‘‘How does
Alice know whether Eve chooses eavesdropping’’ into con-
sideration.Moreover, wewill consider to incorporate wireless
caching technique [39]–[43] into the considered system to
enhance the transmission security.
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