
Received September 5, 2019, accepted September 20, 2019, date of publication October 2, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944991

An Investigation of Electric Field and Breakdown
Voltage Models for a Deep Trench
Superjunction SiC VDMOS
TAO LIU1, SHENGDONG HU 1, JIAN’AN WANG2, GANG GUO3, JUN LUO2,
YUAN WANG1, JINGWEI GUO1, AND YANMENG HUO1
1Chongqing Engineering Laboratory of High Performance Integrated Circuits, College of Communication Engineering, Chongqing University, Chongqing
400044, China
2The National Laboratory of Analogue Integrated Circuits, No. 24 Research Institute of China Electronics Technology Group Corporation, Chongqing 400060,
China
3China Institute of Atomic Energy, Beijing 102413, China

Corresponding author: Shengdong Hu (hushengdong@hotmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61574023, in part by the Science and
Technology on Analogue Integrated Circuit Laboratory under Grant 6142802180508, in part by the Innovation Foundation of Radiation
Application under Grant KFZC2018040207, and in part by the Fundamental Research Funds for the Central Universities under Grant
2018CDXYTX0008.

ABSTRACT The theoretical analysis of breakdown model for a deep trench superjunction (DT-SJ) SiC
VDMOS is presented in this paper. The vertical electric field distribution is derived by the electric field
decomposition. Then, a fitting dependence of the critical electric field on the doping concentration for the
device is obtained, based on which, the model of breakdown voltage is given for the DT-SJ SiC VDMOS.
Analytical results are compared with simulative results with the same thicknesses of drift region from 8 µm
to 16µm and the doping concentrations from 4×1016 cm−3 to 8×1016 cm−3. It is numerically demonstrated
that the errors between model and simulation are less than 3%when N pillar and P pillar have the same width
of 1µm.

INDEX TERMS Silicon carbide, electric field, breakdown voltage, model.

I. INTRODUCTION
Nowadays, Silicon Carbide (SiC) power devices have been
increasingly applied to many new and emerging fields, such
as hybrid and pure electric vehicles, intelligent power sys-
tem, industrial control, defense and aerospace, due to their
merits of comprehensive performances of higher voltage,
higher temperature, higher power density, and more excellent
thermal conductivity, compared with traditional Silicon and
GaAs power devices [1]–[4]. Extensive researches have been
carried out on SiC power devices to obtain better and better
performance in the aspect of the breakdown voltage (BV),
the specific on resistance (Ron,sp), the maximum gate oxide
electric field (Emax,ox), and the gate charge (Qg), etc [5]–[10].
Vertical Double-diffused MOSFET (VDMOS) is one

of the mostly used power device due to its merits of
high input impedance, fast switching, easily driven, etc.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shantha Jayasinghe.

However, the conventional SiC VDMOS (C SiC VDMOS)
suffers from gate oxide reliability under high electric field,
low mobility in inversion, and the trade-off between BV
and Ron,sp. Some structures and technologies have been
widely investigated to reduce the gate oxide field for the
SiC VDMOS [11]–[21]. Besides, in order to alleviate the
trade-off between BV and Ron,sp, several technologies, which
are widely used in silicon power device such as the trench
structure and SJ [22], have been introduced into SiCVDMOS
[23], [24]. Trench structure is favorable in reducing Ron,sp
with the elimination of JFET effect and the shortening of
transverse dimensions. SJ can reduce Ron,sp and increase BV
simultaneously [25]–[27], and is one of the most promising
technologies for SiC power device [28]. Compared with the
trench technology, the studies of SiC devices with the super-
junction (SJ) principle are not as sufficient. In 2003, a 400-
V SiC lateral SJ diode was reported to be fabricated for the
first time [29]. In 2008, L. C. Yu and K. Sheng developed
the models of the electric field distribution for the SiC SJ
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FIGURE 1. Cross section of structures of SiC VDMOS. (a) C SiC VDMOS,
(b) DT-SJ SiC VDMOS.

devices [30]. Themodels were the type of piecewise function,
based on which the BV and Ron,sp were calculated. In 2012,
5-20 kV SiC SJ diodes were reported by simulation, and
the best trade-off between BV and Ron,sp were obtained
with structure parameters [31]. In 2014, Ryoji Kosugi et al.
presented the first experimental demonstration of SiC SJ
structure by multi-epitaxial growth, and a BV of 1545 V
with a Ron,sp of 1.06 m�·cm2 were measured [32]. In 2016,
a SiC Schottky diode with partial SJ region processed by two
groups of implantations was developed, and a BV of 1350V
and a Ron,sp of 0.92 m�·cm2 were achieved [33]. In 2017,
T. Masuda et al. reported that the 0.97 m�·cm2/820 V SiC SJ
V-Groove Trench MOSFET had been fabricated [34]. Since
the SJ can improve the trade-off relationship between BV and
Ron,sp, more studies of the structures and models for the SiC
SJ devices are being still expected.

The research on the structure of a novel DT-SJ SiC
VDMOS has been done in the authors’ previous work, but the
models of electric field and BV have not been involved [24].
Therefore, this paper continues to focus on the analysis and
modeling of the electric field and BV based on the previous
work. To begin with, the structure of DT-SJ SiC VDMOS
is briefly presented. Then, the analytical distribution of the
vertical electric field along the border of P pillar is obtained
by the electric field decomposition method. Thirdly, with a
fitting dependence of the SiC critical field (EC,SiC ) and the
doping concentration of the N/P pillars, the theoretical model
of the BV is thus obtained. Finally, comparisons between the
models and simulations are made to verify the accuracy of the
proposed models.

II. DEVICE STRUCTURE AND THE MODEL OF
THE VERTICAL ELECTRIC FIELD
A. DEVICE STRUCTURE
DT-SJ SiC VDMOS is illustrated as Fig. 1. Compared with
the C SiC VDMOS, one of the major distinguishing structure
features is the deep trench (DT), which extends to the drain

TABLE 1. The parameters for the DT-SJ SiC VDMOS.

FIGURE 2. Structure decomposition for electric field analysis (a) PIN
structure with drain voltage Vd , (b) SJ without voltage bias.

N+ region. The DT can alleviate the restricted dependence of
the Gauss’ law on the interface of gate oxide and the curvature
effect on the corner of the gate, producing a small Emax,ox .
The DT can also lead to a low Qg. Another feature for the
DT-SJ SiC VDMOS is the SJ in the drift region. The lateral
depletion effect between the P and N pillars leads to a heavier
doping for the full depletion; thus, a lower Ron,sp and a higher
EC,SiC are obtained. The optimized field distribution from the
SJ structure and the enhanced EC,SiC result in a higher BV for
the DT-SJ SiC VDMOS [24].

The key parameters for the DT-SJ SiCVDMOS are defined
and listed as Table 1. Sentaurus TCAD is used in the
simulations. While making the simulations, SRH, AUGER,
OkutoCrowell are used as recombination models, and Dop-
ingDependence, HighFieldSaturation and Enormal are used
as mobility models.

B. MODEL OF THE VERTICAL ELECTRIC FIELD
Based on the SJ principle, the non-balances of the charges at
the bottom of P pillar and at top of N pillar form the highest
electric fields at the points [35]. Considering the breakdown
characteristic, the electric field E(0, y) along the left edge of
the pillar P is derived. The DT-SJ structure can be decom-
posed into a PIN diode with reverse bias voltage of Vd as
shown in Fig. 2.(a), and a SJ structure with zero bias voltage
as shown in Fig. 2.(b) , respectively.

VOLUME 7, 2019 145119



T. Liu et al.: Investigation of Electric Field and Breakdown Voltage Models for a Deep Trench Superjunction SiC VDMOS

For the PIN structure, the electric field is uniformly dis-
tributed with biased voltage of Vd , then the electric field is
calculated as:

EPIN =
Vd
Ld

(1)

It is assumed that both P and N pillars have the same width
Wsj and the doping concentration Nsj for analysis. P and N
pillars are fully depleted. The electric potential in SJ satisfies
the following 2-dimension Poisson equation:

∂2φsj (x, y)
∂x2

+
∂2φsj (x, y)

∂y2
= −

qNsj
εSiC

0 ≤ y ≤ Ld , 0 ≤ x ≤ Wsj (2)

where εSiC is the permittivity of SiC, and q is the electron
charge. The boundary condition of the Eq. (2) is:

∂φsj(x, y)
∂x

∣∣∣∣
x=0
= 0

∂φsj(x, y)
∂x

∣∣∣∣
x=Wsj

= −
2[φsj(Wsj, y)− qNsjW 2

sj/2εSiC ]

Wsj

φsj(0, 0) = 0
φsj(0,Ld ) = 0

(3)

Solving Eq. (2) and Eq. (3), Esj(0, y) is derived as:

Esj(0, y)=−
∂φsj(0, y)
∂y

=
qTNsj
εSiC

·
cosh( yT )− cosh(Ld−yT )

sinh(LdT )
(4)

where T is equal to Wsj/
√
2.

According to superposition principle, E(0, y) = EPIN +
Esj(0, y), the electric field E(0, y) is obtained as:

E (0, y)=
Vd
Ld
+
qTNsj
εSiC

·

cosh
(
Ld
T

)
− cosh

(
Ld−y
T

)
sinh

(
Ld
T

) (5)

Assuming that when E(0, Ld ) reaches to EC,SiC , break-
down occurs, and BV related with Nsj, Ld and Wsj for the
DT-SJ SiC VDMOS can be obtained.

C. COMPARISONS BETWEEN THEORETICAL AND
SIMULATED ELECTRIC FIELD DISTRIBUTIONS
Both the theoretical and simulated electric fields are simul-
taneously shown in the Fig. 3 with a Ld of 12 µm and a Nsj
of 6×1016 cm−3. The drain voltage Vd varies from 600 V
to 2000 V. As the theoretical analysis, the maximum electric
field E(0, y) locates at y = Ld and the electric fields keep
almost constants in the middle of the SJ region. It is clear that
the theoretical electric fields highly agree with the simulated
results and there is a little discrepancies within the scope of
±5% in all cases. The electric fields with different lengths of
drift region on the condition of the fixed Nsj of 6×1016cm−3

are also shown in Fig. 4. The theoretical and simulated results
also match well. Besides, the dependence of the electric field
with doping concentration on the same Ld of 12 µm and

FIGURE 3. Distribution of electric field under different drain voltage with
fixed Ld = 12 µm and Nsj = 6× 1016 cm−3.

FIGURE 4. Distributions of electric fields with different Ld .

Vd of 1800 V is also shown as Fig. 5. Adding the Nsj from
4×1016 cm−3 to 8×1016 cm−3, the results from Eq. (5)
always match well with the simulative results.

In a word, the relative errors between theoretical and sim-
ulated electric fields under different geometrical parameters
are within the scope of ±5%, which show that the derived
analytical electric field model for DT-SJ SiC VDMOS is
usable.

III. MODEL OF THE BREAKDOWN VOLTAGE
For power devices, once the electric field at any position
reaches the critical field, breakdown occurs. Based on the
above analysis, the electric field peak is E(0, Ld ), which
means that when E(0, Ld ) increases to EC,SiC , the breakdown
happens in the DT-SJ SiCVDMOS. By integral of the electric
field E from 0 to Ld , BV is obtained as:

BV = Ld

[
EC,SiC −

qTNsj
εSiC

·
cosh(LdT )− 1

sinh(LdT )

]
(6)
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FIGURE 5. Distributions of electric fields with different Nsj concentration.

Obviously, the model of EC,SiC is the key point to the
calculation of BV. A critical electric field model for SiC
device had been derived by A. O. Konstantinov [36]:

EC,SiC =
2.49× 106

1− 0.25 log10(Nsj/1016)
(7)

Eq. (7) is obtained based on the epitaxial p-n diodes,
in which, the interreaction between the positive charges and
the negative charges is totally in the vertical direction. In SJ
device, there is lateral interreaction between the two types
of charges in P/N pillars. With the consideration of assisted
depletion effect in SJ structure, the expression of the criti-
cal electric in Eq. (7) need to be modified. Two additional
constants, a and b, as shown in the following Eq. (8), are
introduced to reflect the lateral depletion between the N pillar
and the P pillar in the SJ structure.

EC,SiC =
2.49× 106

1− alog10
(
bNsj/1016

) (8)

Here, two amendatory factors, a and b, are estimated by
two steps. At the first step, factors a and b are coarsely
determined by massive simulation with a Wsj of 1µm and a
Ld of 12 µm, and a ≈ 0.45 and b ≈ 0.2 are then found.
In the second step, factors a and b are finely determined by
simulation with very small step, as shown in Figs. 6 (a) and
(b). Ultimately, a = 0.45 and b = 0.19 are determined with
constraint of maximum relative error between theoretical and
simulated results less than 3%.

Based on Eq. (8), BV model for the DT-SJ SiC VDMOS is
obtained as Eq. (9).

BV = Ld

[
2.49× 106

1− 0.45log10
(
0.19Nsj/1016

)
−
qTNsj
εSiC

·

cosh
(
Ld
T

)
− 1

sinh
(
Ld
T

)
 (9)

The simulative results and theoretical results of BV are
compared as shown in Fig. 7. The theoretical results from

FIGURE 6. BV relative errors between model and simulation. Ld = 12
µm. Wsj = 1 µm. (a) with different b , (b) with different a.

FIGURE 7. BVs between model and simulation with different N/P pillar
doping concentrations Nsj . Ld = 12 µm. Wsj = 1 µm.

Eqs. (7) and (8) are both given with a Wsj of 1µm and a Ld
of 12µm. It is obvious that the proposed BVmodel of Eq. (9)
matches better with the simulative results, and the relative
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FIGURE 8. BVs between model and simulation with different thicknesses
of drift region Ld . Wsj = 1 µm.

errors are less than 3% with doping concentration range from
4×1016 cm−3 to 8×1016 cm−3.
Eq. 9 is verified in comparison with the simulative results

while Ld varies from 8 µm to 16 µm. As shown in Fig. 8,
under all the used conditions, the relative errors are all less
than 3%.

IV. CONCLUSION
The model of the vertical electric field is derived for the
DT-SJ SiC VDMOS. By fitting the critical field of the SiC
SJ structure, the theoretical model of the BV is thus obtained.
Extensive simulations validate the models of the electric field
and BV, which will be beneficial for quantitative prediction
of the breakdown characteristic of the SJ SiC device.
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