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ABSTRACT Aiming at the problem of ease of falling into local optimum and low solution quality when
solving optimization problems, this paper proposes an adaptive hybrid cuckoo search (AHCS) algorithm.
AHCS improves the Lévy flight method and population evolution strategy of the cuckoo search (CS)
algorithm, and introduces a mutation operation operator. Inspired by the idea of position update of particle
swarm optimization (PSO) algorithm, this paper introduces the inertia weight w in the Lévy flight method
of CS algorithm, and gives the new dynamic adjustment methods of parameters α and β respectively.
In order to enhance the local search ability and optimization speed of the algorithm, this paper introduces the
mutation operation operator, and presents a new evolution strategy of the hybrid cuckoo search algorithm.
In addition, in order to verify the performance of AHCS, 30 benchmark functions and CEC 2017 optimization
problems were selected. The calculation results of the 30 benchmark functions and CEC 2017 optimization
problems show that compared with other algorithms, the number of winning cases of t-test values and
the Friedman average ranking for AHCS are significantly better than other algorithms. Finally, AHCS and
various intelligent optimization methods in the literature are used to optimize the structural parameters of
the reducer and the cantilever beam. The optimization results show that the quality of AHCS solution is
significantly better than other algorithms.

INDEX TERMS Hybrid cuckoo search algorithm, adaptive parameter adjustment, mutation operator,
evolutionary strategy.

I. INTRODUCTION
In 2009, Yang and Deb [1] proposed a random optimization
algorithm for swarm search, namely cuckoo search (CS)
algorithm, based on the interesting breeding behavior such
as brood parasitism of certain species of cuckoos. Com-
pared with other intelligent optimization algorithms, CS has
fewer parameter settings, simple operation, and clear process.
Therefore, it is easier to implement. At present, CS has
been widely used in travel sales problem [2]–[4], job
scheduling [5]–[8], location problem [9], [10], fault diag-
nosis and prediction [11], [12] and image processing and
classification [13]–[16].

In recent years, CS has gradually attracted people’s
attention with its unique and excellent performance.
Many scholars have conducted in-depth research on CS and
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obtained some research results. According to the mechanism
and technology used, the progress and attempts made by CS
can be divided into the following categories: (1) research on
the improvement of position update mechanism of CS [12],
[17]–[23]; (2) improvement of the parameter adjustment
method of CS [17], [18], [20]–[28]; (3) application research
of CS [3], [8], [25], [29]–[40]. The improvement and research
of these algorithms not only improve the optimization perfor-
mance of CS, but also promote the development of CS theory
and application.

The individual position update method of the CS is a
major factor affecting the performance of the CS. There-
fore, many scholars have focused their research on the
position update of CSs. In 2012, Rani et al. [17] intro-
duced a linearly decreasing inertia weight with increasing
number of iterations in the Lévy flight of CS. In 2013,
Kaveh and Bakhshpoori [18] proposed a Lévy flight
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method with contemporary optimal individual guidance in
CS. In 2018, Dhabal and Venkateswaran [19] proposed
an optimal individual guidance position update method
in the CS, which solved the problem of slow conver-
gence of the algorithm by replacing the contemporary
individuals with the random generation method. In 2019,
Chen and Wang [20] improved the Lévy flight method in
the CS, avoiding the situation where the individual in the
population is the optimal individual and the position update
fails. In 2019, Zhang et al. [12] improved the Lévy flight
method by fully combining the information of individual
fitness values in the CS. In 2019, Gmili et al. [21] pro-
posed a hybrid particle swarm optimization-cuckoo search
(PSO-CS) algorithm, and applied the improved hybrid algo-
rithm to quadrotor control and trajectory tracking. In 2019,
Thirugnanasambandam et al. [22] proposed an improved CS.
In the improved algorithm, the original discarding strat-
egy is modified, and a parameter memory matrix is intro-
duced to guide the individuals of the population. In 2019,
Zhang et al. [23] proposed an improved CS. The improved
algorithm proposes a new boundary processing method.
At the same time, a new Lévy flight method and a random
search method are also given.

In the research of the parameter adjustment methods
of CS, in 2015, Maribel Guerrero et al. described the
enhancement of the CS Algorithm via Lévy flights using a
fuzzy system to dynamically adapt its parameters. In 2017,
Jaballah and Meddeb [25] proposed a CS with adaptive
parameter adjustment. The algorithm adopts an adjustment
method that linearly decreases with the increase of the num-
ber of iterations for the parameter pa, and adopts an adjust-
ment method that nonlinearly increase with the increase
of the number of iterations for the parameter α. In 2017,
Chi et al. [26] combined CS with PSO to propose a hybrid
CS-PSO. At the same time, the hybrid algorithm uses an
adjustment method for the parameter α in the Lévy flight
with a linear decrease as the number of iterations increases.
In 2018, Ma et al. [27] introduced a parameter adaptive
parameter adjustment method in CS. In order to avoid falling
into local optimum, this method draws on the idea of grey
wolf optimization (GWO) and gives certain weights to the
best individuals in the three optimal subpopulations to gener-
ate new individuals. At the same time, each of individual in
the population is compared with the newly generated individ-
ual to complete the adaptive adjustment of the parameter α.
In 2019, Zhang et al. [12] proposed a CS algorithm with
dynamic adjustment parameters. The algorithm adopts differ-
ent adjustment methods for the parameter α and the param-
eter pa, which are nonlinearly decreasing as the number of
iterations increases. In 2019, Chen and Wang [20] proposed
a hybrid CS that uses a method of nonlinear decrement as
the number of iterations increases to adjust the parameter α.
In 2019, Ong and Zainuddin [28] proposed a CSwith adaptive
parameter adjustment. In the adjustment of the parameter α,
the algorithm fully considers the information of the aver-
age fitness value of the contemporary population. In 2019,

Thirugnanasambandam et al. [22] proposed a CS with adap-
tive parameter adjustment and applied it to multi-peak
numerical optimization problems. In the improved algorithm,
the information of the optimal individual fitness value in the
contemporary population is considered, and the parameter α
is adaptively adjusted.

In the application research of CS, in 2013,
Ouaarab et al. [3] proposed an improved discrete CS and
applied it to the traveling salesman problem. In 2016,
Gonzalez et al. [16] presented the optimization of a fuzzy
edge detector based on the traditional Sobel technique com-
bined with interval type-2 fuzzy logic, and applied the CS
and genetic algorithm to optimize the fuzzy inference sys-
tems. In 2017, Mohammadrezapour et al. [29] used the CS
for the optimization of water allocation and crop planning
under different weather conditions. In 2017, Zhang et al. [30]
proposed an improved CS and applied it to solve linear
equation problems. In 2017, Jaballah and Meddeb [25]
proposed an improved CS with a new adaptive parameter
adjustment and applied it to solve complex RFID network
planning problems. In 2018, Raha et al. [31] applied the
CS to the unpowered scheduling based on superconducting
magnetic energy storage systems. In 2018, Zhu et al. [8]
proposed a hybrid cuckoo-differential evolution (CS-DE)
algorithm, and applied the hybrid algorithm to the no-wait
flow shop scheduling. In 2018, Agasthian et al. [32] opti-
mized the parameters of the support vector machine by
the CS, and applied the support vector machine optimized
by the CS to the fault classification and detection of the
wind turbine. In 2018, Hosseinalizadeh et al. [33] proposed
a hybrid CS and applied it to the improvement of steam
turbine speed regulation and excitation system identification
procedures. In 2018, Biswal et al. [34] proposed an adap-
tive CS algorithm and applied the improved algorithm to
time-frequency analysis and classification of power signals.
In 2018, Cheng et al. [35] proposed a CS with memory and
used it in the fault diagnosis of hydroelectric generating
sets. In 2018, Chen et al. [36] proposed an improved CS and
applied it to solve the inverse geometric heat conduction
problem. In 2018, Prasath and Kumanan [37] proposed a
distance-oriented CS, and applied the improved algorithm to
the problem of water quality analysis based on water quality
images. In 2019, Wu et al. [38] proposed a hybrid model
based on an improved multi-objective CS for short-term load
forecasting of power systems. In 2019, Chen and Zhou [39]
proposed a hybrid CS using quasi-Newton method for bound-
ary condition identification of non-Fourier heat conduction
problems. In 2019, Meng et al. [40] proposed an improved
CS for multi-target hydropower station operation.

In summary, many scholars have contributed on the
improvement of CS. Although scholars have made some
achievements in the improvement of the CS, there are still
some problems. The improved CS proposed in the lit-
erature [12], [20], [23] and [25]–[28] only improves the
adjustment method of the parameter α or β, and improves the
convergence speed of the algorithm. However, the algorithm
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still has the problem of premature convergence and the inabil-
ity to find the global optimal solution. A good CS should
have the following properties: (1) the position update formula
should make full use of the information of the fitness value
of the contemporary population, the average fitness value of
the population, and the number of iterations of the algorithm;
(2) the loop statement should be reduced in programming
to increase the speed of computation; (3) it can converge
faster, while avoiding premature convergence; (4) the max-
imum number of iterations should be avoided as an iterative
termination condition to ensure fairness due to differences
in the complexity of different algorithms. In response to the
above problems, this paper proposes AHCS.

The main contributions of this study are as follows:
• We propose an adaptive hybrid cuckoo search algorithm.
There are three main aspects for the improvement of
AHCS:
1) The Lévy flight method of the AHCS is improved.
In the Lévy flight method of CS algorithm, this paper
introduces the dynamic inertia weight w, and gives the
new adaptive adjustment methods of parameters α and β
respectively.
2) The mutation operator is introduced in the AHCS.
3) An improved population evolution strategy of the
AHCS is proposed.

• The proposed AHCS and other improved algorithms
in literature have been used to optimize 30 benchmark
functions and CEC 2017 optimization problems, and the
AHCS is superior to other algorithms in the number of
winning cases of t-test values and the Friedman average
ranking.

• We compare the proposed AHCS with other improved
algorithms in literature in the parameter optimization of
the reducer and the cantilever beam, and the proposed
AHCS outperforms them in quality of the solutions.

The paper is organized as follows. Section II introduces the
processing method of the constraint optimization problems-
penalty function method. Section III is a brief introduction of
the basic CS algorithm. The overall structure and improve-
ment of the AHCS are presented in section IV. The experi-
mental results of AHCS and other improved algorithms are
compared in section V and section VI. Finally, we conclude
and make a summary in section VII.

II. PENALTY FUNCTION METHOD FOR CONSTRAINED
OPTIMIZATION PROBLEMS
The mathematical model of a constrained optimization prob-
lem can be generally expressed as follows:

min f (X ), X = [X1,X2, · · · ,Xk , · · · ,Xn] ∈ R

s.t.

{
hi(X ) = 0, i = 1, 2, · · · , p
gj(X ) ≥ 0, j = 1, 2, · · · , q

(1)

where s.t . is short for ‘‘subject to’’, n is the population size,
hi(X ) = 0 is the i-th equation constraint, p is the number of
equation constraints,gj(X ) ≥0 is the j-th inequality constraint,

q is the number of inequality constraints, and Xk is a
m-dimensional vector Xk = (xk1, xk2, . . . , xkm).
Eq. (1) can be expressed as
min f (X ),X = [X1,X2, · · · ,Xk , · · ·Xn] ∈ R
s.t. R = {X |hi(X ) = 0, i = 1, 2, · · · , p; gj(X ) ≥ 0,

j = 1, 2, · · · , q}

(2)

Letting X∗ be the optimal solution to the constrained opti-
mization problem means ∀X ∈ R: f (X∗) ≤ f (X ). In addition,
if gj(X∗) = 0, the constraint is referred to as active constraint.
Under this concept, all the equation constraints hi(X ) = 0
(i = 1, 2,..., p) are active at X∗.
The penalty function method can be used to convert a

constrained optimization problem to an unconstrained opti-
mization problem. For this purpose, the penalty function is
constructed by [41]

P(X ,M )= f (X )+M1

p∑
i=1

[hi(X )]2+M2

q∑
j=1

[
min(0, gj(X ))

]2
(3)

whereM1 andM2 are the penalty factors, generally chosen as
large enough positive constants; the second and third terms
on the right are the penalty terms, and P(X, M) is the penalty
function.

In Eq. (3), when X ∈ R, there should be no penalty to the
feasible points, thus P(X , M ) = f (X ); when X /∈ R, for
the non-feasible points, M1 and M2 should be big, therefore,
the value of the second and third terms in Eq. (3) are large,
which is equivalent to the ‘‘penalty’’ for the infeasible point.
Moreover, when X gets farther away from the feasible region,
the penalty should be larger. When M1 and M2 become suf-
ficiently large, the minimal point X (M ) of the unconstrained
optimization problem of Eq. (3) is close enough to the mini-
mum point of the original constrained optimization problem.
WhenX (M ) ∈ R, it becomes theminimal point of the original
constraint problem.

The minimum value of Eq. (3) is given by

minP(X ,M ) (4)

which is equivalent to the minimum value of Eq. (1).

III. BASIC CUCKOO SEARCH ALGORITHM
CS is a novel algorithm based on the breeding behavior
of cuckoo species. For the sake of simplicity, the breeding
behavior of cuckoo species can be idealized as the following
rules [1]:

1) Each of cuckoo lays one egg at a time, and a random
nest is selected to dump the egg.

2) The best nests with high quality of eggs will carry over
to the next generations.

3) The number of available host nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird
with a probability pa ∈[0,1]. In this case, the host bird
can either discard the egg or the nest so as to build a
completely new nest in a new position.
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In the basic CS, Yang andDeb also introduced the principle
of Lévy flight. The Lévy flight process, named by the French
mathematician Paul Lévy, is essentially a model of random
walks that is characterized by random step lengths drawn
from a power law distribution [3].

Let N be the population size andD be the dimension of the
variable. The i-th individual in the population is Xi = [xi1,
xi2, . . ., xiD], The lower and upper boundaries of xi1, xi2, . . .,
xiD are a1, a2, . . ., aD and b1, b2, . . ., bD, respectively. At the
same time, let a = [a1, a2, . . ., aD] T , b = [b1, b2, . . ., bD]T .
During the generation of new solution xi(t+1), a Lévy

flight [42]is carried out as in Eq. (5).

xi(t + 1) = xi(t)+ α ⊕ Lévy(β) (5)

where xi(t) represents the position of the i-th nest at the
t-th iteration, ⊕ represents dot multiplication, α is step
parameter, usually taking α = 0.01, Lévy is the Lévy flight
utilized for a randomwalk, and Lévy can be expressed as [33]

Lévy(β) =
µ

|ν|1/β
(6)

where both µ and ν follow the normal distribution.

µ ∼ N
(
0, σ 2

µ

)
, v ∼ N

(
0, σ 2

v

)
, σµ = 1

σv =

(
0(1+ β) ∗ sin(π ∗ β/2)
0((1+ β)/2) ∗ β ∗ 2(β−1)/2

)1/β

(7)

where β = 1.5, and 0 is a gamma distribution function.
Abandon the worst nests with a probability (pa), and build

the new ones at new locations according to Eq. (8)

xi(t + 1) =

{
xi (t)+ v

(
xj (t)− xk (t)

)
, r < pa

xi(t), r ≥ pa
(8)

where t is the number of algorithm iterations, r and v are
uniform random number in [0,1], pa is the probability that the
nest will be discarded, xj(t) and xk (t) are the two randomly
selected nest positions in the t-th iteration.

The pseudo code of the basic CS algorithm is shown in
Algorithm 1.In Algorithm 1, N is the population size, t is the
number of iterations, and MaxGen is the maximum number
of iterations, and pa is the probability of dropping.

IV. IMPROVED ADAPTIVE HYBRID CUCKOO
SEARCH ALGORITHM
A. IMPROVEMENT OF STEP SEARCH METHOD
Lévy flight is a random walk method based on the dis-
tribution of heavy-tailed probability [1], which has strong
global search ability [40], [44]. In the early stage of the CS
algorithm optimization, the Lévy flight method can enhance
the global search ability of the algorithm. However, in the
later stage of algorithm optimization, Lévy flight can generate
large random walk steps, which is not conducive to the local
search of the algorithm, resulting in slow convergence of the
algorithm. In order to solve this problem, the idea of PSO
with inertia weight is used [1], [45]. This paper introduces
the inertia weight w in the Lévy flight of CS to accelerate the

Algorithm 1 Basic Cuckoo Search Algorithm (BCS)
1: Begin
2: Randomly generate N initial nests
3: Evaluate the fitness value of all initial nests
4: t = 0
5: While t <MaxGen
6: t = t+1;
7: For i = 1 to N
8: Generate new solution xi(t+1) using Eqs. (5)-(7)
9: Evaluate the fitness value of xi(t+1)
10: Iff (xi(t+1))< f (xi(t))
11: Replace the i-th solution and accept the new
solution as xi(t+1)
12: End if
13: End for
14: Abandon the worst nests with a probability (pa), and
build the new ones at new locations according to Eq. (8)
15: Keep the best nests
16: Rank the best solutions and find the current best
17: End while
18: Output the best solution and optimal value
19: End

convergence of the algorithm. The improvement of the Lévy
flight method of CS is as follows:

xi(t + 1) = wxi(t)+ α ⊕ Lévy(β)⊕ (xi (t)− gbest (t)) (9)

where w is inertia weight, xi(t) represents the position of the
i-th nest at the t-th iteration,⊕ represents dot multiplication,
α is step parameter, and β is a parameter, gbest (t) is the
best nest.

Technically, the larger w has the greater global search
ability whereas the smaller w has greater local search ability.
Based on (9), in order to make the CS have a better perfor-
mance, w was nonlinearly decreased from a relatively large
value to a small value. The update method of w is as follows:

w = 1− e−
1/t (10)

where t is the number of iterations.
Similar to the PSO velocity update method, the Lévy

flight method in CS is also sensitive to parameter settings.
Therefore, some new CSs have been proposed in succession
by introducing some new parameter adjustment methods.
The literature [46] summarized the types of two dynamic
parameter adjustments of the Lévy flight method in CS, and
proposed the adjustment methods of the parameters α and
β according to the two types. The literature [47] proposed
a method for adjusting the parameter β with nonlinear incre-
ment as the number of iterations increases. The literature [48]
proposed a method to adaptively adjust the parameter α by
fully considering the information of the optimal solution
and the optimal value in the population. The literature [49]
proposed a method to adjust the parameter β by referring
to the swarm information and the individual’s own experi-
ence. The literature [50] proposed a method for adjusting
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the parameter α with nonlinear decrement as the number
of iterations increases. As can be seen from the simulation
results in references [46]–[50] that the improved parame-
ter adjustment methods effectively improve the convergence
speed of CS. At the same time, through the analysis of the
parameter adjustment methods, it is found that the adjustment
of these literatures parameters is related to the maximum
number of iterations setting by the algorithm. The maximum
number of iterations is set differently, and the convergence
effect of the algorithm is also different. In order to reduce
the influence of the maximum iteration number setting on
CS optimization performance and improve the convergence
speed of CS, the new adjustment methods of parameter α and
parameter β are given respectively. The adjustment methods
of the parameters α and β are as follows:

αi(t) = 0.5+ 1.5(
1
√
t
)

∣∣∣ fbest (t)−fi(t)
fbest (t)−fworst (t)+ε

∣∣∣ (11)

βi(t) = 0.5+ 0.1

∣∣∣∣ fbest (t)− fi(t)
fbest − fworst + ε

∣∣∣∣t0.1 (12)

where t is the number of algorithm iterations, fi(t) is the
fitness value of the i-th individual in the t-th iteration of
the population, fbset (t) is the optimal fitness value of the
t-th iteration of the population,fworst (t) is the worst fitness
value of the t-th iteration of the population, ε used to avoid
zero-division-error, is the smallest constant in the computer.

It can be seen from equations (9) and (10) that the algo-
rithm can converge quickly due to the introduction of inertia
weights that decrease nonlinearly with increasing number
of iterations. At the same time, the algorithm can converge
to the global optimal solution faster because of the intro-
duction of the optimal individual in the population. In the
new adjustment method of the parameter α, individuals in
the population can adaptively adjust according to their fit-
ness values and contemporary optimal fitness values. In the
adjustment method of the parameter β, the individuals in the
population adaptively adjust according to the fitness values
of the population and the number of iterations. By analyzing
the updating methods of parameters α and β, it is known that
individuals with better fitness values have larger parameter
values, and individuals with poor fitness values have smaller
parameter values. In the update formulas of parameters
α and β, the update of the parameters is not affected by the
maximum number of iterations.

B. ADDITION OF MUTATION OPERATOR
According to the iterative update mechanism of CS, the algo-
rithm adopts the position update method of Lévy flight to
generate a large search step. In the early stage of the algorithm
search, CS can perform global search with a large search
step. In the later stage of the algorithm search, the larger step
size leads to slower convergence of the algorithm and weaker
local search ability. In response to this problem, this paper
introduces a mutation operator. The operation method of the

mutation operator is as follows:

xi (t + 1) =



xi(t)+ (xj(t)− xi(t))(1− re
−λ/t

1 ),
r2 < pc&r3 < 1/2

xi(t)− (xj(t)− xi(t))(1− re
−λ/t

1 ),
r2 < pc&r3 ≥ 1/2

xi(t)+ r4(xj(t)− xk (t)), r2 ≥ pc

(13)

where t is the number of algorithm iterations, the parameter
λ = 1.2, pc is the probability of mutation, r1, r2, r3 and
r4 are uniform random numbers in [0,1], xi(t) represents the
position of the i-th nest at the t-th iteration, xj(t) represents the
position of the j-th nest at the t-th iteration, xk (t) represents
the position of the k-th nest at the t-th iteration, and i, j and k
are not equal to each other.

Analysis of the mutation operator given in this paper shows
that in the late iteration of the algorithm, individuals in the
population can perform local search in a small step size. The
mutation operator given in this paper can effectively enhance
the local search ability of the algorithm.

C. EVOLUTIONARY STRATEGY OF ADAPTIVE HYBRID
CUCKOO SEARCH ALGORITHM
When the improved CS performs a local search, the algorithm
may still have a locally optimal situation. In order to reduce
the probability that CS falls into local optimum, this paper
proposes a new evolutionary strategy. The evolutionary strat-
egy of the adaptive hybrid cuckoo search is as follows:

(1) Timing begins, initialize the relevant parameters of
AHCS, such as the population size N , disturbed iteration
threshold T0, the maximum runtime of the algorithmmaxrun-
time and so on.
(2) The initial population is generated as follows:

x = a+ rand(1,D). ∗ (b− a) (14)

where x is an individual in the randomly generated initial
population, b is the upper bound vector of the variable, a is
the lower bound vector of the variable,D is the dimension of
the variable, rand (1, D) is a random uniform vector in [0,1],
and ‘‘.∗’’ shows the dot product of two vectors.

(3) Calculate the fitness values of all nest positions in the
population, and sort the fitness from small to large, and record
the best nest position and its fitness.

(4) For each nest, according to Eqs. (6), (7) and (9)-(12),
the positional update of the Lévy flight is performed on the
AHCS. After that, the fitness value of the nest position after
the position update is calculated, and compared with the
fitness of the bird’s nest position before the update, the better
bird’s nest position and its fitness value are retained.

(5) For each nest, the nest position is discarded according to
Eqs. (15)-(18). After that, the fitness value of the nest position
after the discarding operation is calculated, and compared the
fitness value of the nest position before the discarding, the
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better nest position and its fitness are retained.

xi (t + 1) =



xi(t)+ H1
(
xp(t)− xi(t)

)
+H2

(
xg(t)− xi(t)

)
+rr1

(
xj(t)− xk (t)

)
, r < pa

xi(t), r ≥ pa

(15)

pa =
1

1+ e(−(
t−1
t )50)

− 0.5 (16)

H1 =


0, pa < rr2

0.5, pa = rr2

1, pa > rr2

(17)

H2 =


0, pa < rr3

0.5, pa = rr3

1, pa > rr3

(18)

where t is the number of algorithm iterations, parameter pa is
the drop probability, xp(t) is the historical optimal solution for
the i-th bird’s nest position,xg(t) is the global optimal solution
of the population,xi(t), xj(t), and xk (t) are different bird nest
positions, r , rr1, rr2, and rr3 are uniform random numbers
in [0,1].

(6) According to Eq. (13), all nest positions are subjected to
mutation operations. After that, for each nest, the fitness value
of the nest position after the mutation operation is calculated,
and compared with the adaptability of the nest position before
the mutation, and the better nest position and its fitness are
retained.

(7) Record the optimal nest position and its fitness value
in each iteration of the algorithm. If the number of fitness
stagnations exceeds T0, the optimal position of the population
is perturbed using Eq. (19). After that, the fitness value of the
nest position after the disturbance is calculated, and compared
with the fitness value of the best nest position before the
disturbance, the better nest position and its fitness value are
retained.

xbest (t + 1) = xbest (t)+ N (0, 1). ∗ (xi(t)− xj(t)) (19)

where xbest is the optimal solution in the population, and
N (0,1) is a Gaussian distribution with mean 0 and variance 1,
‘‘.∗’’ represents dot multiplication, and xi(t) and xj(t) are
any two different nest positions in the population of the
t-th iteration.
(8) Record the running time of the algorithm runtime, if the

iteration stop condition is satisfied, the optimal solution and
the optimal value are output; if not, then return to (4).

The pseudo code of the adaptive hybrid cuckoo search is
shown in Algorithm 2.

In Algorithm 2, N is the population size, t is the iteration
number, pa is the probability of dropping, pc is the probability

Algorithm 2 Adaptive Hybrid Cuckoo Search (AHCS)
1: Begin
2: Let timing initial value is runtime=0, start the timer
3: Randomly generate N initial nests
4: Evaluate the fitness value of all initial nests
5: t = 0;
6: While runtime<maxruntime
7: t = t+1;
8: For i = 1 to N
9: Generate a new solution xi(t+1) using Eqs. (6),
(7) and (9)-(12)
10: Evaluate the fitness value of xi(t+1)
11: If f (xi(t+1))< f (xi(t))
12: Replace the i-th solution and accept the new
solution as xi(t+1)
13: End if
14: End for
15: For i = 1 to N
16: Abandon the worst nests with a probability
(pa), and generate a new solution xi(t+1) according to
Eqs. (15)-(18)
17: Evaluate the fitness value of xi(t+1)
18: If f (xi(t+1))< f (xi(t))
19: Replace the i-th solution and accept the new
solution as xi(t+1)
20: End if
21: End for
22: For i = 1 to N
23: Mutation operation with a probability (pc),

and generate a new solution xi(t+1) according
to Eq. (13)
24: Evaluate the fitness value of xi(t+1)
25: If f (xi(t+1))< f (xi(t))
26: Replace the i-th solution and accept the new
solution as xi(t+1)
27: End if
28: End for
29: If T > T0
30: generate a new solution xbest (t+1) according to
Eq. (19)
31: Evaluate the fitness value of xbest (t+1)
32: If f (xbest (t+1))< f (xbest (t))
33: Replace the i-th solution and accept the new
solution as xbest (t+1)
34: End if
35: End if
36: Record running time runtime
35: End while
36: Output the best solution and optimal value
37: End

of mutation, runtime is the running time of the algorithm,
maxruntime is the maximum runtime of the algorithm, T0 is
the maximum number of stagnation of the optimal value in
the population, T is the number of stagnations of the optimal
value in the population.
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FIGURE 1. The flow chart of the AHCS algorithm.

The flow chart of the adaptive hybrid cuckoo search algo-
rithm is shown in FIGURE 1.

V. NUMERICAL EXPERIMENTS
A. BENCHMARK FUNCTIONS
To evaluate the performance of the proposed AHCS and
conduct a further comparative study, a set of well-known test
functions [23], [51] are used as benchmark problems. The
dimension of these test functions can be fixed or unfixed.
Functions f1-f14 and f21-f23 are unimodal functions, and
functions f15-f20 and f24-f30 are multimodal functions. The
30 benchmark functions are shown in TABLE 1.

In TABLE 1, Dim represents the dimension of these test
functions. D is the dimension of the variable, and it is a
variable value. This paper takes D=30.

B. ALGORITHM PERFORMANCE EVALUATION INDEX
In this section, in order to measure the performance of
AHCS, the mean value, standard deviation value, t-test val-
ues, Friedman average ranking given in the literature [22],
and VS are used as performance evaluation indicators.

The mean value is defined as the average function value
achieved by the algorithm out of the total number of indepen-
dent runs R times. The mean value is abbreviated as MEAN,
and is represented in Eq. (20).

MEAN =

∑R
i=1 fi
R

(20)

where fi is defined as the best fitness value that the algorithm
achieved in the i-th run.
VS is an evaluation index of the mean comparison between

the other algorithm and the proposed algorithm. ‘‘+’’, ‘‘−’’
and ‘‘=’’ are three results of the mean comparison between
the other algorithm and the proposed algorithm. ‘‘+’’ sig-
nifies the condition where mean of the other algorithm is
better than the proposed algorithm, ‘‘−’’ signifies the con-
dition where mean of the other algorithm is worse than the
proposed algorithm, ‘‘=’’ signifies the condition where both
the proposed and the algorithm in comparison have the same
mean results.

The standard deviation is defined as the actual deviation
that exists between the average function values achieved in R
times runs. The standard deviation is abbreviated as SD, and
is represented in Eq. (21).

SD =

√∑R
i=1 (fi −MEAN )2

R
(21)

The t-test values are calculated for every function using its
mean and standard deviation in each existing algorithm. The
t-test value is abbreviated as Tval , and is calculated using the
Eq. (22).

Tval =
MEAN1 −MEAN2√

SD2
1+SD

2
2

R + ε

(22)

where MEAN1, MEAN2 and SD1, SD2 are respectively the
mean and standard deviation values of other algorithms and
AHCS algorithm, R is the number of independent runs of the
algorithm, ε is used to avoid zero-division-error, and ε is the
smallest constant in the computer. The t-test has been carried
out with the significance level of α = 0.05. The winning (w),
tie (t) and lost (l) cases of t-test values for AHCS over existing
algorithms are represented in the last row of each table with
the attributes namely w/t/l. For each algorithm that compares
with AHCS, w represents the number of t-test values greater
than 0, t represents the number of t-test values equal to 0, and
l represents the number of t-test values less than 0.

In order to check the significant difference of the pro-
posed AHCS algorithm, the Friedman average ranking test
has been used to compare the performance of the AHCS
and other algorithms. With this test, the relative ranking
of each algorithm has been calculated based on the mean
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TABLE 1. 30 benchmark functions with dimension in experiments.
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TABLE 2. Parameter Settings for seven improved CSs.

values for every function and finally the average ranking
and final ranking of all the algorithms are given. The final
ranking of all algorithms is based on their average rank-
ing. The average ranking is computed using the following
process.

Step1: Gather statistical results for k algorithm.
Step2: For each function i, rank mean values from 1 (best

result) to k(worst result), the average ranks are assigned in
case of ties. Denote these ranks as r ji (1≤ j ≤ k).
Step3: For each algorithm j, average the ranks obtained in

all functions to obtain the final average ranking Rj, the Rj is
computed by Eq. (23).

Rj =
1
n

∑n

i=1
r ji (j = 1, 2, · · · , k) (23)

where n is the number of functions, k is the number of
algorithms for participation in comparison.

C. COMPARSION OF ADAPTIVE HYBRID CUCKOO SEARCH
ALGORITHM AND OTHER IMPROVED CUCKOO
SEARCH ALGORITHMS
AHCSwas compared to seven improved CSs in the literature.
The seven improved CSs that participated in the comparison
are as follows: (1) the basic CS in reference [1] is abbreviated
as BCS; (2) the improved CS in reference [52] is abbreviated
as ICS; (3) the proposed CS with explosion operator in refer-
ence [20] is abbreviated as CS-EO; (4) the proposed dynamic
CS in reference [12] is abbreviated as DCS; (5) the proposed
reinforced cuckoo search in reference [22] is abbreviated as
RCS; (6) the modified CS in reference [28] is abbreviated as
MCS; (7) the proposed cuckoo search version 1.0 in refer-
ence [53] is abbreviated as CV 1.0.

The size of all populations participating in the compar-
ison algorithm is N = 40, and the maximum runtime is
maxruntime=20 seconds. See TABLE 2 for other parameter
settings for various algorithms. For each algorithm, each test
function is run independently 30 times. In order to ensure fair-
ness of comparison, and to quickly obtain statistical results,
it is guaranteed that for the same test functions, all algorithms
participating in the comparison are tested on the same operat-
ing system of the same computer. At the same time, different
test functions can be tested in the same operating system in
different computers.

The statistical results of the mean and standard deviation
are shown in TABLE 3. The comparisons of the statistical
results are shown in TABLE 4.

As seen in TABLE 3, the algorithm proposed in this paper
can converge global optimal solution for most of the test
functions, which are f1-f3, f5-f23, f25, and f29; while other
intelligent methods have some cases where the convergence
accuracy of the test function is low, for example, BCS for
functions f1, f16, f17, f21, f24-f28 and f30, ICS for functions f2,
f9, f15, f17, f21, and f24-f27, DCS for functions f15 and so on.

As seen in TABLE 4, compared to the other seven
improved CSs, the number of winning cases of t-test values
for AHCS is greater than the number of lost cases of t-test val-
ues, and the Friedman average ranking of AHCS is better than
the other seven improved CSs. Therefore, the performance of
AHCS is significantly better than the other seven improved
algorithms.

D. COMPARSION OF ADAPTIVE HYBRID CUCKOO SEARCH
ALGORITHM AND OTHER IMPROVED ALGORITHMS
AHCS was compared to seven improved algorithms in the
literature. The seven improved algorithms that participated
in the comparison are as follows: (1) the improved chicken
swarm optimization in reference [54] is abbreviated as
ICSO; (2) the improved chicken swarm optimization in refer-
ence [55] is abbreviated as MDCSO; (3) the improved firefly
algorithm in reference [56] is abbreviated as NAFA; (4) the
improved firefly algorithm in reference [57] is abbreviated as
DUFA; (5) the improved PSO in reference [58] is abbreviated
as OBLPSOGD; (6) the improved grey wolf optimizer in
reference [59] is abbreviated as AGWO; (7) the improved
real code genetic algorithm in reference [60] is abbreviated
as IRCGA.

The size of all populations participating in the compar-
ison algorithm is N = 40, and the maximum runtime is
maxruntime=20 seconds. See TABLE 5 for other parameter
settings for various algorithms. For each algorithm, each test
function is run independently 30 times. In order to ensure fair-
ness of comparison, and to quickly obtain statistical results,
it is guaranteed that for the same test functions, all algorithms
participating in the comparison are tested in the same operat-
ing system of the same computer. At the same time, different
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TABLE 3. The statistical results of AHCS and seven improved CSs on 30 benchmark functions.
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TABLE 4. The comparison results of AHCS and seven improved CSs on 30 benchmark functions.
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TABLE 4. (Continued.) The comparison results of AHCS and seven improved CSs on 30 benchmark functions.

test functions can be tested in the same operating system on
different computers.

The statistical results of the mean and standard deviation
are shown in TABLE 6. The comparisons of the statistical
results are shown in TABLE 7.

As seen in TABLE 6, the algorithm proposed in this paper
can converge global optimal solution for most of the test
functions, which are f1-f3, f5-f23, f25, and f29; while other
intelligent methods have some cases where the convergence
accuracy of the test function is low, for example, ICSO for
functions f4, f24, f28 and f30, MDCSO for functions f4, f7, and
f24, and so on. For functions f4 and f30, all algorithms cannot
converge global optimal solution.

As seen in TABLES 7, compared to the other seven
improved algorithms, the number of winning cases of t-test
values for AHCS is greater than the number of lost cases of
t-test values, and the Friedman average ranking of AHCS is
better than the other seven improved algorithms. Therefore,
the performance of AHCS is significantly better than the
other seven improved algorithms.

E. TEST ON CEC 2017 OPTIMIZATION PROBLEMS
We further tested the performance of the proposed approach
on a set of 28 CEC 2017 optimization problems. TABLE 8
show these test problems, the detail of which can be found in
reference [61].

The size of all populations participating in the compar-
ison algorithm is N = 40, and the maximum runtime is
maxruntime=20 seconds. The number of the decision vari-
ables of the optimization problems is D = 30, and the
penalty factor is M = 108. The other parameters are set
in TABLES 2 and 5. Each algorithm is run independently
30 times for each CEC 2017 optimization problem. In order
to ensure fairness of comparison, and to quickly obtain statis-
tical results, it is guaranteed that for the same test functions,
all algorithms participating in the comparison are tested in
the same operating system of the same computer. At the
same time, different test functions can be tested in the same
operating system on different computers.

TABLES 9 and 11 show the statistical results of AHCS and
other improved algorithms. The comparison results of AHCS
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TABLE 5. Parameter Settings for seven improved algorithms.

and other seven improved CSs are shown in TABLE 10, and
the comparison results of AHCS and seven other improved
algorithms are shown in TABLE 12.

In TABLE 8, D is the number of decision variables, I is
the number of inequality constraints, and E is the number of
equality constraints.

As seen in TABLES 9 and 11, the algorithm proposed
in this paper can converge with high precision for most of
the test functions; while other intelligent methods have some
cases where the convergence accuracy of the test function is
low.

As seen in TABLE 10, compared to the other seven
improved CSs on CEC 2017 30-dimensional optimization
problems, the number of winning cases of t-test values for
AHCS is greater than the number of lost cases of t-test
values, and the Friedman average ranking of AHCS on
CEC 2017 30-dimensional optimization problems is better
than the other seven improved CSs. Therefore, the perfor-
mance of AHCS is significantly better than the other seven
improved CSs.

As seen in TABLE 12, compared to the other seven
improved algorithms on CEC 2017 30-dimensional optimiza-
tion problems, the number of winning cases of t-test values
for AHCS is greater than the number of lost cases of t-test
values, and the Friedman average ranking of AHCS on CEC
2017 30-dimensional optimization problems is better than the
other seven improved algorithms. Therefore, the performance
of AHCS is significantly better than the other seven improved
algorithms.

VI. APPLICATION STUDIES ON TWO
ENGINEERING CASES
In order to verify the effectiveness of AHCS in solving
constrained practical engineering optimization problems,
the parameter optimization problem of the reducer in litera-
ture [62] and the optimization of the cantilever beam parame-
ters in literature [63] are selected. AHCS and other improved
algorithms in the literature are used to optimize the structural
parameters of the two engineering cases.

A. REDUCER DESIGN PROBLEM
The design problem of the reducer is a classic constrained
optimization problem proposed by the famous scholar

FIGURE 2. The reducer design structure.

Mezura-Montes. The structure of the reducer is shown in
FIGURE 2.

There are 7 variables and 11 constraints in the design opti-
mization problem of the reducer. The mathematical model of
the design optimization problem is as follows:

min f (x) = 0.7854x1x22 (3.3333x
2
3 + 14.9334x3

− 43.0934)− 1.508x1(x26 + x
2
7 )

+ 7.477(x36 + x
3
7 )+ 0.7854(x4x26 + x5x

2
7 ) (24)

s.t.



g1(x) = 27/x1x22x3 − 1 ≤ 0
g2(x) = 397.5/x1x22x

2
3 − 1 ≤ 0

g3(x) = 1.93x34/x2x3x
4
6 − 1 ≤ 0

g4(x) = 1.93x35/x2x3x
4
7 − 1 ≤ 0

g5(x)= [(745x4/x2x3)2+16.9 ∗ 106]1/2/110x36−1≤0
g6(x)= [(745x5/x2x3)2+157.5 ∗ 106]1/2/85x37−1≤0
g7(x) = x2x3/40− 1 ≤ 0
g8(x) = 5x2/x1 − 1 ≤ 0
g9(x) = x1/12x2 − 1 ≤ 0
g10(x) = (1.5x6 + 1.9)/x4 − 1 ≤ 0
g11(x) = (1.1x7 + 1.9)/x5 − 1 ≤ 0

(25)

In Eqs. (24) and (25), the range of variables x1-x7 are
2.6≤ x1 ≤3.6,0.7≤ x2 ≤0.8, 17≤ x3 ≤28, 7.3≤ x4 ≤8.3,
7.3≤ x5 ≤8.3, 2.9≤ x6 ≤3.9, and 5.0≤ x7 ≤5.5.

In order to verify the feasibility of AHCS in solv-
ing the design problem of constrained reducer, AHCS is
compared with seven improved CSs (BCS [1], ICS [48],
CS-EO [20], DCS [12], RCS [22], MCS [28], CV 1.0 [53]).
In addition, HCS is compared to other seven algorithms
(EOCSO [64], PSO-DE [65], MBA [66], HEAA [67],
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TABLE 6. The statistical results of AHCS and seven other algorithms on 30 benchmark functions.
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TABLE 7. The comparison results of AHCS and seven improved algorithms on 30 benchmark functions.
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TABLE 7. (Continued.) The comparison results of AHCS and seven improved algorithms on 30 benchmark functions.

HGA [68], SSBA [69], and GOKA [70]). The optimization
results of AHCS and the seven improved CSs in the literature
are shown in TABLE 13. The optimization results of AHCS
and other seven algorithms in the literature are shown in
TABLE 14.

In order to verify that the solution quality of the
AHCS is better than other algorithms, each algorithm is
run 30 times, and the maximum runtime for each run is
maxruntime=20 seconds, the population size is N = 40,
and the penalty factor is M = 108. The optimal value and
the worst value of the various algorithms after 30 results are
counted, and the average optimal value and standard devia-
tion of the optimal operating objective function for 30 times
are calculated. The statistical results are shown in TABLE 15.

In TABLE 15, Best represents the optimal value among
the 30 results, Worst represents the worst value of the 30 run
results, Mean represents the average value of the 30 results,
and Std represents standard deviation the 30 results.

As can be seen from TABLES 13 and 14 that the optimized
value of AHCS solution is not worse than the other seven
improved CSs and seven other algorithms involved in the
comparison. In addition, as can be seen from TABLE 15,
the optimal value, mean value, and worst value of AHCS
are better than the other 14 algorithms that participate in

the comparison. Therefore, the quality of AHCS solution is
significantly better than other algorithms.

B. CANTILEVER BEAM DESIGN PROBLEM
The goal of the cantilever beam design optimization problem
is to determine the optimal combination of five different
cross-sectional areas to minimize the volume of the cantilever
beam. The design problem has 10 variables, namely five
width variables bi(i = 1, 2, . . . , 5) and five height variables
hi(i = 1, 2, . . . , 5). In addition, there are 11 constraints.
The free end of the cantilever beam exerts an external force
p = 50000N, the maximum allowable stress at the left
end of each section is σmax = 14000N/cm2, the mate-
rial elastic modulus E is 200 GPa, and the length li(i =
1, 2, . . . , 5) is 100 cm. The maximum allowable distur-
bance ymax = 2.715cm, and the aspect ratio of each cross
section is limited to 20 cm or less. The cantilever beam
design structure with discrete rectangular sections is shown
in FIGURE 3.

The design variables for the cantilever beam design opti-
mization problem are as follows:

X = [b1, h1, b2, h2, b3, h3, b4, h4, b5, h5]T

= [x1, x2, ..., x10]T (26)
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TABLE 8. Details of 28 CEC 2017 optimization problems.
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TABLE 9. The statistical results among CSs on CEC 2017 30-dimensional optimization problems.

145506 VOLUME 7, 2019



Z. Cheng et al.: Improvement and Application of AHCS Algorithm

TABLE 10. The comparison results among CSs on CEC 2017 30-dimensional optimization problems.
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TABLE 10. (Continued.)The comparison results among CSs on CEC 2017 30-dimensional optimization problems.

FIGURE 3. The cantilever beam design structure.

The mathematical model of cantilever beam structure opti-
mization design can be expressed as follows:

min f (X ) = 100 ∗ (x1x2+x3x4+x5x6+x7x8+x9x10) (27)

constraint:
(1) Pressure constraint

g1(X ) = 10.7143− x1x22/10
3
≤ 0

g2(X ) = 8.5714− x3x24/10
3
≤ 0

g3(X ) = 6.4286− x5x26/10
3
≤ 0

g4(X ) = 4.2957− x7x28/10
3
≤ 0

g5(X ) = 2.1428− x9x210/10
3
≤ 0

g6(X ) = 104 ∗ (244/x1x32 + 148/x3x34 + 76/x5x36
+ 28/x7x38 + 4/x9x310)− 10.8611 ≤ 0 (28)

(2) Geometric constraint

g7(X ) = x2 − 20x1 ≤ 0

g8(X ) = x4 − 20x3 ≤ 0

g9(X ) = x6 − 20x5 ≤ 0

g10(X ) = x8 − 20x7 ≤ 0

g11(X ) = x10 − 20x9 ≤ 0 (29)

In Eqs. (26)-(29), the range of design variables for the
cantilever beam is 1≤ xi ≤5(i = 1, 3, 5, 7, 9), 30≤ xi ≤65
(i = 2, 4, 6, 8, 10).
In order to verify the feasibility of AHCS in solving the

design problem of constrained cantilever beam, AHCS is
compared with seven improved CSs (BCS [1], ICS [48],
CS-EO [20], DCS [12], RCS [22], MCS [28], CV 1.0 [53]).
In addition, AHCS is compared to seven other algorithms
(SDGAMINLS [63], MPNN [71], SUMT [72], RNES [73],
CAD [74], GA [75], GA-APM [76]). The optimization
results of AHCS and the seven improved CSs in the
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TABLE 11. The statistical results among AHCS and other seven algorithms on CEC 2017 30-dimensional optimization problems.
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TABLE 12. The comparison results among AHCS and other seven algorithms on CEC 2017 30-dimensional optimization problems.
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TABLE 12. (Continued.) The comparison results among AHCS and other seven algorithms on CEC 2017 30-dimensional optimization problems.

TABLE 13. Optimization results for various improved CSs in the reducer design optimization problem.

TABLE 14. Optimization results for various improved algorithms in the reducer design optimization problem.

literature are shown in TABLE 16. The optimization results
of AHCS and other seven algorithms in the literature are
shown in TABLE 17.

In order to verify that the solution quality of the
AHCS is better than other algorithms, each algorithm
is run 30 times, the maximum runtime for each run is
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TABLE 15. The quality of optimization values for various algorithms in the reducer design optimization problem.

TABLE 16. Optimization results for various improved CSs in Cantilever beam design optimization problem.

TABLE 17. Optimization results for various algorithms in Cantilever beam design optimization problem.

maxruntime=20 seconds, the population size is N = 40,
and the penalty factor is M = 108. The optimal value and
the worst value of the various algorithms after 30 results are
counted, and the average optimal value and standard devia-
tion of the optimal operating objective function for 30 times
are calculated. The statistical results are shown in Table 18.

As can be seen from TABLES 16 and 17 that the opti-
mized value of AHCS solution is better than the other seven

improved CSs and seven other algorithms involved in the

comparison. In addition, as can be seen from TABLE 18,

the optimal value, mean value, worst value, and standard
deviation of AHCS are better than the other 14 algo-

rithms that participate in the comparison. Therefore, the
quality of AHCS solution is significantly better than other
algorithms.
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TABLE 18. The quality of optimization values for various algorithms in Cantilever beam design optimization problem.

VII. CONCLUSION
The improved CS proposed in the literature has a low solution
quality and is easy to fall into a local optimum when solving
optimization problems. This paper proposes AHCS. There
are three main aspects for the improvement of the AHCA:
(1) the Lévy flight method of the HCS is improved, and the
parameters α and β are dynamically adjusted respectively;
(2) the mutation operator is introduced in the AHCS; (3) an
improved population evolution strategy of the AHCS is given.

In the improvement study of Lévy flight method in HCS,
in order to accelerate the convergence speed of the algorithm,
the inertia weight is introduced in the Lévy flight method of
the CS algorithm. At the same time, in order to minimize the
influence of the maximum iteration number on the algorithm
position update, and consider the individual fitness value
information in the population, the parameters α and β are
dynamically adjusted, and new adaptive adjustment method
are given respectively.

In the improved research of the hybrid cuckoo search
algorithm, in order to make the algorithm have strong local
search ability in the late iteration, the mutation operator is
introduced into the cuckoo search algorithm.

In the study of population evolution strategy, a new hybrid
cuckoo search evolution strategy is proposed. The evolution-
ary strategy draws on the idea of the speed update of the PSO
algorithm, supplements the individuals the population, and
restores the initial size of the population. In addition, in order
to avoid the algorithm falling into local optimum, the optimal
individual in the population is perturbed.

In order to verify the performance of AHCS, 30 bench-
mark functions and CEC 2017 optimization problems were
selected, and run with various improved CSs and other
improved algorithms in the literature. The calculation results
of 30 benchmark functions and CEC 2017 optimization prob-
lems show compared with other algorithms, the number of
winning cases of t-test values and the Friedman average rank-
ing for AHCS are significantly better than other algorithms.

In addition, AHCS and various improved algorithms in
the literature are used to optimize the structural parameters

optimization of the reducer and the cantilever beam. The
optimization results show that the quality of the solution of
HCS is significantly better than other algorithms.

Although the AHCS has achieved good results on
the structural parameters optimization of the reducer and the
cantilever beam, further research is needed to extend the
application area of the algorithm. In the future, our proposed
AHCS will be applied to more optimization examples and
some new engineering optimization applications.
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