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ABSTRACT Although emotion recognition techniques have been well developed, the understanding of
the neural mechanism remains rudimentary. The traditional static network approach cannot reflect the
entire brain activity at the time scale. Instead, a newly introduced temporal brain network is an optimal
approach which can be used to investigate the dynamic functional connectivity (FC) of the human brain in
different emotion states considering the time-varying brain regional interaction. In this study, we focused
on emotion recognition and dynamic FC analysis with SEED dataset. First, multiband static networks were
computed by the phase lag index (PLI). Then, subject-independent discriminative connection features of
such static networks were selected to recognize the positive, neutral, and negative emotion types. In addition,
we constructed the temporal brain network by sorting the static network according to time sequence. The
experimental results show that the beta band is the most suitable for emotion recognition due to the best
accuracy of 87.03%. And, the frontal and the temporal lobes are more sensitive to brain emotion-related
activities. Moreover, we find the spatio-temporal topology of dynamic FC shows the small-world structure.
Notably, the positive emotion is more distinguishable in the temporal global efficiency, especially between
positive and neutral emotion states. Our findings provide new insight into the emotion-related brain regional
coordination evolution and show the potential of dynamic FC for the investigation of the emotion-related
brain mechanism.

INDEX TERMS Emotion recognition, electroencephalogram, dynamic functional connectivity, temporal
efficiency.

I. INTRODUCTION
The emotional expression is one of the most critical com-
munication approaches of a human being. And individual
can transmit different messages to another efficiently with
different emotional types (sadness, fear, calmness, joy, and
others). Technically, it is an excellent challenge for com-
puters to recognize others’ emotion. With growing tech-
niques in pattern recognition, machines can understand users’
words, behaviors, and facial expression and in consequence
make proper judgments. However, such interactions disregard
human affective states and fail to respond correctly to the
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order under different emotional conditions [1]. All these
human-computer interactions will be perceived as stiff, dull,
and unintelligent. Therefore, researchers are encouraged to
reveal the neural mechanism of the emotion and establish
a feasible emotion recognition system that has a desirable
recognition accuracy for an individual’s real intention.

The emotion can be primarily recognized with various
modalities like facial images [2], speech [3], and ges-
tures [4]. Nevertheless, such recognition approaches are
susceptible to the individual’s age, culture, language, appear-
ance, and habit, and thus they are not universal and lack
recognition accuracy [5]. Recently, emotion recognition
with physiological features has attracted much interest,
such as Electrocardiograph (ECG), skin conductance (SC),
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electromyography (EMG), and electroencephalograph (EEG)
[6], [7]. These inherent attributes are superior to non-
physiological features due to emotional performances are
controllable by human consciousness.

EEG has been proved to advantageously reflect the activi-
ties of the central nervous system (CNS) in different fields,
such as driving fatigue detection [8], [9], motor imagery
tasks [10]–[12], and emotional states [13]. With the develop-
ment of EEG processing methods, researchers have focused
on EEG based emotion recognition and attempt to decode
the emotion-related neural activity [14], [15]. Due to the
excellent temporal resolution as well as the sensitivity to cog-
nitive and mental states, EEG signals are widely employed
in various experimental studies [16]. Moreover, researchers
believe that EEGwould be robust enough to suppress artifacts
of human social cognition [17].

In the past few years, many EEG-based studies tried to find
the proper methods for emotion recognition. Aydin et al. [18]
proposed that high-frequency bands (beta and gamma) activi-
ties were susceptible to emotional activations. Bong et al. [19]
induced six emotions (sadness, disgust, fear, anger, hap-
piness, and surprise) of the stroke patient, and extracted
Hurst Exponent to assess the persistence of EEG signals.
The accuracy of the classification for sad emotion was
as high as 83.32% in the beta band. Zheng and Lu [20]
investigated the classification performances with differen-
tial entropy (DE), differential asymmetry (DASM), ratio-
nal asymmetry (RASM), differential causality (DCAU), and
power spectral density (PSD) in different bands and elec-
trodes. Thesemethods arewell established for emotion recog-
nition while the mechanism of brain regional interactions in
different emotional states lacks adequate attention.

The cerebral cortex will express the specific interactions
of whole brain regions when people carry out the cognitive
and vigilance task [21], [22]. EEG signal has a high temporal
resolution and a low spatial resolution due to the limitation of
recording [23]. Therefore, estimating the spatial functional
structures of the brain is a crucial issue for EEG based
emotional investigation. The static network is a method that
describes the brain regional coordination by computing the
statistical coupling between paired nodes [24], [25]. Such
a method was widely used to investigate emotion-related
network topologies and information communications [26].
The static brain network is a small-worldness which allows
performing both local segregation and global integration for
information processing [27].

The traditional static network research focuses on under-
lying topology without brain regional interactions in the
time scale [28]. Such a method considers the network in
separate time windows as independent components for emo-
tional mechanism analysis and ignores that the brain regional
interactions evolve with time. Particularly, brain interregional
interactions are highly dynamic and non-stationary [29]. The
most real-world system structures developed and changed
over time [30], [31]. Thus, Sun et al. [32] proposed a dynamic
FC for neural mechanism analysis. The dynamic FC method

FIGURE 1. A flowchart of the emotion recognition and dynamic FC
analysis procedure. After acquiring the 62 channel EEG data, raw EEG
under different emotion types (positive, neutral, and negative) were
preprocessed by ICA and WPT. Then, the static network was established
by PLI with the optimal window length and step. For emotion recognition,
we extracted individual connection features from the static network and
classified the different emotion types. For temporal brain network
analysis, we constructed the temporal brain network with the sequence
of the time-ordered static network within the lifetime to measure the
temporal small-worldness. The temporal brain network analysis was
based on the temporal distance, which is defined as the minimum
number of time window from a node to another one. Notably, two nodes
do not connect with each other within the lifetime that the temporal
distance between them is infinite. For instance, the lifetime of an
example temporal network is defined to be 4 and thus the temporal
distance between A at time 1 to E at time 4 is 4. Meanwhile, the temporal
distance between A at time 1 to F at time 5 is infinite without connection
within the entire lifetime.

added a time factor into static networks to compose full prop-
erties of the brain regional interactions within the lifetime.
Dai et al. [33] proposed the overall temporal global efficiency
and overall temporal local efficiency to measure the small-
worldness in dynamic FC.

Dynamic FC is a newly developedmethod for neural mech-
anism analysis. We realized the emotion recognition based
on the static network and investigated the spaito-temporal
reorganization of the brain temporal network under positive,
neutral, and negative emotion types. The EEG signals were
restricted to theta, alpha, beta, gamma bands. The Phase lag
index (PLI) was employed to construct the static network of
each time window [34]. The emotion recognition performed
by support vector machine (SVM) with subject-independent
connection features [35]. Finally, the small-worldness of
dynamic FC was measured by temporal global efficiency and
temporal local efficiency. The investigation of the dynamic
FC may provide a deeper insight into the neural mechanism
of emotion.

II. METHOD AND MATERIALS
In this section, we will introduce the material and method
adopted in this study. Fig. 1 shows a brief flowchart of the
emotion recognition and temporal brain network analysis.
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TABLE 1. The grouped index of wavelet coefficients of four sub-bands(
theta, alpha, beta, and gamma ).

A. DATABASE
In this study, the SJTU Emotion EEG Database (SEED)
which is supplied by Brain-like Computing and Machine
Intelligence Laboratory (BCMI) of Shanghai Jiao Tong Uni-
versity [20] is employed as both training and testing data for
the emotion recognition. There are fifteen subjects (7 males
and 8 females, and aged 23.27±2.37 (mean±std)) partici-
pated in the emotion-inducing experiment. Raw EEG data
were recorded using an ESI NeuroScan System (Advanced
Medical Equipment Ltd) according to the international
10-20 system with 62 electrodes at the sampling rate
of 1000Hz. Each subject was required to watch selected
Chinese film clips with positive, neutral, and negative content
to conduct corresponding emotions. Moreover, to suppress
the other cognitive activities of the brain, the duration of
experiments was strictly limited to a short period: an exper-
iment contained fifteen film clips and each of which was
played within 4 minutes. Each subject needed to do the same
experiments three times to guarantee the authenticity and
universality of extracted EEG data. The feasibility of the
database was validated by Zheng and Lu [20] research.

B. PREPROCESSING
In the preprocessing stage, the raw data were downsampled
to 200Hz to reduce computing complexity. The statistical
coupling method is significantly affected by various artifacts,
especially eye blink which will lead to false connections.
Then we used the independent component analysis (ICA)
method to remove the noise which is mainly induced by elec-
trooculogram (EOG) signals. The baseline of each trial was
extracted and removed. After eliminating the physiological
artifact, we decomposed the complete raw data into four stan-
dard frequency bands (theta, alpha, beta, and gamma) with
wavelet packet transform (WPT). The Daubechies wavelet
of db4 and decomposition level 6 were approved suitable for
EEG frequency bands extraction [36]. Frequency ranges and
wavelet coefficient are shown in Table. 1.

C. FUNCTIONAL CONNECTIVITY AND NETWORK
CONSTRUCTION
For each sub-band, the EEG signals were divided by dividing
the time window over step: window/step = 4/2 s. Then,
the static networks (62 × 62) were estimated by the PLI
method [34].

First, we calculated the instantaneous phase of each chan-
nel, which is expressed as a complex-value in the following

equation:

8i (t) = xi (t)+ jHT (xi (t)) (1)

where HT (xi (t)) is the corresponding Hilbert transform of
time series xi (t) [37]:

HT (xi (t)) =
1
π
P · V ·

∫
∞

−∞

xi (t)
t − τ

dτ (2)

In Eq. 2, P · V · is based on Cauchy principal value.
After computed phases of each time series, the phase locking
between two nodes can be expressed as:

ϕ (t) =
∣∣8x (t)−8y (t)

∣∣ (3)

where 8x (t) and 8y (t) are unwrapped phases of time series
x and y at time t .
Then, the PLI can be calculated as:

PLI = |〈signϕ (t)〉| (4)

The PLI value ranges between 0 and 1 where zero rep-
resents the no statistical coupling or coupling with a phase
difference centered around 0 and π while 1 represents a
perfect coupling between two time series.

D. EMOTION RECOGNITION
According to different emotion types, we mixed the connec-
tion features (the value of PLI between paired nodes in the
static network) to three blocks (positive, neutral, and neg-
ative). The subject-independent discriminative connectivity
features were extracted for each frequency band. Critical
connections were selected by using the sequential floating
forward selection (SFFS) [38]. The kernel of SFFS is to
iteratively select features to maximize the objective function
and to remove the unnecessary contents to avoid the local
maxima. By the acceptance and rejection process, we obtain
the optimal connection features. In this paper, we applied the
difference of connection strength as the objective function.
Fig. 2 shows the subject-independent connectivity networks
under three emotion types in the beta band. After a critical
connection selection, their connection strength among three
emotion types is the feature for further SVM classification
with 5-fold cross-validation.

Support vector machine (SVM) is developed by statistical
learning theory and has been applied to physiological signal
processing due to their feasibility for substantial data clas-
sification or prediction [39]. The concept of SVM is to map
extracted features onto higher-dimensional hyperplane by the
selected kernel function. After that, a linear decision surface
is computed in this hyperplane [40]. Based on the previous
work of EEG signal pattern recognition [41], we employed
SVM [35] for the emotion recognition.

The training data (xi, yi) , i = 1, . . . , n, x ∈ Rd , y ∈
{−1, 1} were sent to the discrimination function which is
defined as:

g (x) = wT x + b (5)
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FIGURE 2. The critical connectivity features for emotion recognition in the beta band. Features are presented on scalp maps under positive,
neutral, and negative emotion types. The color bar represents the average connection strength under different emotion types. Electrodes
follow the disposition of the international 10-20 system.
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and thus, its hyperplane is defined as:

wT x + b = 0 (6)

where wT is the d-dimensional vector and b is a scalar.
To acquire the optimal hyperplane, themaximizedmargin and
the minimized train error are computed by:

minφ (ω) =
1
2
‖ω‖2 + C

(
n∑
i=1

ξi

)
(7)

s.t : yi
[(
ωT xi+b

)]
−1+ξi ≥ 0, ξi ≥ 0, i = 1, 2, . . . , n

(8)

where C is the weight between the maximized margin and
the minimized train error. The kernel function of SVM in this
study is radial basis function (RBF) and the learning method
is sequential minimal optimization (SMO).

The RBF is computed by:

K (xi · x) = exp
(
−g‖x − xi‖2

)
(9)

The classification function is:

f (x) = sgn
n∑
i=1

aiyiK (xi · x)+ b (10)

We searched the best C and g from the interval 2[−10:10]

with the step of one based on cross-validation approach.

E. TEMPORAL BRAIN NETWORK
For each subject, EEG data corresponding to each film clips
were extracted for 170 seconds for the construction of tem-
poral brain network. Both the sliding window and the step
length are set to be 2 seconds. The binarized static network
Gwt is acquired by the sparsity approachwhich is the threshold
of connection strength (1% to 16%). And thus the temporal
brain network Gw =

{
Gwt
}
t=1,2,3,...,T is computed, where

T is the number of the corresponding static network in the
lifetime [33]. Fig. 3 shows the sample of the temporal brain
network.

The temporal distance (τi→j (t)) is defined as the minimum
number of the timewindow of the time-varying path [42]. The
temporal distance is themeasurement of the interaction of two
nodes in the time scale, and thus it is a positive integer ranged
from 1 to T . However, if there is no connection between two
nodes within the lifetime, their temporal distance is infinite.
As shown in Fig. 1, the temporal distance from A to E at t =
1 is 4 while the temporal distance from A to F at t = 1 is
infinite.

The overall temporal global efficiency is computed as [33]:

E tglob (G) =
1
T

∑
t∈1,2,...,T

E tglob(t) (G, t) (11)

where E tglob(t) (G, t) is the efficiency assessment at time t:

E tglob(t) (G, t) =
1

N (N − 1)

∑
i6=j∈1,2,...,N

1
τij (t)

(12)

where N is the number of channels in each static network and
τij is the temporal distance from node i to j at time t .

The overall temporal local efficiency is defined as:

E tloc(G)=
1
N

∑
i∈1,2,...,N

 1
T

∑
t∈1,2,...,T

E tglob(t)(G(i, t) , t)

 (13)

where G (i, t) is the sub-temporal network that includes the
nodes connected with node i at time t and preserves all con-
tacts among these nodes over entire windows of the temporal
brain network.

We compared the differences of topology between the
temporal brain network and the temporal random network
to verify the small-worldness of the dynamic FC. Tempo-
ral random networks were computed by randomizing edges
and contacts (Fig. 3). To extend the small-worldness in the
static network [43], the temporal small-worldness should
meet the following definition [32]: E tloc/E

t
loc_rand � 1 and

E tglob/E
t
glob_rand ≈ 1 . The E tglob_rand and E tloc_rand are the

means of the temporal global efficiency and temporal local
efficiency of the generated temporal random network with
50 iterations.

F. STATISTICAL ANALYSIS
In order to investigate the brain efficiency alterations at dif-
ferent emotion types, we used the One-way repeated mea-
sures ANOVA for temporal global efficiency and temporal
local efficiency. The value of p < 0.05 was considered
significant. Corrections for multiple comparisons of regional
characteristics were performed via false discovery rate (FDR)
at q = 0.05. The statistical analysis was performed by
SPSS software for Windows, version 23.0 (IBM, Armonk,
New York).

III. EXPERIMENT AND RESULT
A. CLASSIFICATION PERFORMANCE
We used SVM for the recognition of emotion types with
subject-independent connection features. Table. 2 shows the
classification accuracies in the theta, alpha, beta, and gamma
bands. In particular, across all the subjects, the best accura-
cies of 12 subjects were acquired in the beta band, and the
remained 3 subjects achieved the best accuracies of emotion
recognition in the gamma band. The highest classification
accuracy (87.03%±4.73, mean±std) was obtained in the beta
band. In addition, even the gamma band can also reflect the
emotion activities of the human brain, which facilitate the
accuracy of classification to 84.45%±3.95.

B. CONNECTIVITY PROPERTIES
We investigated the static network topologies in different
emotion types. Even connection features of each subject are
diverse, the significant connection in the specific brain region
shows similar properties. Fig. 4 shows the proportion of
regional activity level to all regions in the beta band across
15 subjects. The frontal and the temporal lobes show more
active interactions in the emotional brain activities and the
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FIGURE 3. The example of temporal brain network of (a) positive, (b) neutral, (c) negative, and (d) random in theta bands. The performed networks are
randomly selected from the data set. The networks were constructed by using the sparsity of 1% and the color bar shows the number of the
corresponding static window. On the right side of the temporal network are the spatial distributions of the functional connectivity at 1, 40, 80 windows.

TABLE 2. The classification accuracies of emotion recognition across
15 subjects.

proportion of emotion-related regional activity levels of the
two regions reach 43.07% and 25.47%, respectively. Such a
result demonstrates that the frontal and temporal areas are
most sensitive to the emotional activities of the human brain.

C. TEMPORAL FUNCTIONAL NETWORK PROPERTIES
Fig. 5 shows the temporal global efficiency and the temporal
local efficiency of three emotion types over 15 subjects in
the beta band. Compared with temporal random efficiencies,
the temporal functional network in different emotion types
shows small-world architecture. The temporal efficiencies in
different emotion types show a similar trend with the change
of sparsity. However, at the sparsity of 8%, the higher tempo-
ral global efficiency (F2,42 = 3.842, p = 0.030, η2ρ = 0.165)

FIGURE 4. The proportion of emotion-related regional activity levels in
the beta band across 15 subjects. It is computed by summarizing the
active nodes in each region and then estimating their proportions to
overall.

FIGURE 5. The temporal global efficiency and the temporal local
efficiency of the temporal brain network in three emotion types
(averaged over all subjects in each emotion type), and corresponding
temporal random network. The sparsity ranged from 1% to 16%. The
temporal efficiency at the sparsity of 8% is shown at the bottom of the
corresponding plot (mean±std) of each emotion type. Meanwhile,
the temporal global efficiency shows the great difference between the
three emotion types.

of positive is unmasked. The significant difference was com-
puted between positive and neutral (F1,28 = 7.035, p =
0.013, η2ρ = 0.213, FDR (false discovery rate)-corrected).

IV. DISCUSSION
In recent years, emotion recognition has achieved significant
development while the neural mechanism about dynamic FC
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in different emotional states is beginning to be revealed.
In this study, we investigated the emotion recognition by
constructing the static network and the emotion-related neural
mechanism of dynamic FC. First, we achieve a high clas-
sification accuracy in the beta band based on the subject-
independent connection features of the static network. Then,
for the overall connection features of 15 subject, we found
that connections were concentrated on the frontal and the
temporal lobes. Finally, we analyzed the temporal efficiencies
of dynamic FC in different emotion types and found that
the significant differences in temporal global efficiency were
at the sparsity of 8%. These results are discussed in greater
detail below.

A. EMOTION RECOGNITION PERFORMANCE IN
DIFFERENT BANDS
For emotion classification, we employed SVM as the clas-
sifier. We have inspected the most discriminative connec-
tion features of each subject that will contribute to the high
recognition accuracy. The best accuracy was obtained in the
beta band (87.03%±4.73). This result confirms that the phase
lag index (PLI) is a proper method to construct the brain
functional connectivity networks for EEG based emotion
recognition, and our classification procedures are feasible and
efficient enough.

The specific response of brain cognitive, vigilance or emo-
tion activities can be prominent in some frequency bands.
Therefore, we restricted the EEG signals into the standard
theta, alpha, beta, and gamma bands to search the most
suitable frequency band for emotion recognition. From the
empirical results, we found that the high-frequency bands,
especially the beta band, are sensitive to emotion alteration.
A number of literatures agree with our findings that the
brain emotional activities are related to the beta band which
possesses more reliable and obvious properties [44], [45].
Zhuang et al. [46] used the empirical mode decomposition
(EMD) to recognize the emotion types, and their results indi-
cated that the performance of beta and gamma bands is better
than other bands. Murugappan and Murugappan [47] classi-
fied the happy, surprise, fear, disgust, and neutral emotion
with Fast Fourier Transform (FFT) and implemented the K
Nearest Neighbor (KNN) and Probabilistic Neural Network
(PNN) to get the maximum accuracy of emotion recognition
with the beta band.

We compared the other research based on the (SEED)
database. Zheng and Lu [20] performed emotion recognition
to search critical frequency bands and channels with deep
neural networks. In their work, the differential entropy (DE)
from 12 channels (FT7, FT8, T7, T8, C5, C6, TP7, TP8,
CP5, CP6, P7, and P8) acquired the best emotion recognition
accuracy 86.08%, which is lower than our empirical result
87.03%. Furthermore, they suggested that the high-frequency
bands (beta and gamma) were more suitable for emotion
recognition. Such a result demonstrated that the connection
features are feasible enough for emotion recognition.

B. FUNCTIONAL CONNECTIVITY OF STATIC NETWORKS
The information spreading processing of neural activi-
ties involves multi-regional interactions and communica-
tions [48]. Investigating multiple correlations of emotional
state will provide critical insights into the neuroscience
research. In this study, we estimated the emotion-related brain
interactions and computed the critical connections of three
emotion types (positive, neutral, and negative). Specifically,
we found the individual topological characteristics performed
significant difference between different subjects, and thus we
used the subject-independent feature selection for emotion
recognition.

We tried to discover common interactions across 15 sub-
jects. Therefore, we summarized overall connection features
for more active regions. As shown in Fig. 4, we found sig-
nificant active interactions in the frontal and the temporal
regions. The intensive activities in the frontal and the tempo-
ral regions manifest they are sensitive to emotion alterations.
These results suggested that the brain cooperation in the
frontal and the temporal regions changed to react the emotion
alteration. Li et al. [49] constructed emotion-related brain
networks with phase locking value (PLV) and used a mul-
tiple feature fusion approach for emotion recognition. They
found the frontal and the temporal lobes are more sensitive
to emotion activities. Shahabi and Moghimi [50] investi-
gated emotion recognition based on effective connectivity.
Their research manifested that the perceived valence was
positively correlated with the frontal inter-hemispheric flow.
Various studies about emotion investigation have demon-
strated that these regions are associated with emotion alter-
ations, and these findings provide the evidence that the
static network in this study is feasible for emotion-related
investigation [51], [52].

C. TOPOLOGY OF TEMPORAL BRAIN NETWORK
The dynamic FC is an emerging method for brain activity
analysis, few literatures revealed the essential time-respecting
neural properties under different emotion types. The tradi-
tional static network analysis considers the connections of
a separate time window as the feature for emotion-related
investigation. However, the generated emotional activities are
not a brief process, and the segmented static network cannot
correctly reflect the entire brain activity within the lifetime.
As shown in Fig. 3, the connections are different between the
time window at 1, 40, and 80 of each emotion type. The brain
activity has been suggested to be highly dynamic [53], and
thus the static network cannot contain the full topology of the
emotion-related brain regional interactions. The dynamic FC
method sorts the separate static network into temporal brain
network based on the time variation. Such method focuses
on the interregional information spreading ability in the time
scale and may provide a new insight for the brain functional
organization investigation.

We compared the temporal efficiencies of the emotion-
related temporal brain network and the generated temporal
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TABLE 3. Summary of relevant research works in the field of emotion-related research using different method.

random network. The dynamic FC meets the criterion of
small-worldness with a similar temporal global efficiency and
significantly higher temporal local efficiency (Fig. 5). The
previous literatures have suggested the small-world archi-
tecture in the static network [54], [55]. Few studies have
focused on the small-world properties in the dynamic FC.
These empirical results demonstrated the particular topology
of the spatio-temporal architecture of the human brain in
which the brain regional interaction evolved with the global
integration and local segregation.

In term of the higher temporal global efficiency at the pos-
itive emotion type, especially between positive and neutral
(Fig. 5), the human brain performs a more efficient informa-
tion spreading ability at such emotions. It might demonstrate
that positive emotion state is more suitable for brain workload
task.

D. COMPARISON BETWEEN DIFFERENT
EMOTION-RELATED RESEARCH
In this paper, we used the static network for emotion recog-
nition and the temporal brain network for the emotion related
mechanism analysis. Obviously, compared with other latest
methods (Table. 3), there were few researchers achieved emo-
tion recognition based on the connection features and investi-
gated the spatio-temporal connection under different emotion
types. Our temporal brain network framework could measure
the brain regional interactions in the time scale, which pro-
vides the new insight for neural mechanism analysis.

E. EXPERIMENTAL LIMITATION AND FUTURE
CONSIDERATIONS
First, the limitation lies in that the emotion data were limited
to SEED database which can not reflect the overall situations.
For example, the emotion types of fear, anger, and others are
not included in the database. In the future, we will achieve
emotion recognition with more emotion types. Second,
we summarized the subject-independent connections features

for emotion recognition which is not an efficient approach
for practical application. The common emotion-related topo-
logical structures across all subjects are urgently need to be
discovered. Third, we only measured the small-worldness of
dynamic FC while the nodal properties are not paid attention.
The nodal efficiency or temporal closeness centrality should
be considered in the further research.

V. CONCLUSION
In the present work, we achieved emotion recognition based
on the static network and investigated the small-worldness of
dynamic FC of different emotion types. Experimental results
revealed that the beta band is more sensitive for emotion
alteration with the best recognition accuracy of 87.03±4.7%.
Even the selected individual connections are different, inter-
actions of the frontal and the temporal regions are considered
to associate with brain emotional activities. Finally, the exis-
tence of small-world properties are proved in dynamic FC,
and we discovered the higher temporal global efficiency at
the positive emotion type, especially between the positive
and neutral emotion types. This study provides new insight
into affective computing, and manifests the dynamic FC is
a feasible method to investigate the mechanism of emotion
generation and alteration.
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