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ABSTRACT GIFT is a family of lightweight block ciphers presented at CHES 2017. Biclique cryptanalysis
is proposed to attack the full AES by Bogdanov et al. in ASIACRYPT 2011. The attack can decrease
computation complexity using the technology of meet-in-the-middle and reduce data complexity utilising
the biclique structure. In this paper, we first provide an unbalanced biclique attack on full round GIFT.
The master key has been recovered for the full round GIFT-64 by a 5-round 4 × 16 unbalanced biclique
with data complexity of 216 and time complexity of 2122.95. Furthermore, a 4-round 8 × 24 unbalanced
biclique is constructed on GIFT-128 to recover the master key with data complexity of 280 and computational
complexity of 2118.38, respectively. The research results showGIFT algorithm has weak immunity to biclique
cryptanalysis.

INDEX TERMS GIFT, lightweight block cipher, unbalanced biclique, MITM.

I. INTRODUCTION
The widespread analysis methods include differential crypt-
analysis [1], [2], linear cryptanalysis, meet-in-the-middle
(MITM) [3], division cryptanalysis [4] and biclique attack
[5], [6]. Biclique cryptanalysis is a typical key-recovery
attack that is proposed to attack the full AES by Bogdanov
et al. in ASIACRYPT 2011 [7]. The attack can decrease com-
putation and data complexity by using themain idea ofMITM
attack and the basic principle of the biclique structure, where
the MITM attack is a typical method in the cryptanalysis of
block ciphers and has been improved by many techniques [8],
including splice-and-cut and so on. The researchers provided
two biclique methods for AES, that is, the long and the
independent related-key differentials bicliques.

The biclique attack is a variant of the MITM of crypt-
analysis and achieves good results in the analysis of SHA
hash function family [9]. The biclique attack can decrease
computation complexity using the technology of meet-in-
the-middle and reduce data complexity utilising the biclique
structure. The biclique attack will be used widely in the
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security analyses of many block ciphers such as Midori [10],
Skinny [11], TWINE [12], PRESENT [13], [14], Piccolo
[15], [16], HIGHT [17], [19], IDEA [18] and KLEIN [20].

A favorable hardware efficiency has become a major
design trend in cryptography given the increasing importance
of ubiquitous computing. Many lightweight algorithms have
been proposed recently, especially the block cipher GIFT
[21], [22]. GIFT is a family of lightweight block ciphers pre-
sented by Banik et al. at CHES 2017. The designers adopted
an substitution permutation network(SPN) structure which is
similar to PRESENT [23]. Two versions of GIFT are used
with 64 and 128-bit state sizes, and the round numbers are
28 and 40 respectively. However, GIFT has been attacked by
several cryptographers with different cryptanalysis methods.
In 2018, Zhao et al. provided a differential cryptanalysis
over a 16-round GIFT-64 [1], with 262 chosen plaintexts and
283 computational complexity. Zhu et al. showed another
differential cryptanalysis over a 19-round GIFT-64 [2], with
data complexity of 262.4 and time complexity of 2111.4, and
a 25-round GIFT-128 with with data complexity of 2125 and
time complexity of 2125.

In this paper, we focus on the biclique cryptanalysis of
GIFT block cipher. The crucial point of the biclique attack is
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TABLE 1. Summary of the attacks on GIFT.

building a biclique structure at the ciphertext (or plaintext),
thereby connecting 2d1 ciphertexts (or plaintexts) and 2d2
intermediate states. d1 = d2 = d is a d-dimension biclique
structure.

A. OUR CONTRIBUTIONS
We study the characteristics of the algorithm structure deeply
and the diffusion properties of key schedule. We provide an
unbalanced biclique attack on full GIFT for the first several
rounds. The research results show GIFT algorithm has weak
immunity to biclique cryptanalysis.

(1) We present a 5-round 4×16 unbalanced biclique to key
recovery of full round GIFT-64, with data and computational
complexities of 216 and 2122.88, respectively.
(2) A 4-round 8 × 24 unbalanced biclique structure on

GIFT-128 is provided, with data and computational complex-
ities of 280 and 2118.38, correspondingly.
The comparisons between our scheme and other methods

are summarised in Table 1.

B. ORGANIZATION
This paper is organized as follows. Research and develop-
ment on algorithm GIFT is summarized in Section I. The
notations used throughout this paper and a brief description
of GIFT-64/128 are introduced in Section II. The principle
of biclique attack is briefly discussed and the key recovery
attacks on full round GIFT-64 by unbalanced bicliques is also
provided in Section III. Then, the biclique attack on full round
GIFT-128 and the data and computational complexities are
presented in Section IV. Finally, we draw our conclusions and
summarize this paper in Section V.

II. DESCRIPTION OF GIFT
A. NOTATIONS
P : plaintext.
C : ciphertext.
M : the intermediate state.
Mi : the i-th cell of the intermediate stateM .
Ki : the i-th group of the key k (0 ≤ i ≤ 15).
Ki[m, n] : the m-th and n-th bits of the Ki.
A(i) : {0, 1}i.
x : {0, 1}4.

TABLE 2. The S-box of GIFT.

TABLE 3. The bit permutation used in GIFT-64.

TABLE 4. The bit permutation used in GIFT-128.

‖ : concatenation.
F ri : the i-th cell(4 bits) of the state after AddRoundKey of

the r-th round function.
F ri,j : the i-th and j-th cells of F r .
a(b): b denoting the bit length of a.

B. GENERAL DESCRIPTION OF GIFT
GIFT is a lightweight block cipher of the SPN structure.
There are two versions, GIFT-64 and GIFT-128, where the
sizes of state are 64 and 128 bits, and the numbers of round are
28 and 40, respectively. The key sizes of both versions are the
same 128 bits. The overall structure of GIFT-64 is illustrated
in Figure 1, and the number of S-boxes for GIFT-128 is 32.

1) ROUND FUNCTION
The round function of GIFT is composed of the following
3 steps.

(1) SubCell: the same S-box(4× 4) is applied parallelly to
each nibble Si, 0 ≤ i ≤ 15 for GIFT-64, 0 ≤ i ≤ 31 for
GIFT-128, respectively.(Seen in Table 2)

(2) PermBits: The bit permutation of GIFT-64 and
GIFT-128 are shown in Table 3 and Table 4, respectively.

(3) AddRoundKey: The round key RK is extracted from
the master key K . A round key is first extracted from the
master key K before the master key state updates. The 128-
bit master key of GIFT is represented as follows. K =

K7‖K6‖K5‖K4‖K3‖K2‖K1‖K0, where Ki is a 16-bit subkey.
For GIFT-64, 32-bit of the key state are extracted from the

master key K as the round key: RK = U‖V , where K1→ U
and K0→ V . The rule that RK is XORed to b4i+1 and b4i of
the intermediate state, respectively, i.e., b4i+1 ← b4i+1

⊕
ui

and b4i← b4i
⊕

vi, where i ∈ {0, 1, 2, · · · , 15}.
For GIFT-128, 64-bit of the key state are extracted from the

master key K as the round key: RK= U‖V, where K5‖K4→

U and K1‖K0 → V . RK is XORed to b4i+2 and b4i+1 of the
intermediate state, respectively, i.e., b4i+2← b4i+2

⊕
ui and

b4i+1← b4i+1
⊕

vi, where i ∈ {0, 1, 2, · · · , 31}.
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FIGURE 1. Overview of GIFT-64 round function.

The bi represents the i-th bit of the intermediate state. The
ui and vi represent the i-th bit of U and V .

2) THE KEY SCHEDULE
The key state for GIFT-64 and GIFT-128 are updated as
follows: K7‖K6‖K5‖K4‖K3‖K2‖K1‖K0← K1 ≫ 2‖K0 ≫
12‖K7‖K6‖K5‖K4‖K3‖K2.

III. BICLIQUE ATTACK ON GIFT-64
A. DEFINITION OF BICLIQUE
Biclique cryptanalysis is divided into 2 steps: constructing
biclique structure and the MITM attack. The biclique struc-
ture determines the data complexity of the whole attack and
the MITM attack reduces the computation complexity. The
detailed steps of the attack and the basic principle of the
biclique attack are presented in [7].

The biclique structure links 2d1 plaintexts {Pi} to 2d2 inter-
mediate states {Sj}. The core idea is to search two as possible
as long differential paths which share no active state cells. The
biclique structure can be considered as a subcipher, namely f ,
i.e., fK (P) = S, where K is a set of 2d1+d2 keys {K[i,j]}:

{K[i,j]} =


K[0,0] K[0,1] · · · K[0,2d1−1]
K[1,0] K[1,1] · · · K[1,2d1−1]

...
...

. . .
...

K[2d2−1,0] K[2d2−1,1] · · · K[2d2−1,2d1−1]


(1)

The 3-tuple [{Pi}, {Sj}, {K[i,j]}] is called a biclique struc-
ture.

B. FIVE-ROUND 4 × 16 UNBALANCED BICLIQUE ON
GIFT-64
1) PHASE 1. KEY PARTITIONING
The 128 bites K is divided into 2108 groups, and each
group key consists of a 24 × 216 matrix: {K[i,j]}. Let

20 bits (K[i,0],K[0,j]) be 0(20) and enumerate the rest
of 108 bits (K[0,0]). The round key (RK) schedule is
seen in Section 2. We construct a 4 × 16 unbalanced
biclique structure on GIFT-64 by K3[5, 4]‖K2[1, 0] and
K1[15, 14, 13, 12, 11, 10, 9, 8]‖K0[15, 14, 13, 12, 11, 10, 9,
8]. The K[0,0],K[0,j],K[i,0] and K[i,j] are as follows:

K[0,0] = [A(16),A(16),A(16),A(16),A(10)‖0(2)
‖A(4),A(14)‖0(2), 0(8)‖A(8), 0(8)‖A(8)]

K[i,0] = K[0,0] ⊕ [0(16), 0(16), 0(16), 0(16), 0(16),
0(16),A(8)‖0(8),A(8)‖0(8)]

K[0,j] = K[0,0] ⊕ [0(16), 0(16), 0(16), 0(16), 0(10)
‖A(2)‖0(4), 0(14)‖A(2), 0(16), 0(16)]

K[i,j] = K[0,0] ⊕ K[i,0] ⊕ K[0,j]

(2)

where A ∈ {0, 1}.

2) PHASE 2. FIVE-ROUND 4× 16 UNBALANCED BICLIQUE
We can construct a five-round 4 × 16 unbalanced biclique
stucture on GIFT-64 (Figure 2) utilizing the above key group-
ing scheme. The biclique stucture links 24 plaintexts to 216

intermediate states in each group key. The steps of construct-
ing the biclique stucture are as follows:

Step 1. In Figure 2(a), let P0 = 0(64) and encrypts P0 for
five rounds to obtain S0, i.e., S0 = fK[0,0](P0). This process is
called basic operations.

Step 2. The attacker encrypts P0 with different keys K[i,0]
for i ∈ {0, 1}16 to obtain the corresponding intermedi-
ate states Si (Figure 2(b)). The differences between K[0,0]
and K[i,0] lead to the computation complexity. The diagonal
stripes cells should be computed 22-1 times and the blue cells
should be computed 24-1 times. The white cells must not be
computed because this process shares the basic operations in
Step 1. In this step, the attacker obtains f (P0)K[i,0]

−−→
Si.
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FIGURE 2. Five-round unbalanced biclique on GIFT-64.

Step 3. The attacker decrypts S0 with different keys K[0,j]
for j ∈ {0, 1}4 (Figure 2(c)) to obtain the corresponding
plaintexts Pj. The differences between K[0,0] and K[0,j] bring
the differences in certain cells. The diagonal stripes cells
should be computed 22-1 times and the white cells have been
computed in Step 1. Thus, the attacker obtains f −1(S0)K[0,j]

−−→
Pj.

These two differential paths have no intersection in the first
five rounds. Then, it is easy to verify that f (Pj)K[i,j]

−→
Si is always

holds for all i ∈ {0, 1}16 and j ∈ {0, 1}4 as shown in Figure 2.
So, we can obtain a five-round 4 × 16 unbalanced biclique
structure for each key group.

3) PHASE 3. MATCHING OVER 23 ROUNDS
In order to decrease computation complexity, V = F9

12,8,4,0,
an 16-bit output of 9-th round, is selected as the internal
matching variable (Figure 3) in two directions to attain the
correct key.

4) FORWARD DIRECTION
We encrypt Si under the key K[i,0] to attain SiK[i,0]

−−→

−→
Vi,0. Then,

we encrypt Si by using all the possible 24 − 1 keys K[i,j]

to attain SiK[i,j]
−→

−→
Vi,j. The differences between K[i,0] and K[i,j]

lead to computation complexities. In Figure 3 (left part),
the white cells are not active and must not be calculated. The
vertical stripes cells should be computed 21 times and the
diagonal stripes cells should be computed 22 times. The red
cells should be computed 24 times and the yellow cells are
computed once.

5) BACKWARD DIRECTION
Firstly, we encrypt the plaintexts Pj for j ∈ {0, 1}4 to attain
24 ciphertexts Cj and decrypt Cj under the key K[0,j] to attain
CjK[0,j]
−−→

←−
V0,j. Then, we decrypt Cj with all the possible 216-

1 keys K[i,j] to obtain CjK[i,j]
−→

←−
Vi,j. The differences between

K[i,j] and K[0,j] lead to computation complexities. In Figure 3

(right part), the white cells must not be computed and the
vertical stripes cells should be computed 21 times. The blue
cells should be computed 24 times and the yellow cells are
computed once.

6) SEARCH CANDIDATES
In the last process, we verify 220 keys utilizing the 16-bit
matching variable of

−→
Vi,j and

←−
Vi,j for all i ∈ {0, 1}16 and

j ∈ {0, 1}4. Then, the number of the remaining candidate key
is 24 on average in each key group.We exhaustively check the
remaining 2108 candidate key until the correct key is found.

C. COMPLEXITIES OF FIVE-ROUND UNBALANCED
BICLIQUE CRYPTANALYSIS ON GIFT-64
1) DATA COMPLEXITY
In Figure 2(c), for each unbalanced biclique structure,
we decrypt S0 with the keys K[0,j] to obtain Pj. All the
plaintexts have differences only in four cells(S3, S2, S1 and
S0). Thus, the data complexity does not exceed 216.

2) COMPUTATIONAL COMPLEXITY
The computation complexity of the attack depends mainly
on the number of the SubCell. Each round of GIFT-64 is
composed of 16 SubCells and single encryption includes
28 × 16 = 448 SubCells. For each key of the 2108 groups,
the specific computation is as follows.

3) BICLIQUE COMPLEXITY
The 24 SubCells (Figure 2(b), noted with diagonal stripes)
need to compute 22 times and 24 SubCells (Figure 2(b), noted
with blue) need to compute 24 times. In Figure 2(c), 6 Sub-
Cells (noted with diagonal stripes) need to compute 22 times.
The rest of 26 SubCells are computed once. Then the sum-
mation is 24 × 24 + 22 × 30 + 26 SubCells computations.
Thus, the computation complexity of a biclique structure is
approximately 20.24 full round GIFT-64 encryptions.
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FIGURE 3. Partial matching over 23 rounds for GIFT-64.

4) MATCHING COMPLEXITY
In the forward direction(Figure 3, left) of a single Si, 4 Sub-
Cells (noted with red) need to compute 24 times, and 24 Sub-
Cells (noted with diagonal stripes) need to compute 22 times.
4 SubCells (noted with vertical stripes) need to compute 21

times, and 36 SubCells (noted with yellow) are computed
only once. 12 SubCells (noted with white) must not be com-
puted. Thus, the complexity of this process is 216 × (24 × 4
+ 22 × 24+ 21 × 4+ 48) SubCells, which is approximately
214.94 full round GIFT-64 encryptions.
In the backward direction(Figure 3, right) of a single Cj,

212 SubCells (noted with blue) need to compute 24 times,
and 16 SubCells (noted with vertical stripes) need to compute
21 times. 48 SubCells (noted with yellow) are computed
only once and 12 SubCells (noted with white) must not be
computed. Thus, the complexity of this process is 24 × (24 ×
212+ 21 × 16+ 36) SubCells, which is approximately 26.95

full round GIFT-64 encryptions.
Finally, 220 key candidates are verified by a matching

variable(16-bit) in each group, and the average of 220−16 =
24 candidate key should be rechecked.

Thus, the total computational complexity of the unbal-
anced biclique attack on GIFT-64 is:

C = 2108 × (20.24 + 214.94 + 26.95 + 24) ≈ 2122.95 (3)

5) MEMORY COMPLEXITY
We need to store 24×16 bits (the backward direction) for the
attack.

IV. BICLIQUE ATTACK ON GIFT-128
A. FOUR-ROUND 8 × 24 UNBALANCED BICLIQUE ON
GIFT-128
1) PHASE 1. KEY PARTITIONING
The 128 bits K is divided into 296 groups and each
group key consists of a 28 × 224 matrix:{K[i,j]}. Simi-
lar to Section 3.2, we construct an 8 × 24 unbalanced
biclique structure utilizing K4[14, 12, 10, 8]‖K1[8, 6, 4, 2]
and K7[15, 14, 13, 12, 7, 6, 5, 4]‖K6[7, 6, 5, 4]‖K3[15, 14,
13, 12, 7, 6, 5, 4]‖K2[15, 14, 13, 12]. The master key K is
grouped as follows:



K[0,0] = [0(4)‖A(4)‖0(4)‖A(4),A(8)‖0(4)‖A(4),
A(16),A(1)‖0(1)‖A(1)‖0(1)‖A(1)‖0(1)‖A(1)‖
0(1)‖A(8), 0(4)‖A(4)‖0(4)‖A(4), 0(4)‖A(12),
A(7)‖0(1)‖A(1)‖0(1)‖A(1)‖0(1)‖A(1)‖0(1)‖
A(1),A(16)]

K[i,0] = K[0,0] ⊕ [A(4)‖0(4)‖A(4)‖0(4), 0(8)‖
A(4)‖0(4), 0(16), 0(16),A(4)‖0(4)‖A(4)‖0(4),
A(4)‖0(12), 0(16), 0(16)]

K[0,j] = K[0,0] ⊕ [0(16), 0(16), 0(16), 0(16), 0(7)
||A(1)||0(8), 0(6)||A(1)||0(7)||A(2), 0(16), 0(16)]

K[i,j] = K[0,0] ⊕ K[i,0] ⊕ K[0,j]

(4)

where A(1) ∈ {0, 1}.
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FIGURE 4. Four-round unbalanced biclique on GIFT-128.

2) PHASE 2. FOUR-ROUND 8× 24 UNBALANCED BICLIQUE
We create a four-round 8 × 24 unbalanced biclique stucture
on GIFT-128 (Figure 4) utilizing the above key grouping
scheme. The biclique stucture links 28 plaintexts to 224 inter-
mediate states in each group key. The steps of constructing
the biclique stucture are as follows:

Step 1. The basic operation is similar to that in
Section III.B.

Step 2. The attacker encrypts P0 under different keys K[i,0]
for i ∈ {0, 1}24 to obtain the corresponding intermediate
states Si (Figure 4, left). The differences between K[0,0] and
K[i,0] lead to the computation complexity. The vertical stripes
cells need to compute 21-1 times, and the diagonal stripes
cells need to compute 22-1 times. The blue cells need to
compute 24-1 times, and the white cells must not be computed
because this process shares the basic operations in Step 1.
In this step, the attacker obtains f (P0)K[i,0]

−−→
Si.

Step 3. The attacker decrypts S0 under different keys K[0,j]
for j ∈ {0, 1}8 (Figure 4, right) to obtain the corresponding
plaintexts Pj. The differences between K[0,0] and K[0,j] bring
the differences in certain cells. The vertical stripes cells need
to compute 21-1 times, and the diagonal stripes cells need
to compute 22-1 times. The red cells need to compute 24-
1 times, and the white cells must not be computed because
this process shares the basic operations in Step 1. Thus,
the attacker obtains f −1(S0)K[0,j]

−−→
Pj.

These two differential paths have no intersection in the first
four rounds. Then, it is easy to verify that f (Pj)K[i,j]

−→
Si always

holds for all i ∈ {0, 1}24 and j ∈ {0, 1}8 as shown in Figure 4.
So, we can obtain a four-round 8 × 24 unbalanced biclique
structure for each key group.

3) PHASE 3. MATCHING OVER 36 ROUNDS
In order to decrease computation complexity, V =

F8
25,24,17,16,9,8,1,0, an 32-bit output of 8-th round, are selected

as the internal matching variable (Figure 5) in two directions
to attain the correct key.

4) FORWARD DIRECTION
We encrypt Si under the key K[i,0] to attain SiK[i,0]

−−→

−→
Vi,0. Then,

we encrypt Si by using all the possible 28 − 1 keys K[i,j] to
attain SiK[i,j]

−→

−→
Vi,j. The differences between K[i,0] and K[i,j] lead

to computation complexities. In Figure 5 (left), the white cells
are not active and must not be calculated. The vertical stripes
cells should be computed 21 times, and the diagonal stripes
cells should be computed 22 times. The diagonal crosshatch
cells should be computed 23 times, and the red cells should
be computed 24 times. The yellow cells are computed
once.

5) BACKWARD DIRECTION
Firstly, we encrypt the plaintexts Pj for j ∈ {0, 1}8 to attain
28 ciphertexts Cj and decrypt Cj under the key K[0,j] to attain
CjK[0,j]
−−→

←−
V0,j. Then, we decrypt Cj with all the possible 224-

1 keys K[i,j] to obtain CjK[i,j]
−→

←−
Vi,j. The differences between

K[i,j] and K[0,j] lead to computation complexities. In Fig-
ure 5 (right), the white cells are not active and must not be
calculated. The vertical stripes cells should be computed 21

times, and the diagonal stripes cells should be computed 22

times. The diagonal crosshatch cells should be computed 23

times, and the red cells should be computed 24 times. The
yellow cells are computed once.

6) SEARCH CANDIDATES
In the last process, we verify 232 keys utilizing the 32-bit
matching variable of

−→
Vi,j and blue

←−
Vi,j for all i ∈ {0, 1}24

and j ∈ {0, 1}8. Then, the number of the remaining candidate
key is 20 on average in each key group. We exhaustively
check the remaining 296 candidate keys until the correct key is
found.
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FIGURE 5. Partial matching over 36 rounds for GIFT-128.

B. COMPLEXITIES OF FOUR-ROUND UNBALANCED
BICLIQUE CRYPTANALYSIS ON GIFT-128
1) DATA COMPLEXITY
In Figure 4(right), for each unbalanced biclique structure,
we decrypt S0 with the keys K[0,j] to obtain Pj. All the plain-
texts do not have differences only in 12 cells(S31, S30, S29,
S28, S26, S24, S23, S22, S21, S20, S18 and S16). However,
there are differences in the remaining 20 cells. Thus, the data
complexity does not exceed 280.

2) COMPUTATIONAL COMPLEXITY
The computation complexity of the attack depends mainly
on the number of the SubCell. Each round of GIFT-128 is
composed of 16 SubCells and single encryption includes 40
× 32 = 1280 SubCells. For each key of the 296 groups,
the specific computation is as follows.

3) BICLIQUE COMPLEXITY
In Figure 4(left), 16 SubCells (noted with blue) are calculated
24 times, 8 SubCells (noted with diagonal stripes) are calcu-
lated 22 times, and 8 SubCells (noted with vertical stripes)
are calculated 21 times. In Figure 4(right), 4 SubCells (noted
with red) are calculated 24 times, 8 SubCells (noted with
diagonal stripes) are calculated 22 times, and 16 SubCells
(noted with vertical stripes) are calculated 21 times. The
remaining 68 SubCells are calculated only once. Thus, the
total is 24 × 20 + 22 × 16 + 21 × 24 + 68 SubCells
calculations. Thus, the computation complexity of a biclique

structure is 500 SubCells, which is approximately 2−1.36 full
round GIFT-128 encryptions.

4) MATCHING COMPLEXITY
In the forward direction(Figure 5, left) of a single Si, 8 Sub-
Cells (noted with red) need to compute 24 times, and 2 Sub-
Cells (noted with diagonal crosshatch) need to compute 23

times. 46 SubCells (noted with diagonal stripes) need to
compute 22 times, and 8 SubCells (noted with vertical stripes)
need to compute 21 times. 72 SubCells (noted with yellow)
are computed only once, and 24 SubCells (noted with white)
must not be computed. Thus, the complexity of this process
is 224 × (24 × 8 + 23 × 2 + 22 × 46 + 21 × 8 + 72)
SubCells, which is approximately 222.38 full round GIFT-
128 encryptions.

In the backward direction(Figure 5, right) of a single Cj,
872 SubCells (noted with blue) need to compute 24 times,
and 20 SubCells (noted with diagonal crosshatch) need to
compute 23 times. 28 SubCells (noted with diagonal stripes)
need to compute 22 times, and 8 SubCells (noted with vertical
stripes) need to compute 21 times. 24 SubCells (noted with
yellow) are computed only once, and 40 SubCells (noted with
white) must not be computed. Thus, the complexity of this
process is 28 × (24 × 872 + 23 × 20 + 22 × 28 + 21 ×
8 + 24) SubCells, which is approximately 211.48 full round
GIFT-128 encryptions.

Finally, 232 key candidates are verified by a matching
variable(32-bit) in each group, and the average of 232−32 = 1
candidate key should be rechecked.
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Thus, the total computational complexity of the four-round
unbalanced biclique attack on GIFT-128 is:

C ≈ 296 × (2−1.36 + 222.38 + 211.48 + 20) ≈ 2118.38 (5)

5) MEMORY COMPLEXITY
We need to store 24×16 bits (the backward direction) for the
attack.

V. CONCLUSION
In this paper, we propose a novel method for the attack of
a full-round GIFT block cipher. Additionally, we describe
the construction of a biclique structure and the analysis of
the cipher. We present a full-round biclique cryptanalysis of
GIFT by investigating the simple key schedule and encryption
structure.

Then, we construct a five-round 4×16 unbalanced biclique
on GIFT-64, with data complexities of 216 and computational
complexities of 2122.95, respectively.Moreover, we use a four-
round 8×24 unbalanced biclique onGIFT-128with data com-
plexities of 280 and computational complexities of 2118.38,
respectively.

These results are superior to the currently known
results,thereby indicating that the biclique attack can easily
attack certain ciphers with slow diffusion and simple key
schedule. Thus, the designers of lightweight ciphers must
improve the implementation efficiency, key schedule com-
plexity and diffusion speed thereof.
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