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ABSTRACT This paper proposes the feature extraction backbone network MNET that is specifically
designed for the detection of infrared small targets. The overall network uses three down-sampling operations
to adjust the size of the feature map, while preserving sufficient physical characteristics of the small infrared
target to be used in the detection. In a next step, the dense connection is used to save the output of each layer of
the network in the front channel of the feature map, to better integrate the location information of the shallow
network and the semantic information of the deep network. In this way accurate network positioning and
classification effects are achieved. As a last step, we introduce a feature attention mechanism to obtain the
importance of each feature channel, and to enhance useful features according to their degree of importance.
In this way we achieve an adaptive calibration of the feature channels. In order to train the proposed detection
network MNET from scratch, the single-phase detection algorithm YOLO is adopted for the detection part.
To verify the effectiveness of the proposed method, we captured images and created an infrared small target
dataset. The experimental results show that MNET can accurately detect targets of 2 × 2 pixels size in
infrared images of 640 × 512 pixels at a processing speed of up to 105 frames per second. MNET meets
real-time requirements while providing high quality detection accuracy.

INDEX TERMS Infrared small target, target detection, convolutional neural network, feature fusion.

I. INTRODUCTION
In recent years, infrared imaging technology has witnessed
rapid development and widespread use in various fields, such
as surveillance, satellite reconnaissance, and remote sens-
ing [1]. Many infrared applications, such as infrared search
and tracking (IRST) [2], early warning systems, and missile
tracking systems [3], require precise detection and localiza-
tion of specific small targets. Therefore, infrared small target
detection has attracted considerable research interest.

Although infrared small target detection has been studied
for many years, it still has the following difficulties:

(1) Owing to the long imaging distance, the target occupies
only a few pixels on the imaging plane. The signal is weak,
and there is no obvious shape, size, or texture feature. More-
over, the image noise is strong and the signal-to-noise ratio is
low.
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(2) When the target moves, its imaging size changes in
a certain range. The algorithm should be adaptable to such
changes.

(3) The amount of data to be processed is large, leading to
a contradiction between the complexity and real-time perfor-
mance of the detection algorithm.

In recent years, infrared small target detection algorithms
have attracted considerable interest with the development of
convolutional neural networks (CNNs) [4]. Compared with
traditional computer vision methods, a CNN directly takes
an image as input and automatically learns the features that
represent the deep nature of the data. Thus, the steps of feature
extraction are simple and efficient. Moreover, compared with
the manual selection of features and shallow features, a CNN
has powerful data characterization ability [5]. In this case,
people begin to study the use of CNN to solve the problem
of infrared small target detection.

However, current research regarding the detection of
infrared small targets based on convolutional neural networks
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is mainly focused on fine-tuning detection networks that were
designed for universal datasets and on performing infrared
small target detection using them. Designing a new fea-
ture extraction backbone network for the characteristics of
infrared small targets has not been the focus of current
research. In case the general network relies on a backbone
network that was pre-trained for the ImageNet classification
task, certain limitations arise when solving specific problems
such as infrared small target detection:

(1) Classification and detection tasks show different sen-
sitivities in the feature map [6]. Classification tasks require
multiple down sampling operations for the sake of perfor-
mance when extracting deep semantic information from the
network. However, local texture information plays a critical
role in target detection, thus excessive down-sampling tends
to affect the identification of small targets.

(2) A general CNN is designed for both large as well as
medium targets [4], which inevitably leads to a poor detection
of small targets. Moreover, the differences between individ-
ual, similar targets in the VOC data set are large. In order to
obtain better detection results, the network design needs to be
adapted and the network width needs to be increased, which
results in a significant increase of the computational cost and
a decrease in training speed and detection speed.

(3) Fine-tuning can alleviate the gap caused by the different
distributions of data categories [7], but the infrared small
target data set varies widely from general classification data
sets or detection data sets. Thus, the effect of fine-tuning is
minimal. In addition, if the target detector is directly fine-
tuned using a pre-trained network, it is basically impossible
to change the structure of the network itself [8].

Therefore, this paper proposes the feature extraction back-
bone network MNET that is specifically designed for the
detection of infrared small targets and that addresses the
problemsmentioned above. In general, an inspection network
uses six down-sampling steps to meet the detection needs
of large targets. However, excessive down-sampling causes
the disappearance of infrared small targets in the feature
map. MNET adjusts the size of the feature map during only
three down-sampling operations, and thus retains a large-
scale feature map to ensure that the infrared small targets still
hold enough physical characteristics for the detection. In the
next step, the output of each layer of the network is saved in
the front channel using a dense connection on the featuremap.
Compared with common methods that simply integrate the
deep network into the shallow network [9], [10], our method
can better combine the location information of the shallow
network and the semantic information of the deep network.
Thus, our network achieves a more accurate positioning and
classification effect.

As the last step, we introduce a feature attention mecha-
nism [11] to obtain the importance of each feature channel,
and to enhance useful features according to the importance
degree. In this way we achieve an adaptive calibration of the
feature channel, while the information of each layer saved
by the dense link is further refined. Since the classification

data of ImageNet and infrared small target data are highly
different in regards of the image channel and the target size,
we do not use ImageNet training data for a pre-training, but
use the infrared small target data set to directly train from
scratch. In order to train the proposed detection network
MNET from scratch, the single-phase detection algorithm
YOLO [12] is adopted in the detection part. As YOLO does
not need to create area suggestions in a first step, but can
directly perform target detection, its detection speed is fast.
In combination with the feature extraction backbone network
MNET it can meet the real-time requirements of infrared
small target detection.

In general, the main contributions of this work are:
(1) Since target classification varies from target detection,

we specifically propose a feature extraction backbone net-
work for the detection of infrared small targets, which shows
higher sensitivity regarding location information of the target
than commonly used classification backbone networks.

(2) Due to the small size, infrared small targets might
disappear in the deep layers of the classification network.
For this reason, we limit the down-sampling operations and
obtain a large enough feature map.

(3) We use dense networks to store the output of each
layer of the network and combine shallow and deep networks
to extract semantic and location information. At the end of
the network, we introduce a feature attention mechanism to
achieve adaptive calibration of the feature channel and to
further purifying the information of each layer saved by the
dense network.

(4) Since there is a large difference between general classi-
fication data and infrared small target data, we do not use pre-
trained networks, but use infrared small target data to train our
network from scratch.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the related methods of infrared
small target detection. Section 3 presents the details of
infrared small target detection algorithmMNET based on the
feature fusion convolution network designed in this paper.
Section 4 describes experiments conducted on a number of
real infrared images covering complex situations, such as sea-
sky background, clouds, drastic changes in target scale, and
target occlusion or flying out of the field of view. Section 5
analyses the experimental results. Finally, Section 6 con-
cludes the paper.

II. RELATED WORK
Researchers have developed many robust methods for
infrared small target detection, such as Bayesian estima-
tion [13], Kalman filtering [14], morphological filtering [15],
high-pass filtering [16], maximum mean/maximum median
filtering [17] and its extension [18], wavelet-transform-based
algorithm [19], [20], morphological method [21], principal
component analysis (PCA)-based method [22], and top-hat
transform [21], [23], [24].

The features that are used in the traditional target detec-
tion algorithms described above are manually designed.
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The performance of such algorithms mainly depends on the
prior knowledge of the designer, and on manual tuning. Thus,
only a small number of parameters can appear in the design of
the feature. However, deep learning accepts the original form
of the data as the algorithmic input [25], and abstracts the
original data layer by layer for the final feature representation.
It ends with the mapping of features to targets.

In 2012, Hinton et al. won the ImageNet image classi-
fication competition with their proposed CNN AlexNet [4]
and surpassed the classification rate of the algorithm that
ranked second place by nearly 12%. Since then, the domi-
nance of CNNs in the field of computer vision has continued.
Subsequently, well-known networks such as VGGNet [26],
GoogLeNet [27], and ResNet [4] emerged.

In the field of target detection, detection methods based
on convolutional neural networks are mainly divided into
two categories: one stage methods and two stage methods.
Two stage methods were introduced first. Examples for two
stage methods are networks such as Fast-RCNN [28], or
Faster-RCNN [29]. Two stage methods first generate a series
of candidate frames as samples, and then classify the samples
using CNNs. Due to the large number of candidate frames to
be generated, these methods are slow and cannot meet real-
time detection requirements.

In order to address this problem, researchers have proposed
one stage methods such as SSD [30] or YOLO [12]. One
stagemethods do not require the region proposal stage but can
directly generate class probabilities and position coordinates
for the target object. After a single test, the final detection
result can be obtained directly, this increases the detection
speed. SSD can use six differently sized feature maps for
the prediction and can thus better adapt to the target size.
For this reason, SSD is preferred by researchers. Since deep
learning is widely used within practical applications, such as
face detection, vehicle detection, and fruit detection, more
and more people are also trying to combine deep learning
with infrared small target detection.

Lin [31] et al. designed a seven-layer CNN for infrared
small target detection. Wang [32] et al. proposed a single
infrared image small target detection method based on depth
convolution and used a neural network to extract the tar-
get features. Qi [33] et al. proposed a fast saliency detec-
tion model with a simple 5 × 5 convolutional kernel to
obtain the saliency map of the input image, in which the
targets are enhanced while the background is suppressed.
Zhang [34] et al. use Fast R-CNN for long-wave infrared
image detection. Redmon and Farhadi [35] use a darknet-19-
based YOLOv2 for infrared small target detection.

However, all these approaches are rather straightforward,
as they simply apply well-known detection methods to
infrared small targets and perform some fine-tuning. More-
over, the scale of the targets is kept relatively large for
these approaches. Thus, the difference between infrared small
targets and general data is not considered. For this reason,
the feature extraction backbone network MNET that is cus-
tomized for infrared small targets is proposed in this paper

III. METHODOLOGY
The overall objective of this study is to define MNET, a new
feature extraction backbone network for infrared small target
detection that provides high accuracy, good real-time per-
formance, and adaptability to scale changes. In this section,
the structure of MNET is introduced first, subsequently
important design principles are described in detail.

A. MNET
Early target detection algorithms based on convolutional neu-
ral networks have a poor detection effect on small targets.
Later, FPNs [10] were proposed, while other algorithms
added deep neural networks as well as shallow networks for
solving this problem. The intention was to perform small
target detection using a shallower network, but higher res-
olution in the layer. Because the semantic information of
shallow networks is weak, they cannot correctly identify
the target. Shallow networks and deep networks with strong
semantic information are thus superimposed to improve the
expressive ability of the shallow network. However, due to
the excessive number of down-sampling operations that is
needed, the small target is likely to disappear within the deep
network (the size of the infrared small target is smaller than
the smallest target that can be identified by the detection
network). To solve this problem, MNET takes the original
image with a size of 456× 456 pixels as input and converts it
into a feature image of size 57× 57 pixels using three down-
sampling and corresponding convolution operations. In this
process, the shortcut residual structure is added to alleviate
the degradation problem caused by the deep network. After
this step, we do not perform any further down sampling
operations, but use a dense network on the feature map of
this size to preserve the output information of each layer
network while deepening the network. Finally, the feature
attention mechanism is introduced to realize the adaptive
calibration of the feature channel, and to further refine the
information of each layer that is saved by the dense network.
Because the direct training detection network may not con-
verge, YOLO is used in the detection part of the algorithm
and batch normalization [36] is added in each layer, to allow
for the network training to process faster and more stable.
The structure of MNET is shown in Figure 1. Figure 2 shows
the specific parameters of MNET. Each component and the
corresponding design principles are described in detail below.

B. M MODULE
Most detection networks use VGG or the residual network
ResNet as their infrastructure in order to take differently
sized targets into account.When connecting the deep network
to the shallow network, the output of the deep network is
simply up-sampled andmerged with the output of the shallow
network. However, we intend to save as much information of
each output layer on the scale of 57 × 57 pixels as possible,
to better combine the shallow edge features with the deep
semantic information. In this regard, we are inspired by the
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FIGURE 1. MNET structure.

FIGURE 2. MNET parameters.

dense connection in DenseNet [37]. In a dense connection,
the featuremap of each layer of the input network is the output
feature map of all previous layers, while its own feature map
serves as the input feature map for all subsequent layers. The
feature fusion module used in this paper is named MModule
and is shown in Figure 3.

The relationship between the output and input in the M
Module is as follows:

Xn = Mc(δ(CXn−1)+ Xn−1) (1)

where Xn−1 is the input feature map, X0 to Xn describe the
output of the nth layer, until X7. C is a convolution operation,
δ is a leaky activation function, Mc(a, b) = Concat(a, b)
indicates that two feature maps are concatenated.

The authors of DenseNet originally planned to use this
dense connection to alleviate the problem of gradient disap-
pearance, and to strengthen the network’s expression while
deepening the network. We have found that dense connec-
tions are suitable for the combination of shallow and deep
information on the same scale and provide good recognition
and localization abilities for infrared small target detection.

We use two M Modules in MNET. On the one hand, it is
because we want to use deeper network layers to improve
the expression effect of the network. On the other hand,
if only one M Module is used, the number of channels in the
network will be too large and the speed will be slow. In addi-
tion, the dense connection provides a normalization effect,
which is beneficial when the form of the detection network is
directly trained, without using a pre-training network.

We design four different M Modules for experimental
comparison.

As shown in Figure 4, the feature size of the input M
Module is 57 × 57 pixels and 128 channels. Structure A
consists of seven M-groups, each of which includes a Conv3-
dense operation. Feature extraction is performed using a 3 ×
3, 128-channel convolutional layer. The output of the set of
convolutional layers is connected in series with the output of
the upper set of dense layers by the dense layer. Each time
the dense series is connected, the number of the feature map
channels can be increased by 128. The final output is a feature
map of 57 × 57 pixels and 1024 channels. Structure B adds
a 1 × 1 convolution bottleneck layer to each group of the
basic structure A. Since the series operation of the dense
network increases the number of channels rapidly, adding
the bottleneck layer before the feature extraction layer can
significantly reduce the amount of calculations needed. In
addition, the activation function can be used to integrate
more nonlinearity into the network and to improve the ability
of expression of the network. The final output is a feature
map of 57 × 57 pixels and 1024 channels. Structure C
replaces the bottleneck layer Conv1 of 128 channels in B
with a 64-channel Conv1 bottleneck layer, and finally out-
puts a characteristic map of 57 × 57 pixels and 1024 chan-
nels. Structure D replaces the 128-channel convolution layer
Conv3 in structure B with a 64-channel convolution layer
Conv3. The final output is a 57× 57 pixels and 576 channels
feature map.

C. FA MODULE
After the feature fusion operation of the MModule, the char-
acteristics of the shallow network and the deep network are
preserved within each channel of the feature map. The next
step is to add the feature attention mechanism to obtain the
importance of each feature channel, and then to enhance
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FIGURE 3. M Module structure.

FIGURE 4. M Module parameters.

useful features according to this importance. This means,
the network may utilize the global information to selectively
enhance beneficial features. In this way, the adaptive calibra-
tion of the feature channel can be realized, and the character-
istics of each layer extracted by the M Module are further
purified. Therefore, the FA Module is added at the end of
the backbone network; its structure is shown in Figure 5. The
characteristics of the FA Module are calculated as follows:{

X1 = δ(C2(δ(C1(PX0))))
X2 = X0 + UX1

(2)

P is the global average pooling, δ is the leaky activation
function, andC1 is the convolution operation of 1×1, 8,C2 is
the convolution operation of 1× 1, 128. U is an up-sampling
operation with a magnification of 57.

The input X0 of the FA Module is a 57 × 57, 128-channel
feature map. The filters learned by each channel within a
typical CNN operate on local receptive fields. Each feature
map cannot utilize the context information of other feature
maps. To solve this problem, each feature map is first com-
pressed by a global average pooling, so that the feature map
is transformed into a real number column of 1 × 1 × 128.
In theory, this number should have a global receptive field,
which allows the feature map of the shallow network to also
utilize global feature information. To take advantage of the

information gathered during the extrusion operation, the exci-
tation operation is used to fully capture channel dependen-
cies. First, the dimensionality reduction operation of a 1× 1,
8-channel convolutional layer and the dimensionality lifting
operation of a 1 × 1, 128-channel convolutional layer are
used. Here, the 1 × 1 convolutional layer can take over
fully connecting and acquiring the importance of each feature
channel. At the same time, the leaky activation function is
added to the convolution operation to improve the nonlinear-
ity of the module. Relative to the ReLU activation function,
leaky retains a small negative value that can alleviate the
‘‘dead’’ ReLU problem. After up-sampling, to restore the size
of 57 × 57 pixels, X is obtained. Finally, X1 is added to the
original input X0 to enhance useful features in the original
input and to obtain the final output.

D. WHY USING YOLO?
For the detection phase, the one-step algorithmYOLO is used
as detection method. Two-step detection algorithms such as
Fast-RCNN, or Faster-RCNN need to first obtain candidate
regions using methods such as Regional Proposal Network
(RPN). These candidate regions are then classified using high
quality classifiers, which contributes to a large computational
overhead. Thus, these methods are not suitable for real-time
detection. YOLO combines the task of extracting candidate
regions and classifying them within one network to convert
detection problems into regression problems. It does not
require the proposed area to provide bounding box coordi-
nates and category probabilities. Using regression directly,
the detection speed is faster, and is thus more suitable for real-
time requirements of infrared small target detection. More-
over, studies have shown that only single-step algorithms
can successfully converge without prior training [7]. This is
supposed to be due to the RoI (Regions of Interest) pooling
in the two-stage methods. RoI pooling generates features for
each region proposal, which hinders the gradients from being
smoothly back-propagated from a region-level to the con-
volutional feature maps. Such proposal-based methods work
well with pre-trained network models because the parameter
initialization is good for those layers before the RoI pooling.
However, this is not true for a training from scratch.

We select YOLO as our one-step algorithm instead of the
popular SSD. SSD uses six feature maps at different scales
to detect targets of different sizes, which is significant for
general data sets containing large, medium, and small targets.
However, this is not of particular significance for infrared
small target detection.

The YOLO detection algorithm is shown in Figure 6. For
the YOLO network we divide the images of each training set
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FIGURE 5. FA Module structure.

FIGURE 6. YOLO detection principle.

into a 57× 57 grid. If the center of a target falls within a cell of
the grid, then this grid is responsible for detecting the target.
Each grid predicts three bounding boxes and corresponding
confidences, as well as class probabilities. The confidence
level is defined as follows:

Confidence = pr (Object)× IoU truth
pred (3)

When a target falls within a cell of the grid, pr (Object) is 1,
otherwise it is 0. IoU truth

pred is used to indicate the coincidence
between the reference and the prediction bounding boxes.
Confidence reflects the accuracy of the prediction bounding
box containing objects.Whenmultiple bounding boxes detect
the same target, YOLO uses the non-maximum suppression
method to select the best bounding box.

IV. DATASET AND EXPRIMENT SETUP
In this section, the data sets used within the scope of this
article as well as the network training parameter settings and
the evaluation criteria are introduced.

A. IMAGE DATASET
In this study, multiple sets of infrared small target image
sequences of 640 × 512 pixels are acquired at a beach using

an infrared camera. A total of 6 groups of 29, 630 images
are selected, and 5 representative images are selected from
each sequence as shown in Figure 7. Further, 500 sheets
are selected as the training set, while the others are used as
test sets.

The statistics of the test set are summarized in Table 1.
In the image sequence, the target flies out of the field of
view or is occluded; hence, the number of images containing
the target to be detected is slightly smaller than the total
number of images. Sequences 1 to 5 comprise sea-sky back-
grounds, including sea-sky-line and sea clutter. Sequence 6
comprises sea-sky and cloud backgrounds, including sea
clutter, sea-sky-line, and cloud edge. The minimum size of
the target is 2 × 2 pixels and the maximum size is around
25 × 25 pixels.

B. DATA AUGMENTATION
Deep learning requires a large amount of data to conduct
appropriate training. Therefore, we use data augmentation
technology to increase the amount of training data. Augmen-
tation is a process of generating new instances from raw data
through various transformation methods, such as rotation,
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FIGURE 7. Partial infrared small target dataset used in this paper.

TABLE 1. Number and size range of actual targets for test sets.

translation, and scaling. In this experiment, we rotate the
datasets through 90◦, 180◦, and 270◦, and we augment our
datasets three times to obtain a small infrared target detection
network with better detection performance.

C. HARDWARE CONFIGURATION
We use the following GPU to speed up the training process:
Nvidia GeForce GTX 1080Ti. The entire program is written
using the Darknet framework, and it is run in the Ubuntu
environment.

D. TRAINING PARAMETERS
We train the infrared small target detection network using the
dataset described above. Table 2 summarizes the parameter
settings for training, such as the learning rate, batch size
and momentum. In particular, 70000 training steps are per-
formed to better analyze the training process. The model is
trained after defining the training parameters. The learning
rate decrease to 0.0001 after 40000 steps.

The choice of the batch size has a certain impact on the
network performance. On the one hand, when the batch size
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FIGURE 8. Loss functions of MNET-A, B, C, and D networks.

TABLE 2. Training parameters.

is too small, it is difficult to determine the direction of gra-
dient correction; hence, convergence of the training process
is difficult. On the other hand, a large batch size not only
requires large storage space but also slows down parameter
correction owing to the reduced number of iterations of an
epoch. Therefore, choosing an appropriate batch size is of
great significance for improving the convergence speed and
accuracy of the network model. In this study, according to our
hardware configuration, we finally chose a batch size of 96,
divided into 8 sub-batches for training (equivalent to a batch
size of 12).

E. EVALUATION METRICS
To verify the effectiveness of the proposed MNET detec-
tion network, we evaluate the algorithm from the perspec-
tive of accuracy, recall rate, and speed. For classification
problems, the samples can be divided into four types: true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN). Precision (P) and recall (R) are defined
as follows:

P(precision) =
TP

TP+ FP
× 100% (4)

It represents the proportion of the number of correct sam-
ples to the number of positive samples.

Recall:

R(recall) =
TP

TP+ FN
× 100% (5)

It represents the proportion of the number of correct sam-
ples of positive class prediction to the total number of samples
of positive class prediction.

In general, the algorithm cannot consider both the accuracy
of the model and the recall. Improving the accuracy often
reduces the recall and vice versa. To better evaluate the per-
formance of the algorithm, we use F1 values to consider both
accuracy and recall. The F1 value will increase only when the
precision and recall are both extremely high.
F1 is defined as

F1 =
2× R× P
R+ P

(6)

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, our experiment based on the infrared small
target dataset is presented and a comparison regarding the
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FIGURE 9. Test results for sequence 1-6.

detection performance ofMNETwith YOLOV2, YOLOV3 is
provided.

A. TRAINING PROCESS
We use the dataset and the training parameters defined in the
previous section to train the infrared small target detection
networks MNET-A, B, C, and D designed in this study.
Figure 8 shows the loss trend during training. The four net-
works eventually converged to approximately 0.05. The value
of the loss function decrease, which means that the accuracy
of the network increases with the training times.

B. DETECTION RESULT
The results of 30 representative images selected previously
are shown in Figure 9 and Table 3. Table 4 summarizes the
average confidence of five images in each sequence (0 for
missing or multiple judgments).

YOLOv2 [25] and YOLOv3 [38] have shown excellent
performance in target detection algorithms based on CNNs.
YOLO series algorithms take into account both accuracy and
speed. In particular, YOLOv3 has shown better detection

effects for small targets compared with YOLOv2. Therefore,
we compare MNET with these two algorithms. The train-
ing parameters of YOLOv2 and YOLOv3 are the same as
those of MNET, and the experimental results are summa-
rized in Table 4. We find that the four proposed networks
have obvious advantages over YOLOv2 and YOLOv3 for
datasets with small targets and large-scale transformation,
especially when the targets are out of the field of view and
have a sea-sky background. Their accuracy, recall, and F1
values are improved by varying degrees, and their speed is
even twice as high as that of YOLOv3. Thus, they meet
the requirements of real-time detection while guaranteeing
high accuracy. The average accuracy of MNET-C is 99.39%,
the average recall is 99.80%, and the average F1 is 0.996.
Compared with YOLOv3, MNet-D has obvious advantages
and it outperforms the other three MNET models. The speed
ofMNET-C is 105 frames per second. The detection part used
byMNET is the same asYOLO, and the obvious performance
improvement proves the importance and effectiveness of the
targeted design feature extraction backbone network.Without
pre-training models, training from scratch also avoids the
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TABLE 3. Detection confidence of different networks.

TABLE 4. (a) Sequence 1 test results of different networks. (b) Sequence 2 test results of different networks. (c) Sequence 3 test results of different
networks. (d) Sequence 4 test results of different networks. (e) Sequence 5 test results of different networks. (f) Sequence 6 test results of different
networks.

interference of different types of data on infrared small target
data. Moreover, the proposal of a high-precision real-time

detection algorithm is of great significance for infrared small
target detection on other devices.
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TABLE 5. Test results with FA Module added or not.

The average F1 of MNET-B, MNET-C, and MNET-D is
higher than that of MNET-A, which reflects the importance
of adding a bottleneck convolutional layer in theMModule. It
not only reduces the amount of computation and improves the
speed of network detection but also adds more nonlinearity
to the network to make the network provide better expression
effects. The addition of the bottleneck layer can increase the
computational efficiency by up to 50%. In the M Module,
the bottleneck convolutional layer Conv1 is primarily used
to condense the output of the upper M group, and the con-
volutional layer Conv3 is mainly used to extract features.
The effect of MNET-C is better than that of MNET-D, which
means that the number of channels in Conv3 should be less
than that in Conv1 when designing the network. In other
words, a wider network than the bottleneck layer should be
used when extracting the features.

In the six sequences tested in this experiment, the target
underwent drastic scale changes. The image sequence records
the process of the target changing back and forth between the
point target of 2 × 2 and the sub-imaging target of 25 × 25.
By contrast, YOLOv3 is close to MNET in detecting the sub-
imaging targets, but it is widened by MNET in detecting the
point targets.When the point target occupies only 2× 2 pixels
in the 640 × 512-pixel images, YOLOv3 cannot detect the
target, whereas MNET-C still performs the detection task
well. Moreover, the excellent detection results of the MNET
Model in the entire process reflect its adaptability to scale
changes. The background of sequences 1 to 5 is a sea-sky
background. Neither the sea-sky background nor the sea-sky-
line have any effect on the results of MNET. In addition,
MNET shows excellent detection effects for sequence 6 with
the cloud background.

The effect of the FA Module is shown in Table 5, where
MNET-CA is theMNET-Cwith the FAModule removed. The
FA Module can increase the detection index by adding only
small amount of calculation operations. This demonstrates
the effectiveness of further adaptive purification of each lay-
ers of features preserved in the M Module.

Note that, in deep learning tasks, the detection confidence
threshold is usually set to 0.5 or 0.75. In this experiment,
the confidence threshold is set to 0.5. The mean confidence
of MNET and YOLOv3 is more than 90%. The selection
of the threshold has a small effect on the results. However,
YOLOv2 is not sensitive to small targets; hence, in this exper-
iment, YOLOv2 is in an under-fitting state, and its confidence
is mostly in the range of 60%∼83%. When the detection
threshold is set to 0.75, the average recall of the six sequence
detection results is 22.27%, which is much lower than that of
other networks.

VI. CONCLUSION
This paper proposes MNET, a new feature extraction back-
bone network for small infrared target detection. The back-
bone network of common detection networks originates from
classification networks. Since the target classification is dif-
ferent from the target detection, such a network is not sen-
sitive to location information of small targets. Therefore,
the presented approach combines a shallow network with
the characteristic information of a deep network and further
purifies it. Instead of using a pre-training model during the
training process, the infrared small target data is used directly
to train the network from scratch. The experimental results
show that MNET can be used for the detection of infrared
small targets in real-time under sea-sky backgrounds. Fur-
thermore, MNET shows strong adaptability to scale changes
of the targets. The proposed detection network has obvious
advantages over YOLOv3 in terms of accuracy and speed.
Future work will focus on the use of existing models for
tracking small infrared targets in video data. In addition,
research on anti-interference identification will be conducted.
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