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ABSTRACT With the emergence of industrial robots in recent decades, advancing the technology that drives
human-robot interaction has become a research hotspot. However, the control of human-robot interaction
using human gestures has presented some challenges when applied to the industrial environment. For
example, when a robot is controlled with a hand motion, the hand movement space may be smaller than
the robot’s working space, making it difficult to meet the robot’s space and accuracy requirements. The
research herein was centered on building interactive scenarios through unit software, and gesture recognition
sensors were used to collect spatial information about the hand. A position mapping algorithm was used
to map the position of the hand to the robot end-effector and a virtual robot space constraint was added to
collectively allow users to control the robot’s movements. In the experiment, volunteers were asked to control
the robot by using constant speed ratio (Ratio of robot speed to input value) or changing speed ratio. The
speed ratio affected the stability of the experiment, adding electromyography can improve the stability. The
first innovation was the use of human muscle information as input information, adding it to the interaction
based on unity. The second innovation was using an algorithm to change the mapping speed ratio according
to the electromyography information provided. This was the first time that electromyography was used to
change the mapping speed ratio of human-robot interactions, which may enable further advancements in
human-robot interaction.

INDEX TERMS Human-robot interaction, tele-robot, virtual reality, EMG.

I. INTRODUCTION
Since the invention of the robot, humans have been work-
ing to improve the efficiency and safety of robot produc-
tion, reduce the cost of robots, and simplify the operation
process. Current robots are quite structurally mature, which
can be seen in the robots used by companies such as ABB,
Fanuc, and KUKA [1]. The robots most commonly used in
the industry are reprogrammable robots, however, program-
ming a robot for a specific task requires a lot of time and
effort [2]. Although intelligent robots are able to fulfill human
requirements and can autonomously adapt to changing envi-
ronments, but they are subject to real-time conditions, and
cutting-edge technologies such as sensor technology, image
recognition technology, deep learning technology, and that
full intelligent robots have not been implemented.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

Applying human flexibility to a machine can allow for
the accomplishment of many complicated tasks. Sheridan [3]
proposed the concept of the tele-robot, which uses remote
operation to extend a person’s perception and manipulation
capabilities to a remote location. Current teleoperation robots
are used in many fields, such as the m2 model machine [4]
that was used for isolating nuclear waste and tele-robots for
nuclear power patrol [5]. Capocci [6] advanced a H300 MKII
remote control robot that can be tested underwater at 300
meters. Ballantyne andMoll [7] looked at Intuitive’s da Vinci
surgical system, which combines teleoperation with medical
care. In the field of micro teleoperation, Chinn et al. [8]
designed a four-degrees-of-freedom AMTI telerobot which
can be used to grasp and release micro-gear.

However, the above operations are based on remote sens-
ing of the controller, etc., without using the human body’s
natural gesture language, which conforms with human habits.
Authors in [9]–[11] used the human body’s natural gestures
to control the robot, but were limited by operational space
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constraints (For a human may require less space for ges-
tures than the robot needs to carry out its activities). Here
is an example of spatial constraints: The active space of the
hand is 1 and the active space of the robot is 3, we can set
the attitude of the robot mapping coefficient to 3 to meet
the robot’s functional requirements. However, carrying out
human gestures is not possible in all locations. If the mapping
coefficient is increased to 6, part of the attitude movement
can control the entire robot space, but the excessively large
coefficient may cause jitter and reduce the accuracy of the
control trajectory. Grafakos et al. [12] employed a human
muscle electrical signal to change the stiffness of the dragging
robot in order to study the influence on the robot’s space drag.
Wang et al. [13] integrated force control and electromyogra-
phy (EMG) to enhance the performance of a tele-robot.

The problems encountered in previous studies is as follows.
Using buttons to control the robot has many input dimensions
and is not constrained by space, but it is difficult to oper-
ate. Using body language to control the robot’s interaction
conforms to the human body’s own motion habits and has
great potential, but it is restricted by space, so its practical
application is limited.

A. CONSTRIBUTION
This study introduced a new dimension to solve the spa-
tial constraints of natural limb control without changing the
user’s posture. Since the EMG signal can influence the space
drag and impedance, we decided to apply EMG to teleoper-
ation robots, to solve the space constraints problems. In the
method, we use envelope, threshold and other technologies
to process the collected EMG data, and the processed infor-
mation was used to change the control of the robot. In terms
of interaction accuracy and efficiency, the traditional body
language interaction method is compared with the interaction
method mentioned in this study in the virtual scene. It can
found that the method of adding EMG dimension to change
the interaction speed ratio mentioned in this paper is effective
to solve the above spatial constraints.

B. OUTLINE
The paper consists of five Sections. In Section II, the sys-
tem structure, data acquisition and processing methods are
introduced. Then it introduces how to control the robot’s
movement, and how to apply EMG information to the formula
to change the speed ratio of the robot’s movement, and how
to control the robot’s rotation. The space constraints of robots
and the experimental scenarios built in this study are also
introduced. In Section III, we show the experimental results,
mainly including the experimental time and accuracy data.
In Section IV, the experimental results are analyzed in detail
and explained. Conclusions are presented in Section V.

II. EXPERIMENTAL SETUP
A. SYSTEM STRUCTURE
The system structure of this study is shown in FIGURE 1. The
user controls the movement of the robot inside the computer

FIGURE 1. The camera collects the human hand posture and the muscle
electricity sensor collects the arm tension. The hand controls the
trajectory of the robot, and the muscle tension changes the control speed
rate.

by hand. The position and posture of the human hand are
recognized by a camera (LeapMotion sensor) arranged inside
the space, and the degree of tightness of the human arm is
recognized by the EMG sensor. The position, posture, and
tightness are transmitted as a numerical signal to the robot
model of the computer to control the operation of the robot
end-effector. Kinematic modeling of robots is a relatively
mature discipline, like Spong and Vidyasagar providing a
kinematics model and inverse kinematics model method for
robots [14], which could be used here.

B. MUSCLE ELECTRICAL SIGNAL
Before using the EMG information, it is useful to understand
how the generation, collection, and processing of muscle
electrical signals work. FIGURE 2 shows the muscle struc-
ture of a mammalian, composed of bundled muscle cells or
fibers in the restingmuscle, andmaintaining a negative poten-
tial difference (−80 mV) through the myocyte membrane.
When the nerve activates the fiber at the motor endplate,
a reverse pulse potential (+30 mV) is formed for about
2 ms and this potential moves along the length of the fiber
at a speed of 2-6 m/s. A potential difference is formed by
arranging two electrodes (d+ and d−) at the position where
the muscle fibers pass [15]. The muscle electrical signal is
attenuated after passing through the subcutaneous tissue to
the epidermis, and muscle tension signals are less than 1 mV.
To obtain high-quality measurement signals and reduce inter-
ference, a differential amplifier is needed [9]. Hoffer and
Perry [16] used 40-1000 Hz with an overall gain of 1000 as
the EMG system bandwidth. The EMG (ZTEMG-1000) used
in this study has a bandwidth of 10-1000 HZ with a gain
of 1000, outputs the raw voltage signal. It’s contact part is
silver, which has good conductivity and has the advantage of
reuse compared with wet EMG. Last Arduino was used to
collect data, and the sampling rate was 500 HZ, then transfer
the result to the virtual scene through serial port. A muscle
electrical sensor was placement to measure forearm flexor
like Fig. 3 A. In Fig. 3 B, the original signal collected is shown
with the blue line, but the original signal is not used for direct
control, as further processing of the signal is required. The
process of signal processing is as follows (Fig. 3 B, C, and D).
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FIGURE 2. EMG signal transmission in muscle fibers.

Firstly, a 10-Hz-high-pass filter is used to suppress interfer-
ence from the low-frequency signal (If the amplifier without
bandwidth filter or high-pass filter, the process is needed).
Due to the intensely positive and negative jumps in the signal,
a modulus was given to shift the negative value to a posi-
tive direction through half-wave rectification. The amplitude
information can be obtained by using the envelope filter, but
it still has many peaks. The envelope signal is smoothed
by 5 HZ, and the processed signal is shown with a red line.
From the red line in FIGURE 3 D, it can be seen that tighten-
ing the muscles leads to an increase in the amplitude, which is
the control parameter of the robot. It can be seen from the red
line that there are four short arm muscles activated in the col-
lection process, so there are four groups of peaks. When the
arm muscles relax, the signal tends to be gentle (at+0.05 mv
to−0.05 mv fluctuations). When the muscles are in a relaxed
state, it can be seen that human control of muscle activation or
relaxation is measurable. Due to individual differences, and
in order to ensure control, this study used a normalized value
(using the individual’s maximum voltage as a divisor). Let
ξ be the amplitude of the red envelope to indicate muscle
activation (ξ = U

/
UMax), then ξ ∈ (0.1).

C. MANUAL POSITION OF ROBOT POSITION MAPPING
To control the robot using body language, it is necessary to
clarify the kinematic relationship between the human body
posture and the robot, and it is necessary to establish a kine-
matic model and transmit the human body posture to the robot
through the model. The hand coordinates and the coordinates
of the robot end-effector are shown in FIGURE 4. Because
they are not in the same coordinate system, coordinate trans-
formation is required. Where P denotes the coordinate sys-
tem, {r} denotes the robot’s coordinates, {h} denotes the
hand coordinates, R denotes rotate, superscript r of P denotes
the robot coordinate system, superscript h of P denotes the
human hand coordinate system, U is the moving speed, and
subscript n of P denotes a time series. The ratio of robot
coordinates to human coordinates is a spatial transformation
of constant, which can be expressed by formula (2). How-
ever, as the robot coordinates and the human body coordi-
nate ratio are not constant, formula (2) cannot be directly
solved. Traditionally, the mapping speed ratio of interactions

FIGURE 3. EMG indicates a state of activation or relaxation.

is always constant (Const = Vrobot
/
Vinput ). This article adds

the mapping parameter β which is the control coefficient for
EMG. Adding the ratio of the hand movement space range to
the robot movement space range, we get two constant ratios:
β = 2.5 and β = 5. When β = 2.5, there is sufficient hand
space to fully map the robot workspace, but only a portion
of the hand space can map the whole robot workspace when
β = 5. With the activation of the EMG signal, the variable
mapping speed control expressed by formula (1). In theory,
the threshold of signal can be simply chosen as 0.5, less than
0.5 means relaxation and more than or equal to 0.5 means
tension. But from the actual point of view, it is appropriate for
users to keep relaxed or semi-tightened all the time, but It is
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FIGURE 4. The coordinates of the hand in relation to the robot
coordinates.

not appropriate for users to keep maximum-tightened all the
time. If users do not fully tighten and keep at 0.5 or so, it will
lead to frequent state changes (stability will become worse).
What we want is to increase the cost of switching (increase
stability), but it’s easier to maintain. So after practical expe-
rience, we choose two values 0.4 and 0.6 as thresholds, less
than 0.4 as relaxation, more than 0.6 as tension, and 0.4 to
0.6 keep the previous state. When ξ ≤ 0.4, the muscle is in
a relaxed state, the state of the user’s shape is drawn, and the
speed ratio β = 2.5.let β keep the previous number when
0.4 < ξ < 0.6. When 0.6 ≤ ξ the muscles are in an active
state and the speed ratio β = 5.

β =


2.5, ξ ≤ 0.4
β, 0.4 < ξ < 0.6
5, 0.6 ≤ ξ

(1)

If the position and angle of the hand at the beginning and
end of a single step has obtained. The velocity of the hand
is multiplied by β and then transformed into the speed of
the machine. Finally, the position of the robot is updated
according to the position of the robot at the last moment.
Using formulas (3), (4) and (5), the position of the robot can
be calculated from the position of the hand.

rP = r
hR

rP(n) + rPoh (2)
rP(n+1) = rP(n) +1trU(n+1) (3)
rU(n+1) = hU(n+1)β (4)
hU(n+1) = (hP(n+1) −h P(n))/1t (5)

There are many well-developed methods that can be used
to solve the problem of object rotation, such as Euler angles,
rotation matrices, axis-angles, and quaternions. Yaw, pitch,
and roll in the Euler angle are easy to understand, but there
are Gimbal Lock problems [17], which can lead to angle
mutation. The rotation matrix has no Gimbal Lock problem,
but it is not intuitive and wastes memory as it requires nine
parameters to represent three-degrees-of-freedom rotation.
Axis angle rotation is not intuitive without the Gimbal Lock
problem, but it is difficult to implement multiple rotation
combinations, and it is not easy to linearly interpolate its
elements. The quaternion has no Gimbal Lock problem and
only four numbers are used in order to prevent memorywaste,

FIGURE 5. Rotation transformation of vectors by a quaternion.

making it easy to use. Formula (19) is the renewal formula of
the robot rotation. The specific idea is to obtain the rotation
axis and rotation angle of the human hand, and then update
the rotation state of the robot. Formula (6) to Formula (18)
is a concrete deduction process. The quaternion consists of
a scalar and a vector, assuming that the three-unit vectors of
the standard orthogonal basis in the three-dimensional space

are
∧

i = (1, 0, 0),
∧

j = (0, 1, 0) and
∧

k = (0, 0, 1), and the
quaternion can be expressed by formula (6). Another way to
represent quaternions like formula (7) is where θ indicates the

angle of rotation around the axis of rotation and
∧
u = (

∧

i ,
∧

j ,
∧

k),
which indicates the axis of rotation. The unit quaternion,
where |q| = q20 + ‖q‖ = 1, can be calculated by formula (8).

q = q0 + q = q0 + q1
∧

i +q2
∧

j +q3
∧

k (6)

q = cos
θ

2
+
∧
u sin

θ

2
(7)

∧
u = q/‖q‖ (8)

As per FIGURE 5, set hq(n) as the unit quaternion of the
hand, let rq(n) be the unit quaternion for the end of the robot,
hvn represents the vector of the hand, v ∈ <3.hq(n) is the
variation of hq in the time series n, and the vector rotation
quaternion sequence is expressed as formula (9).

hvn+1 = Lhq(n+1) (
hv0) = L1hq(n+1)1hq(n)...hq(0) (

hv0) (9)

To map the rotation of the hand to the end of the
robot, the rotation axis and rotation angle of the hand must
be obtained, which can be done by changing quaternion
1hq(n+1) as per formula (10).

hq(n+1) = 1hq(n+1)hq(n) (10)

1hq(n+1) = hq(n+1)hq
−1
(n) (11)

For a unit quaternion, its inverse is equal to its conjugate,
as per formula (12). hq∗(n) as per formula (13).

hq−1(n) =
hq∗(n) (12)

hq∗(n) =
hq(n)0 −h q(n)1i−h q(n)2j−h q(n)3k (13)
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FIGURE 6. The movement of the hand.

The solution of 1hq(n+1) in formula (11) is not a unit
quaternion, which needs to be converted into a unit quaternion
like formula (14).

1hq(n+1)← 1hq(n+1)
/∥∥∥1hq(n+1)

∥∥∥ (14)

The change of rotation angle and axis of the hand can be
obtained by formulas (15) and (16).

1hθ(n+1)

= 2 arccos(1hq(n+1)0) (15)

∧
u = [1hq(n+1)1,1hq(n+1)2,1hq(n+1)3]T

/
sin

1hθn+1

2
(16)

The rotation angle and the rotation axis of the hand change
are the same as that of the robot, and the rotation map is as
shown in formula (17), where 1rθ(n+1) is the angle change
of the end of the robot in n +1 sequence. The quaternion
of the end of the robot in the n + 1 sequence is shown in
formula (19).

1rq(n+1) = (cos
1rθ(n+1)

2
,
∧
u sin

1rθ(n+1)

2
) (17)

1rθ(n+1) = 1
hθ(n+1) (18)

rq(n+1) = 1rq(n+1)rq(n) (19)

D. EXPERIMENTAL EQUIPMENT AND
WORKING CONDITIONS
For direct access to hand data, this research used the Leap
Motion device. Infrared LED illuminates the area above the
controller. Two cameras capture the hand image and calculate
the relative position of the hand in space by a triangulation
algorithm. Leap Motion provides coordinates, speed, and the
normal direction of the palm. It’s recognition ranges from
25 mm to 600 mm above the top of the controller, just like
an inverted quadrangular pyramid. The moving area of the
hand is shown in FIGURE. 6, where the moving space of
the hand is 300mm× 300mm× 400mm. Leap Motion recog-
nizes the motion of the finger with a theoretical recognition
accuracy of 0.01 mm and a recognition delay of 5-10 ms. It’s
SDK provides APIs for multiple languages such as C++,
C#, Java, JavaScript, and Python. In the scene operation,
unity can render the scene and provide for a basic physics
engine, such as friction, gravity, and torque, and establish

FIGURE 7. The operation space of the robot.

FIGURE 8. Human-robot position mapping relationship.

various object connection relationships, such as providing
hinges, spring connections, etc. The robot running space
is shown in FIGURE 7, where the yellow rectangle is the
robot workspace, and the length, width height are 1000mm×
1000mm × 500mm. It is easy to set up experimental scenes
for C# supported by Leap motion and unity, and this set up
can allow for the use of a high number of library functions.
In addition to mathematical operations, it also provides vari-
ous IO ports and can output model data to other software in
real-time via UDP or TCP, or read other software in real-time.
Experimental data can also be saved to a computer in the form
of text. The experiments were run on a PC with an Intel Core
i7-8700 CPU@3.20GHz, and 16GB of RAM, connected to a
27-inch LED with 1920× 1080 resolution at 60 Hz, running
on Windows 10.

This experiment requires paint curves on a surface of the
plane. In the real world, with force control, a distance sensor
or human observation can be used to keep the end of the robot
in a specific plane. However, in virtual interactions without
force feedback, it is very difficult for the participant to control
the end of the robot on a specific curved surface. In this study,
the position of the robot end is constrained by the following
method. In FIGURE 8, when the end position of the robot
is above the drawing surface, the hand position to the robot
positionmap uses formula (3), and themapping is represented
by circles 1 to 4. When the robot touches the drawing surface,
if the handmoves continuously down, the robot will not move
along the normal direction of the drawing surface. When the
hand moves in a horizontal direction, the robot will only fol-
low formula (3) along the tangential direction of the surface,
but deep mapping is represented by circles 5 to 8. By using
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FIGURE 9. The target curves.

the above method, there is no displacement restriction on the
user’s motion, while the end of the robot can be kept on
a specific curved surface. In addition, when designing the
virtual interaction structure, it should be noted that the user
tends to ignore the depth when the hand is down, causing the
robot to leave the surface too long after the hand is raised.
Therefore, a layer of luminescent substance was wrapped
around the end of the robot, which will display different
lengths according to the depth, reminding the user of the
current depth.

Curves may change according to the varying shape of
the work-piece in most situations. Although they are highly
unstable structures, they are also composed of basic curves,
such as horizontal, vertical, oblique, arcs, and arbitrary polyg-
onal lines. The entire trajectory of this study design is shown
in FIGURE 9. The participator needs to control the robot
start from point A, draw a rectangle according to the dotted
arrow, then draw a triangle, circle, multiple curved lines,
and finally return to point A. The points of interest we
focus on include the following: interaction time and drawing
quality.

The experiment was divided into three groups: A, B, and C.
Four healthymale volunteers had amean age of 26±2.4 years
(range 24-27 years), a mean mass of 66.16 kg (± 4.67 kg),
and a mean weight of 1.75m (± 0.04 m) participated in
the experiment, they are all students in mechanical specialty
of Chongqing university. Each person participated in every
group and repeated the exercise twice. Groups A and B did
not wear EMG equipment, the velocity ratio of group A was
β = 2.5, the B group velocity ratio was β = 5, while
group C wore EMG equipment and their velocity ratio β was
based on formula (1). Before the experiment, each participant
will have 5-10 minutes for video introduction and question
answering, and then will be familiar with the operation,
each operation will be familiar with 5-7 minutes. After the
experiment started, the experiment was started in the order
of ABC and then CBA, and each group gap would rest for
2-3 minutes.

FIGURE 10. Curve drawing at the end of the robot.

III. RESULT
A. DRAWING REULTS
In order to study the influence of different mapping speed
ratios β on efficiency and accuracy, the experimental results
of groups A, B, and C are shown in FIGURE 10. Since each
group drew the shapes two times, each group produced eight
curves. It can be seen that the A, B, and C groups drew all
curves according to the requirements.

B. INTERACTION TIME
FIGURE 11 shows the drawing situation of a person. The
data was marked by stages (n = 0 to 8). t1, t3, t5, and t7
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FIGURE 11. Drawing process and time taken at different stages of the
experiment. A is the drawn curve. B is the XYZ displacement of the drawn
curve.

represent the time taken to draw a triangle, rectangle, circle,
and arbitrary polygon, while t0, t2, t4, t6, and t8 is the time
taken to move from one graph to another.

In order to study the different times taken between the
different groups, all the data is displayed in a box diagram,
as shown in Table 1, where T is the time taken to draw the
rectangle, R is the time taken to draw a triangle, A is the
time taken to draw the arbitrary polygon, C is the time to
draw a circle, and M is the time taken to complete the whole
movement, which equals the sum of t0, t2, t4, t6, and t8.
Sum1 represents the total time spent drawing, equal to the
sum of T, R, A, and C. SUM2 represents the time taken to
complete the sum of M and SUM1. The total times taken are
shown in FIGURE 12. From SUM1, group A took an

average time of 48.76 s, group B took an average time
of 45.48 s, and group C took an average time of 65.77 s.
A repeatedmeasuremulti-way analysis of variance by SPASS
showed that there were significant differences (p = 0.002)
in the time taken among group A, group B, and group C.
Group A and group B had no significant differences (p =
0.495) but both fast than group C (p < 0.05). The differ-
ences among participants was not significant (p = 0.453).
That is to say, the change in constant β between the two
groups did not significantly influence the time taken, contrary
adding EMG change β did increased time taken. Looking

TABLE 1. The times taken to complete the experiment testify to its
stability.

FIGURE 12. Comparison of time spent on the experiment by the groups.

at M from groups A, B, and C, no significant differences
were found (p = 0.440) for each group. There were not
significant differences among participants (p = 0.210). For
SUM2, groupA took an average time of 70.31 s, group B took
an average time of 68.89 s, and group C took an average time
of 89.40 s. Significant differences between group A, group B
and group C (p< 0.05). There were no significant differences
(p = 0.673) found in time between group A and group B but
both fast than group C (p < 0.05). The differences among
participants were not significant (p = 0.202). It can be seen
that groups A and B are close, with both producing lower
values than group C. From the whole experiment, it can be
seen that increasing β does not significantly reduce the time
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TABLE 2. The sd values 0btained support the stability of the experiment.

taken to complete the experiment, while adding EMG did not
change the movement time but did increase the interaction
time. By observing the whole experiment process, the time
increase caused by adding EMG may be due to participants’
active control of state switching and distraction. A more
detailed explanation is that there is no significant difference
between Group A, B and C in the moving phase for there is
no need to pay attention to the accuracy of the curve. In the
process of drawing, groupA andB only needs to pay attention
to the accuracy of the curve, but for group C whom need
to pay attention to both the requirements of the curve and
muscle tightness, which may lead to distraction and uncon-
scious slowdown of the speed. However, this speed effect
is still acceptable in practical application. After all, many
applications require higher accuracy, such as teleoperation
control bomb disassembly, relative to increasing time.

C. DRAWING STABILITY
The data used in this experiment include two-dimensional
coordinate positions. To study the differences in stability
between the different groups, the data needs to be further
processed. By calculating the distance between the actual
coordinate and the target coordinate, therefore making it one-
dimensional, then using the distance standard deviation (SD)
to evaluate the stability of the experiment, we find that the
smaller the SD value, the closer the actual coordinate is to the
target position, and themore stable the rendering is. As shown
in formula (20), where x, y are the actual drawing coordinates,
xtc, ytc are the target coordinates with the smallest distance
from x, y. After processing all the data, the results are shown
in Table 2, where T, R, A, and C represent each drawing
error, respectively, and together give the total process error
for the whole drawing. For drawing T, group A, B and C
had significance different (p = 0.001), group A and C was
better than group B (p < 0.05), and group C was similar to

FIGURE 13. Comparison of SD values between the groups.

group A (p = 0.133). For drawing R, group A, B and C
had significance different (p < 0.001), group A and C
was better than group B (p < 0.05), and group C was
no significance different to group A (p = 0.056). For
drawing A, group A, B and C had significance differ-
ent (p = 0.001), group A and C was better than group
B (p < 0.05), group C was similar to group A (p =
0.607). For drawing C, group A was better than group
B (p < 0.05), and group C was better than group A
(p < 0.05).
Overall, group A (8.37), B (11.22) and C (7.15) had sig-

nificance difference (p < 0.001), group A was superior to
group B (p < 0.05), and group C was superior to group A
(p < 0.05). There were not significant differences among
participants (p = 0.059). It can be seen that the smaller the
value of β, the closer the graph is drawn to the target curve,
the total situation is as FIGURE 13 group C has the best
stability.

SD =
∑∥∥∥∥X − −X∥∥∥∥/n =

∑
‖(x − xtc, y− ytc)‖/n (20)

IV. DISCUSSION
In this study, virtual reality technology was used to sim-
ulate the path calibration process of an operational teler-
obot, and the effects of conventional interaction and muscle
electrical signal interaction on the operation were compared.
This research is important because it opens up new possi-
bilities to collect human bioelectrical information and use
it in virtual reality interactions. As far as we know, this
is the first time that muscle electrical signals have been
applied to virtual reality in human-robot interactions while
changing the mapping speed ratio of the virtual interac-
tions. Our research differed from that of previously pub-
lished articles, which instead focused on force feedback inter-
action. References [12], [18], [19] or network delay [20].
Examining the operating space is not enough. This study
is based on using a small hand movement space to control
the large operational space used by a robot, examining the
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influence of different speed ratios β on the human-robot
interaction.

In terms of the time taken to complete the interaction,
we find that the mapping speed ratio did not significantly
influence the operation time. Looking at the accuracy of the
interaction, we find that the smaller the β, the better the
stability. In this case, the mapping speed ratio needs to be
reduced. In terms of space limitations and stability, we can use
a smaller coefficient to ensure better control. The stability of
group C was significantly higher than group A and group B.
For group A, the constant β = 2.5 approaches the minimum
boundary value. That is to say, adding the muscle electrical
signal to dynamically change the β between 1 and 5 can solve
the above problems. Of course, there are still some things that
can be improved in this study, such as using a virtual reality
helmet to further enhance reality. In this study, we studied
the effects of EMG on virtual reality human-telerobot inter-
action, and improved the interaction quality by changing the
interaction rate ratio through human arm EMG information.
This study shows that virtual reality interaction is not only
based on spatial or force interaction, but information from
other human body variables can be incorporated to improve
accuracy and control. It is advantageous to add EMG toVR or
teleoperation. Because dimension is single in the traditional
interactive input information, generally only attitude input.
There are few ways to increase dimensionality, like force
feedback, but it is huge and expensive. The method of use
language adding dimension is feasible, and it is generally
used in vehicle navigation, mobile phone interaction, etc., but
it will affect the people nearby in VR entertainment or work.
In this study, EMG is added, users can control the robot run-
ning in VR in two dimensions. In addition, button-controlled
input, regardless of the nature of finger interaction, a button to
control a dimension is feasible and commonly used. But for
experience more realistically (through natural posture con-
trol), it is not appropriate to add control buttons to the scene,
for users need to constantly change their current posture
to touch the button. On the contrary EMG will not change
the user’s posture because the occupancy is due to muscle
tightness.

V. CONCLUSION
With the development of virtual reality technology, human-
robot interaction can be successfully operated in the virtual
reality world. However, human-robot interaction in virtual
reality is relatively fixed, resulting in conflicts between the
interaction quality and space. The first innovation herein
was to use human muscle information as input information
and add it to the interaction based on unity. The second
innovation was to determine how to map the position angle
information of the hand to the end of the robot, formulating
an algorithm to change the mapping speed ratio according
to the electromyography information provided. From the
experiment, we came to the conclusion that increasing the
mapping coefficient did not save interaction time and reduced

accuracy, as could be seen in group A and group B. Chang-
ing the mapping coefficient β in real-time by introducing
electromyography information could ensure high accuracy
in the same space. The human-robot interaction mapping
method, incorporating electromyography, is expected to facil-
itate further advancements in the industry, with a particular
emphasis on using human biological information to improve
interaction.
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