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ABSTRACT The analysis of networks and graphs through topological descriptors carries out a useful role
to derive their underlying topologies. This process has been widely used in biomedicine, cheminformatics,
and bioinformatics, where assessments based on graph invariants have been made available for effectively
communicating with the various challenging schemes. In the studies of quantitative structure-activity
relationships (QSARs) and quantitative structure-property relationships (QSPRs), graph invariants are used
to approximate the biological activities and properties of chemical compounds. In this paper, we give the
results related to the eccentric-connectivity index, connective eccentricity index, total-eccentricity index,
average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric
atom-bond connectivity index, eccentric adjacency index, modified eccentric-connectivity index, eccentric
distance sum, Wiener index, Harary index, hyper-Wiener index and degree distance index of a new graph
operation named as ‘‘subdivision vertex-edge join’’ of three graphs.

INDEX TERMS Topological indices, degree, distance, eccentricity, subdivision vertex-edge join.

I. INTRODUCTION
Graph theory concerned with a lot of applications in a
number of domains of chemistry such as Quantitative
structure-activity and property relationships, isomer enumer-
ation, prediction of biological activities, topological charac-
terization, graph polynomials for structural analysis, quantum
chemistry, NMR spectroscopy, nuclear spin statistics, spec-
troscopy, proteomics, statistical and other procedures for
forecast of toxicity of chemical structures and so on [7],
[9], [11], [13], [15], [17], [19], [20], [31], [43], [45], [46].
The QSAR/QSPR studies made use of connection among
molecular connectivity and the properties of chemical com-
pounds, therefore a fundamental graph-theoretical character-
izations set up the principles for computer-aided predictive
toxicology and drug discovery. As a result, successful
uses of QSAR/QSPR studies have stimulated the emer-
gence of several topological indices of chemical structures
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[10]–[14], [16]–[20], [34], [43]–[45], [47]. The intermolecu-
lar interactions rely on the distance and degree criterions and
moreover, numerous physico-chemical properties of chemi-
cal structures have been proven to correlate with topological
characteristics as decent initial points. However, one may
require sophisticated bio-descriptors and quantum chemical
in addition to quantum molecular dynamics simulations for
extra precise forecasts of biological and chemical charac-
teristics, due to computationally extensive nature of such
approaches, topological techniques have constructed valuable
implementations because of the comparatively easy process
with which they can be determined. Many properties such
as receptor binding propensity, toxicity, protein-drug inter-
actions, dermal penetrations, drug metabolomics, guest-host
interactions, etc., rely on the intermolecular interactions,
pore sizes, structural parameters, electrostatic and electronic
properties various of which rely on fundamental topologi-
cal parameter distances and therefore topological descriptors
are much more appealing initiating objects to any statistical
approximation for securing structure-activity connections.
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FIGURE 1. P4∨̇C3, P4∨K4 and PS
4 B (CV

3 ∪ KI
4 ).

Throughout the manuscript, all considered graphs are sim-
ple and connected. For a graphH, V(H) and E(H) appear for
vertex and edge sets, respectively, and n and m stands for the
order and size of H, respectively. An edge with end vertices
hi and hj is recognized by hihj ∈ E(H). For h ∈ V(H), the
number of edges whose an end vertex h is called the degree
of h in H and it is denoted by degH(h). A (y1, yn)-path of n-
vertices is described as a graph whose vertex and edge sets
are {y1, . . . , yn} and {yiyi+1 : 1 ≤ i ≤ n − 1}, respectively.
The notions Kn, Pn and Cn are commonly used for complete
graph, path and cycle, respectively. The distance among two
vertices a, c ∈ V(H) is represented by dH(a, c) and explained
as the length of shortest (a, c)-path in H. For a ∈ V(H),
the eccentricity ecH(a) is specified as the largest distance
among a and any other vertex in H.
Recently, a new graph operation has been initiated by Wen

et al. in [51], they named it as the subdivision vertex-edge join
(SVE-join). For a graph Hq, S(Hq) is the subdividing graph
of Hq whose vertex set has two portions, one the primary
vertices V(Hq), another, represented by I(Hq), the inserting
vertices that are end vertices of the edges of Hq. Let Hr and
Hs be the other two disjoint graphs. The SVE-join of Hq
with Hr and Hs, expressed by HS

q B (HV
r ∪ HI

s ), is the
graph containing of S(Hq), Hr and Hs, all vertex-disjoint,
and connecting the l-th vertex of V(Hq) to every vertex in
V(Hr ) and l-th vertex of I(Hq) to each vertex in V(Hs). It
can be observed thatHS

q B (HV
r ∪HI

s ) isHq∨̇Hr (is attained
from S(Hq) andHr by linking each vertex of V(Hq) to every
vertex ofV(Hr ) [38]) ifHs is the null graph, and isHq∨Hs (is
attained from S(Hq) andHs by linking each vertex of E(Hq)
to every vertex of V(Hs) [38]) if Hr is the null graph. The
graphs P4∨̇C3, P4∨K4 and PS4 B (CV

3 ∪ K
I
4 ) are illustrated

in Figure 1.

Sharma et al. [49] introduced the well-known eccentricity-
based index of a graph H. They defined it as follows:

ξ c(H) =
∑

h∈V(H)

degH(h)ecH(h). (1)

Gupta et al. [28] gave the concept of connective eccentric-
ity index of H as follows:

ξ ce(H) =
∑

h∈V(H)

degH(h)
ecH(h)

. (2)

If we use only the eccentricities of vertices of H in (1), then
we can describe the total-eccentricity index as follows [6]:

τ (H) =
∑

h∈V(H)

ecH(h). (3)

The mean value of the eccentricities of elements of V(H)
is said to be the average eccentricity aveg(H) of it [50], that
is

aveg(H) =
1
n

∑
h∈V(H)

ecH(h) =
τ (H)
n
. (4)

The eccentricity versions of Zagreb indices of H were
given in [26] as follows:

M1(H) =
∑

hp1∈V(H)

ec2H(hp1 ),

M2(H) =
∑

hp1hp2∈E(H)

ecH(hp1 )ecH(hp2 ). (5)

The eccentric form of geometric-arithmetic index [27] of
H is as follows:

GAec(H) =
∑

hp1hp2∈E(H)

2
√
ecH(hp1 )ecH(hp2 )

ecH(hp1 )+ ecH(hp2 )
. (6)
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The eccentric form of atom-bond connectivity index [22]
of H is as follows:

ABCec(H) =
∑

hp1hp2∈E(H)

√
ecH(hp1 )+ ecH(hp2 )− 2

ecH(hp1 )ecH(hp2 )
. (7)

The eccentric adjacency index is given by Gupta et al. in [29]
as follows:

ξad (H) =
∑

h∈V(H)

SH(h)
ecH(h)

. (8)

The modified type of eccentric-connectivity index [5] ofH
is given in the following way:

ξc(H) =
∑

h∈V(H)

SH(h)ecH(h). (9)

The eccentric distance sum index was first presented
in [30] as follows:

ξds(H) =
∑

{hp1 ,hp2 }⊆V(H)

(ecH(hp1 )+ ecH(hp2 ))dH(hp1 , hp2 )

=

∑
hp1∈V(H)

ecH(hp1 )DH(hp1 ). (10)

where DH(hp1 ) =
∑

hp2∈V(H)
dH(hp1 , hp2 ).

The Wiener index is a distance-based graph descriptor
described by [21] as follows:

W (H) =
∑

{hp1 ,hp2 }⊆V(H)

dH(hp1 , hp2 )

=
1
2

∑
hp1∈V(H)

DH(hp1 )

=
1
2

∑
hp1∈V(H)

∑
hp2∈V(H)

dH(hp1 , hp2 ). (11)

The Harary index ofH is explained as the sum of reciprocals
of distances among all the unordered pairs of its vertices as
follows: [42]:

H (H) =
∑

{hp1 ,hp2 }⊆V(H)

1
dH(hp1 , hp2 )

=
1
2

∑
hp1∈V(H)

∑
hp2∈V(H)

1
dH(hp1 , hp2 )

. (12)

As an extension of the Wiener index, Randić put forward
the hyper-Wiener index as:

WW (H) =
1
2

∑
{hp1 ,hp2 }⊆V(H)

(
dH(hp1 , hp2 )+ d

2
H(hp1 , hp2 )

)
,

where

A(H) =
∑

{hp1 ,hp2 }⊆V(H)

d2H(hp1 , hp2 )

and
DDH(hp1 ) =

∑
hp2∈V(H)

d2H(hp1 , hp2 ),

then

WW (H) =
1
2
(W (H)+ A(H))

=
1
4

∑
hp1∈V(H)

DH(hp1 )

+
1
4

∑
hp1∈V(H)

DDH(hp1 ). (13)

Dobrynin and Kochetova [21] introduced the degree-
distance index of a graph H as follows:
DD(H) =

∑
{hp1 ,hp2 }⊆V(H)

(degH(hp1 )+ degH(hp2 ))dH

× (hp1 , hp2 )

=

∑
hp1∈V(H)

degH(hp1 )DH(hp1 )

=

∑
hp1∈V(H)

∑
hp2∈V(H)

degH(hp1 )dH(hp1 , hp2 ). (14)

For the in depth study of these descriptors and other famous
topological descriptors, we recommended the reader to [1]–
[4], [23]–[25], [32], [33], [35]–[37], [39]–[41], [52]. Now we
state certain properties of the subdivision vertex-edge join of
three graphs in the next lemma.
Lemma 1: LetHq,Hr andHs be graphs. Then we have:
1) |V(HS

q B (HV
r ∪ HI

s ))| = n1 + m1 + n2 + n3, and
|E(HS

q B(HV
r ∪HI

s ))| = 2m1+n1n2+m1n3+m2+m3.
2) degHS

q B(HV
r ∪HI

s )
(h)

=


degHq

(h)+ n2, if h ∈ V(Hq),

n3 + 2, if h ∈ I(Hq),
degHr

(z)+ n1, if h ∈ V(Hr ),
degHs

(z)+ m1, if h ∈ V(Hs).

3) dHS
q B(HV

r ∪HI
s )
(hp1 , hp2 )

=



0, if hp1 = hp2 ,
1, if hp1hp2 ∈ E(Hi), i = 2, 3 ,

or hp1hp2 ∈ E(S(Hq)), hp1 ∈ V(Hq),
hp2 ∈ I(Hq) or hp1 ∈ V(Hq)
and hp2 ∈ V(Hr ),
or hp1 ∈ I(Hq) and hp2 ∈ V(Hs),

2, hp1hp2 /∈ E(Hi), i = 2, 3,
or hp1 , hp2 ∈ V(Hq), or hp1 , hp2 ∈ I(Hq),
or hp1 ∈ I(Hq) and hp2 ∈ V(Hr ),
or hp1 ∈ V(Hq) and hp2 ∈ V(Hr ).

3, if hp1hp2 /∈ E(S(Hq)),
hp1 ∈ V(Hq) and hp2 ∈ I(Hq)
hp1 ∈ V(Hr ) and hp2 ∈ V(Hs).
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4) ecHS
q B(HV

r ∪HI
s )
(h)

=

{
2, if h ∈ V(Hq) or h ∈ I(Hq),
3, if h ∈ V(Hr ) or h ∈ V(Hs).

5) SHS
q B(HV

r ∪HI
s )
(h)

=



SHr (h)+ n1 degHr
(h)

+2m1 + n1n2, if h ∈ V(Hr ),
SHs (h)+ m1 degHs

(h)
+m1(n3 + 2), if h ∈ V(Hs),
degHq

(h)(n3 + 2)

+2m2 + n1n2, if h ∈ V(Hq),
degHq

(hp1 )

+ degHq
(hp2 )

+2n2 + 2m3 + m1n3, if h = hp1hp2 ∈ I(Hq),

II. MAIN RESULTS
This section provides the results associated to various dis-
tance based indices of the subdivision vertex-edge join of
graphs. In next theorem, we present the formulae for eccentric
connectivity and connective eccentricity indices of subdivi-
sion vertex-edge join for three graphs.
Theorem 1: Let Hq, Hr and Hs be three graphs. Then we

have
1) ξ c(HS

q B(HV
r ∪HI

s )) = 5m1n3+5n1n2+8m1+6m2+

6m3.

2) ξ ce(HS
q B (HV

r ∪HI
s )) =

1
6
(5m1n3+ 5n1n2+ 12m1+

4m2 + 4m3).
Proof:

1) By using Lemma 1 in Equation (1), we get

ξ c(HS
q B (HV

r ∪HI
s ))

=

∑
hs∈V(Hs)

3(degHs
(hs)+ m1)

+

∑
hr∈V(Hr )

3(degHr
(hr )+ n1)

+

∑
hq∈V(Hq)

2(degHq
(hq)+ n2)

+

∑
h′q∈I(Hq)

2(n3 + 2)

= 3(2m3 + m1n3)+ 3(2m2 + n1n2)

+ 2(2m1 + n1n2)+ 2m1(n3 + 2)

= 5m1n3 + 5n1n2 + 8m1 + 6m2

+ 6m3.

2) By using Lemma 1 in Equation (2), we get

ξ ce(HS
q B (HV

r ∪HI
s ))

=

∑
hs∈V(Hs)

degHs
(hs)+ m1

3

+

∑
hr∈V(Hr )

degHr
(hr )+ n1
3

+

∑
hq∈V(Hq)

degHq
(hq)+ n2

2

+

∑
h′q∈I(Hq)

n3 + 2
2

=
1
3
(2m3 + m1n3)+

1
3
(2m2

+ n1n2)+
1
2
(2m1 + n1n2)

+
1
2
m1(n3 + 2)

=
1
6
(5m1n3 + 5n1n2 + 12m1

+ 4m2 + 4m3).

This complete the proof. �
Now, we set up the precise values of the total eccentricity

and average eccentricity indices of subdivision vertex-edge
join for three graphs.
Theorem 2: Let Hq, Hr and Hs be three graphs. Then we

have

1) τ (HS
q B (HV

r ∪HI
s )) = 3n3 + 3n2 + 2n1 + 2m1.

2) aveg(HS
q B (HV

r ∪HI
s )) =

3n3 + 3n2 + 2n1 + 2m1

n1 + n2 + n3 + m1
.

Proof:

1) By using Lemma 1 in Equation (3), we get

τ (HS
q B (HV

r ∪HI
s )) =

∑
hs∈V(Hs)

3+
∑

hr∈V(Hr )

3

+

∑
hq∈V(Hq)

2+
∑

h′q∈I(Hq)

2

= 3n3 + 3n2 + 2n1 + 2m1.

2) By using Lemma 1 in Equation (4), we obtain

aveg(HS
q B (HV

r ∪HI
s )) =

τ (HS
q B (HV

r ∪HI
s ))

n1 + n2 + n3 + m1

=
3n3 + 3n2 + 2n1 + 2m1

n1 + n2 + n3 + m1
.

This complete the proof. �
Theorem 3: Let Hq, Hr and Hs be three graphs. Then

1) M1(HS
q B (HV

r ∪HI
s )) = 9n3 + 9n2 + 4n1 + 4m1.

2) M2(HS
q B(HV

r ∪HI
s )) = 9m3+9m2+6n1n2+6n3m1+

8m1.

Proof:

1) By using Lemma 1 in Equation (5), we get

M1(HS
q B (HV

r ∪HI
s ))

143384 VOLUME 7, 2019
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=

∑
hs∈V(Hs)

(3)2 +
∑

hr∈V(Hr )

(3)2

+

∑
hq∈V(Hq)

(2)2 +
∑

h′q∈I(Hq)

(2)2

= 9n3 + 9n2 + 4n1 + 4m1.

2) By using Lemma 1 in Equation (5), we obtain

M2(HS
q B (HV

r ∪HI
s ))

=

∑
hs1hs2∈E(Hs)

3× 3

+

∑
hr1hr2∈E(Hr )

3× 3

+

∑
hq1∈V(Hq)

∑
hr1∈V(Hr )

2× 3

+

∑
h′q1∈I(Hq)

∑
hs1∈V(Hs)

2× 3

+

∑
hq1h

′
q1
∈E(S(Hq)),

hq1∈V(Hq),h′q1∈I(Hq)

2× 2

= 9m3 + 9m2 + 6n1n2 + 6n3m1

+ 8m1.

This complete the proof. �
Theorem 4: Let Hq, Hr and Hs be three graphs. Then we

have
1) GAecc(HS

q B (HV
r ∪ HI

s )) = m2 + m3 + 2m1 +

2
√
6

5
(n1n2 + m1n3).

2) ABCecc(HS
q B(HV

r ∪HI
s )) =

2
3
(m2+m3)+

1
√
2
(n1n2+

m1n3 + 2m1).
Proof:

1) By using Lemma 1 in Equation (6), we obtain

GAecc(HS
q B (HV

r ∪HI
s ))

=

∑
hs1hs2∈E(Hs)

2
√
3× 3

3+ 3
+

∑
hr1hr2∈E(Hr )

2
√
3× 3

3+ 3

+

∑
hq1∈V(Hq)

∑
hr1∈V(Hr )

2
√
2× 3

2+ 3

+

∑
h′q1∈I(Hq)

∑
hs1∈V(Hs)

2
√
2× 3

2+ 3

+

∑
hq1h

′
q1
∈E(S(Hq)),

hq1∈V(Hq),h′q1∈I(Hq)

2
√
2× 2

2+ 2

= m2 + m3 +
2
√
6

5
n1n2 +

2
√
6

5
m1n3 + 2m1.

2) By using Lemma 1 in Equation (7), we obtain

ABCecc(HS
q B (HV

r ∪HI
s ))

=

∑
hs1hs2∈E(Hs)

√
3+ 3− 2
3× 3

+

∑
hr1hr2∈E(Hr )

√
3+ 3− 2
3× 3

+

∑
hq1∈V(Hq)

∑
hr1∈V(Hr )

√
2+ 3− 2
2× 3

+

∑
h′q1∈I(Hq)

∑
hs1∈V(Hs)

√
2+ 3− 2
2× 3

+

∑
hq1h

′
q1
∈E(S(Hq)),

hq1∈V(Hq),h′q1∈I(Hq)

√
2+ 2− 2
2× 2

=
2
3
m2 +

2
3
m3 +

1
√
2
n1n2 +

1
√
2
m1n3

+

(
1
√
2

)
2m1.

This complete the proof. �
Theorem 5: Let Hq, Hr and Hs be three graphs. Then we

have

ξad (HS
q B (HV

r ∪HI
s ))

=
1
6
(3M1(Hq)+ 2M1(Hr )+ 2M1(Hs))

+
5
3
(n1m2 + m1n2 + m1m3 + n3m1)

+
1
6
n1n2(2n2 + 3n1)+

1
6
n3m1(2n3

+ 3m1)+ 2m1.

Proof: By Lemma 1 in Equation (8), we get

ξad (HS
q B (HV

r ∪HI
s ))

=

∑
hs∈V(Hs)

SHs (hs)+ m1 degHs
(hs)+ m1(n3 + 2)

3

+

∑
hr∈V(Hr )

SHr (hr )+ n1 degHr
(hr )+ 2m1 + n1n2

3

+

∑
hq∈V(Hq)

degHq
(hq)(n3 + 2)+ 2m2 + n1n2

2

+

∑
h′q∈I(Hq)

degHq
(hq1 )+degHq

(hq2 )+2n2+2m3+m1n3

2

=
1
3
(M1(Hs)+ 2m1m3 + n3m1(n3 + 2))+

1
3
(M1(Hr )

+ 2n1m2+, 2n2m1 + n1n22)

+
1
2

(
2m1(n3 + 2)+ 2m2n1 + n21n2

)
+

1
2
(M1(Hq)+ 2n2m1 + 2m3m1 + m2

1n3)

After simplification we acquire required result. This com-
plete the proof. �
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Theorem 6: Let Hq, Hr and Hs be three graphs. Then we
have

ξc(HS
q B (HV

r ∪HI
s ))

= 2M1(Hq)+ 3M1(Hr )+ 3M1(Hs)

+ 10(n1m2 + m1n2 + m1m3 + n3m1)

+ n1n2(2n1 + 3n2)+ n3m1(3n3 + 2m1)

+ 8m1.

Proof: By Lemma 1 in Equation (9), we get

ξc(HS
q B (HV

r ∪HI
s ))

=

∑
hs∈V(Hs)

3(SHs (hs)+ m1 degHs
(hs)+ m1(n3 + 2))

+

∑
hr∈V(Hr )

3(SHr (hr )+ n1 degHr
(hr )+ 2m1 + n1n2)

+

∑
hq∈V(Hq)

2(degHq
(hq)(n3 + 2)+ 2m2 + n1n2)

+

∑
h′q∈I(Hq)

2(degHq
(hq1 )+ degHq

× (hq2 )+ 2n2 + 2m3 + m1n3)

= 3 (M1(Hs)+ 2m1m3 + n3m1(n3 + 2)) 3(M1(Hr )

+ 2n1m2 + 2n2m1 + n1n22)

+ 2
(
2m2(n3 + 2)+ 2m2n1 + n21n2

)
+ 2(M1(Hq)

+ 2n2m1 + 2m3m1 + m2
1n3)

After simplification we get required result. This complete
the proof. �
Theorem 7: Let Hq, Hr and Hs be three graphs. Then we

have

ξds(HS
q B (HV

r ∪HI
s ))

= 6n3(n3 − 1)+ 6n2(n2 − 1)+ 4n1(n1 − 1)

+ 5n1n2 + 10n2m1 + 4m2
1 + 18n2n3

+ 5m1n3 + 10n1n3 + 12n1m1 + 4m2
1 − 20m1

− 6m2 − 6m3.

Proof: By Lemma 1 in Equation (10), we get

ξds(HS
q B (HV

r ∪HI
s ))

=

( ∑
hs∈V(Hs)

∑
h∈NHs (hs)∪I(Hq)

3× 1

+

∑
hs∈V(Hs)

∑
h∈(V(Hs)\NHs (hs))∪V(Hq)

3× 2

+

∑
hs∈V(Hs)

∑
hr∈V(Hr )

3× 3
)

+

( ∑
hr∈V(Hr )

∑
h∈NHr (hr )∪V(Hq)

3× 1

+

∑
hr∈V(Hr )

∑
h∈(V(Hr )\NHr (hr ))∪I(Hq)

3× 2

+

∑
hr∈V(Hr )

∑
hs∈V(Hs)

3× 3
)

+

( ∑
hq∈V(Hq)

∑
h∈NS(Hq)(hq)∪V(Hr )

2× 1

+

∑
hq∈V(Hq)

∑
h∈(V(Hq)\{hq})∪V(Hs)

2× 2

+

∑
hq∈V(Hq)

∑
h′q∈I(Hq)\NS(Hq)(hq)

2× 3
)

+

( ∑
h′q∈I(Hq)

∑
h∈NS(Hq)(h

′
q)∪V(Hs)

2× 1

+

∑
h′q∈I(Hq)

∑
h∈(I(Hq)\{h′q})∪V(Hr )

2× 2

+

∑
h′q∈I(Hq)

∑
hq∈V(Hq)\NS(Hq)(h

′
q)

2× 3
)

=

(
3

∑
hs∈V(Hs)

(degHs
(hs)+ m1)+ 6

∑
hs∈V(Hs)

(n3 − 1

− degHs
(hs)+ n1)+ 9

∑
hs∈V(Hs)

n2

)

+

(
3

∑
hr∈V(Hr )

(degHr
(hr )+ n1)

+ 6
∑

hr∈V(Hr )

(n2−1−degHr
(hr )+ m1)+ 9

∑
hr∈V(Hr )

n3

)

+

(
2

∑
hq∈V(Hq)

(degHq
(hq)+ n2)+4

∑
hq∈V(Hq)

(n1−1+n3)

+ 6
∑

hq∈V(Hq)

(m1 − degHq
(hq))

)
+

(
2

∑
h′q∈I(Hq)

(n3 + 2)

+ 4
∑

h′q∈I(Hq)

(m1 − 1+ n2)+ 6
∑

h′q∈I(Hq)

(n1 − 2)
)

= 3(2m3 + m1n3)+ 6(n23 − n3 − 2m3 + n1n3)+ 9n2n3
+ 3(2m2 + n1n2)+ 6(n22 − n2 − 2m2 + n2m1)+ 9n2n3
+ 2(2m1 + n1n2)+ 4(n21 − n1 + n1n3)+6(n1m1−2m1)

+ 2m1(n3 + 2)+ 4m1(m1 − 1+ n2)+ 6m1(n1 − 2)

= 6n3(n3 − 1)+ 6n2(n2 − 1)+ 4n1(n1 − 1)+ 5n1n2
+ 10n2m1 + 4m2

1 + 18n2n3 + 5m1n3 + 10n1n3
+ 12n1m1 + 4m2

1 − 20m1 − 6m2 − 6m3.

This complete the proof. �
Theorem 8: Let Hq, Hr and Hs be three graphs. Then we

have

W (HS
q B (HV

r ∪HI
s ))

= (n21 + n
2
2 + n

2
3 + m

2
1)− (n1 + n2 + n3

+ 5m1)− (m2 + m3)+ n1n2 + 3n2n3
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+ 2n2m1 + m1n3 + 2n1n3 + 3n1m1.

Proof: By Lemma 1 in Equation (11), we get

W (HS
q B (HV

r ∪HI
s ))

=
1
2

( ∑
hs∈V(Hs)

∑
h∈NHs (hs)∪I(Hq)

1

+

∑
hs∈V(Hs)

∑
h∈(V(Hs)\NHs (hs1 ))∪V(Hq)

2

+

∑
hs∈V(Hs)

∑
hr∈V(Hr )

3

+

∑
hr∈V(Hr )

∑
h∈NHr (h)∪V(Hq)

1

+

∑
hr∈V(Hr )

∑
h∈(V(Hr )\NHr (hr ))∪I(Hq)

2

+

∑
hr∈V(Hr )

∑
h∈V(Hs)

3

+

∑
hq∈V(Hq)

∑
h∈NS(Hq)(hq)∪V(Hr )

1

+

∑
hq∈V(Hq)

∑
h∈(V(Hq)\{hq})∪V(Hs)

2

+

∑
hq∈V(Hq)

∑
h′q∈I(Hq)\NS(Hq)(hq)

3

+

( ∑
h′q∈I(Hq)

∑
h∈NS(Hq)(h

′
q)∪V(Hs)

1

+

∑
h′q∈I(Hq)

∑
h∈(I(Hq)\{h′q})∪V(Hr )

2

+

∑
h′q∈I(Hq)

∑
hq∈V(Hq)\NS(Hq)(h

′
q)

3
)

=
1
2

( ∑
hs∈V(Hs)

(degHs
(hs)+ m1)

+ 2
∑

hs∈V(Hs)

(n3 − 1− degHs
(hs)+ n1)

+ 3
∑

hs∈V(Hs)

n2 +
∑

hr∈V(Hr )

(degHr
(hr )

+ n1)+ 2
∑

hr∈V(Hr )

(n2 − 1− degHr
(hr )

+m1)+ 3
∑

hr∈V(Hr )

n3 +
∑

hq∈V(Hq)

(degHq
(hq)

+ n2)+ 2
∑

hq∈V(Hq)

(n1 − 1+ n3)

+ 3
∑

hq∈V(Hq)

(m1 − degHq
(hq))

+

∑
h′q∈I(Hq)

(n3 + 2)+ 2
∑

h′q∈I(Hq)

(m1

− 1+ n2)+ 3
∑

h′q∈I(Hq)

(n1 − 2)
)

=
1
2

(
2m3 + m1n3 + 2n23 − 2n3 − 4m3 + 2n1n3 + 3n2n3

+ 2m2 + n1n2 + 2n22 − 2n2 − 4m2 + 2n2m1 + 3n2n3
+ 2m1 + n1n2 + 2n21 − 2n1 + 2n1n3 + 3n1m1 − 6m1

+m1(n3 + 2)+ 2m1(m1 − 1+ n2)+ 3m1(n1 − 2)
)

= (n21 + n
2
2 + n

2
3 + m

2
1)− (n1 + n2 + n3 + 5m1)

− (m2 + m3)+ n1n2 + 3n2n3 + 2n2m1 + m1n3
+ 2n1n3 + 3n1m1.

This complete the proof. �
Theorem 9: Let Hq, Hr and Hs be three graphs. Then we

have

H (HS
q B (HV

r ∪HI
s ))

=
1
2

(
13
6
m1 + m2 + m3 + 2n1n2 +

1
2
n1(n1

− 1)+
1
2
n2(n2 − 1)+

1
2
n3(n3 − 1)

+m1

(
n2 + 2n3 +

2
3
n1

)
+ n3

(
2
3
n2 +

1
2
n1

)
+

1
2
m2
1

)
.

Proof: By Lemma 1 in Equation (12), we get

H (HS
q B (HV

r ∪HI
s ))

=
1
2

( ∑
hs∈V(Hs)

∑
h∈NHs (hs)∪I(Hq)

1
1

+

∑
hs∈V(Hs)

∑
h∈(V(Hs)\NHs (hs))∪V(Hq)

1
2

+

∑
hs∈V(Hs)

∑
hr∈V(Hr )

1
3

+

∑
hr∈V(Hr )

∑
h∈NHr (hr )∪V(Hq)

1
1

+

∑
hr∈V(Hr )

∑
h∈(V(Hr )\NHr (hr ))∪I(Hq)

1
2

+

∑
hr∈V(Hr )

∑
hs∈V(Hs)

1
3

+

∑
hq∈V(Hq)

∑
h∈NS(Hq)(hq)∪V(Hr )

1
1

+

∑
hq∈V(Hq)

∑
h∈(V(Hq)\{hq})∪V(Hs)

1
2

+

∑
hq∈V(Hq)

∑
h′q∈I(Hq)\NS(Hq)(hq)

1
3
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+

( ∑
h′q∈I(Hq)

∑
h∈NS(Hq)(h

′
q)∪V(Hs)

1
1

+

∑
h′q∈I(Hq)

∑
h∈(I(Hq)\{h′q})∪V(Hr )

1
2

+

∑
h′q∈I(Hq)

∑
hq∈V(Hq)\NS(Hq)(h

′
q)

1
3

)

=
1
2

( ∑
hs∈V(Hs)

(degHs
(hs)+ m1)

+
1
2

∑
hs∈V(Hs)

(n3 − 1− degHs
(hs)+ n1)

+
1
3

∑
hs∈V(Hs)

n2 +
∑

hr∈V(Hr )

(degHr
(hr )+ n1)

+
1
2

∑
hr∈V(Hr )

(n2 − 1− degHr
(hr )+ m1)

+
1
3

∑
hr∈V(Hr )

n3 +
∑

hq∈V(Hq)

(degHq
(hq)+ n2)

+
1
2

∑
hq∈V(Hq)

(n1−1+n3)+
1
3

∑
hq∈V(Hq)

(m1 − degHq
(hq))

+

∑
h′q∈I(Hq)

(n3 + 2)+
1
2

∑
h′q∈I(Hq)

(m1 − 1+ n2)

+
1
3

∑
h′q∈I(Hq)

(n1 − 2)
)

=
1
2

(
2m3 + m1n3 +

1
2
(n23 − n3 − 2m3 + n1n3)+

1
3
n2n3

+ 2m2 + n1n2 +
1
2
(n22 − n2 − 2m2 + n2m1)+

1
3
n2n3

+ 2m1 + n1n2 +
1
2
n1(n1 − 1+ n3)+

1
3
n1m1 −

2
3
m1

+m1(n3 + 2)+
1
2
m1(m1 − 1+ n2)+

1
3
m1(n1 − 2)

)
=

1
2

(
13
6
m1 + m2 + m3 + 2n1n2 +

1
2
n1(n1 − 1)

+
1
2
n2(n2 − 1)+

1
2
n3(n3 − 1)+ m1

(
n2 + 2n3 +

2
3
n1

)
+ n3

(
2
3
n2 +

1
2
n1

)
+

1
2
m2
1

)
.

This complete the proof. �
Theorem 10: LetHq,Hr andHs be three graphs. Then we

have

WW (HS
q B (HV

r ∪HI
s ))

=
3
2
(n21 + n

2
2 + n

2
3 + m

2
1)−

3
2
(n1 + n2

+ n3)+
23
2
m1 − 2(m2 + m3)+ n1n2

+ 6n2n3 + 3n2m1 + m1n3 + 3n1n3

+ 6n1m1.

Proof: By Lemma 1 in Equation (13), we need to find
only A(HS

q B (HV
r ∪HI

s )).

A(HS
q B (HV

r ∪HI
s ))

=
1
2

 ∑
h1∈V(HS

q B(HV
r ∪HI

s ))

DDHS
q B(HV

r ∪HI
s )
(h1)


=

1
2

( ∑
h1∈V(HS

q B(HV
r ∪HI

s ))∑
h2∈V(HS

q B(HV
r ∪HI

s ))

d2HS
q B(HV

r ∪HI
s )
(h1, h2)

)

=
1
2

( ∑
hs∈V(Hs)

∑
h∈NHs (hs)∪I(Hq)

(1)2

+

∑
hs∈V(Hs)

∑
h∈(V(Hs)\NHs (hs))∪V(Hq)

(2)2

+

∑
hs∈V(Hs)

∑
hr∈V(Hr )

(3)2 +
∑

hr∈V(Hr )

∑
hr∈NHr (h)∪V(Hq)

(1)2

+

∑
hr∈V(Hr )

∑
h∈(V(Hr )\NHr (hr ))∪I(Hq)

(2)2

+

∑
hr∈V(Hr )

∑
hs∈V(Hs)

(3)2

+

∑
hq∈V(Hq)

∑
h∈NS(Hq)(hq)∪V(Hr )

(1)2

+

∑
hq∈V(Hq)

∑
h∈(V(Hq)\{hq})∪V(Hs)

(2)2

+

∑
hq∈V(Hq)

∑
h′q∈I(Hq)\NS(Hq)(hq)

(3)2

+

( ∑
h′q∈I(Hq)

∑
h∈NS(Hq)(h

′
q)∪V(Hs)

(1)2

+

∑
h′q∈I(Hq)

∑
h∈(I(Hq)\{h′q})∪V(Hr )

(2)2

+

∑
h′q∈I(Hq)

∑
hq∈V(Hq)\NS(Hq)(h

′
q)

(3)2
)

=
1
2

( ∑
hs∈V(Hs)

(degHs
(hs)+ m1)+ 4

∑
hs∈V(Hs)

(n3 − 1

− degHs
(hs)+n1)+9

∑
hs∈V(Hs)

n2+
∑

hr∈V(Hr )

(degHr
(hr )

+ n1)+ 4
∑

hr∈V(Hr )

(n2 − 1− degHr
(hr )+ m1)

+ 9
∑

hr∈V(Hr )

n3 +
∑

hq∈V(Hq)

(degHq
(hq)+ n2)

+ 4
∑

hq∈V(Hq)

(n1−1+n3)+9
∑

hq∈V(Hq)

(m1 − degHq
(hq))
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+

∑
h′q∈I(Hq)

(n3 + 2)+ 4
∑

h′q∈I(Hq)

(m1 − 1+ n2)

+ 9
∑

h′q∈I(Hq)

(n1 − 2)
)

=
1
2

(
2m3 + m1n3 + 4n23 − 4n3 − 8m3 + 4n1n3

+ 9n2n3 + 2m2 + n1n2 + 4n22 − 4n2 − 8m2 + 4n2m1

+ 9n2n3 + 2m1 + n1n2 + 4n21 − 4n1 + 4n1n3 + 9n1m1

− 18m1 + m1(n3 + 2)+ 4m1(m1 − 1+ n2)

+ 9m1(n1 − 2)
)

= 2(n21 + n
2
2 + n

2
3 + m

2
1)− 2(n1 + n2 + n3 + 5m1)

− 3(m2 + m3)+ n1n2 + 9n2n3 + 4n2m1 + m1n3
+ 4n1n3 + 9n1m1. (15)

Therefore by using Theorem 8 and (15) in (13), we get the
required result. This complete the proof. �
Theorem 11: LetHq,Hr andHs be three graphs. Then we

have

DD(HS
q B (HV

r ∪HI
s ))

= −M1(Hs)−M(Hr )− 2M1(Hq)

+ n1n2(n1 + n2 − 4)+ 4(n1 − 1)(m1

+m2 + m3)+ 3m1n3(m1 + n3 − 2)

+ 6(m1n2 − n2m1 + n3m2 + n2m3)

+ 4n3m3 + 3n1n2(n3 + m1)+ 5n3m1(n1
+ n2)+ 2m1(5m1 − 6).

Proof: By Lemma 1 in Equation (14), we get

DD(HS
q B (HV

r ∪HI
s ))

=

( ∑
hs∈V(Hs)

∑
h∈NHs (hs)∪I(Hq)

1(degHs
(hs)+ m1)

+

∑
hs∈V(Hs)

∑
h∈(V(Hs)\NHs (hs))∪V(Hq)

2(degHs
(hs)+ m1)

+

∑
hs∈V(Hs)

∑
hr∈V(Hr )

3(degHs
(hs)+ m1)

)
+

( ∑
hr∈V(Hr )

∑
h∈NHr (hr )∪V(Hq)

1(degHr
(hr )+ n1)

+

∑
hr∈V(Hr )

∑
h∈(V(Hr )\NHr (hr ))∪I(Hq)

2(degHr
(hr )+ n1)

+

∑
hr∈V(Hr )

∑
hs∈V(Hs)

3(degHr
(hr )+ n1)

)
+

( ∑
hq∈V(Hq)

∑
h∈NS(Hq)(hq)∪V(Hr )

1(degHq
(hq)+ n2)

+

∑
hq∈V(Hq)

∑
h∈(V(Hq)\{hq})∪V(Hs)

2(degHq
(hq)+ n2)

+

∑
hq∈V(Hq)

∑
h′q∈I(Hq)\NS(Hq)(hq)

2(degHq
(hq)+ n2)

)

+

( ∑
h′q∈I(Hq)

∑
h∈NS(Hq)(h

′
q)∪V(Hs)

1(n3 + 2)

+

∑
h′q∈I(Hq)

∑
h∈(I(Hq)\{h′q1 })∪V(Hr )

2(n3 + 2)

+

∑
h′q∈I(Hq)

∑
hq∈V(Hq)\NS(Hq)(h

′
q)

3(n3 + 2)
)

=

( ∑
hs∈V(Hs)

(degHs
(hs)+m1)2+2

∑
hs∈V(Hs)

(degHs
(hs)+m1)

(n3−1−degHs
(hs)+n1)+3

∑
hs∈V(Hs)

n2(degHs
(hs)+m1)

)
+

( ∑
hr∈V(Hr )

(degHr
(hr )+ n1)2

+ 2
∑

hr∈V(Hr )

(degHr
(hr )+ n1)(n2 − 1−degHr

(hr )+m1)

+ 3
∑

hr∈V(Hr )

n3(degHr
(hr )+ n1)

)
+

( ∑
hq∈V(Hq)

(degHq
(hq)+ n2)2

+ 2
∑

hq∈V(Hq)

(degHq
(hq)+ n2)(n1 − 1+ n3)

+ 3
∑

hq∈V(Hq)

(degHq
(hq)+ n2)(m1 − degHq

(hq))
)

+

( ∑
h′q∈I(Hq)

(n3+2)2+2
∑

h′q∈I(Hq)

(n3 + 2)(m1 − 1+ n2)

+ 3
∑

h′q∈I(Hq)

(n3 + 2)(n1 − 2)
)

=

( ∑
hs∈V(Hs)

(deg2Hs
(hs)+ m2

1 + 2m1 degHs
(hs))

+ 2
∑

hs∈V(Hs)

((n3 − 1+ n1)(degHs
(hs)+ m1)

− deg2Hs
(hs)− m1 degHs

(hs))

+ 3n2
∑

hs∈V(Hs)

(degHs
(hs)+ m1)

)
+

( ∑
hr∈V(Hr )

(deg2Hr
(hr )+ n21 + 2n1 degHr

(hr ))

+ 2
∑

hr∈V(Hr )

((n2 − 1+m1)(degHr
(hr )+n1)− deg2Hr

(hr )

− n1 degHr
(hr ))+ 3n3

∑
hr∈V(Hr )

(degHr
(hr )+ n1)

)

+

( ∑
hq∈V(Hq)

(deg2Hq
(hq)+ n22 + 2n2 degHq

(hq))
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+ 2(n1 − 1+ n3)
∑

hq∈V(Hq)

(degHq
(hq)+ n2)

+ 3
∑

hq∈V(Hq)

(m1 degHq
(hq)

− deg2Hq
(hq)+ n2m1 − n2 degHq

(hq))
)

+

(
m1(n3 + 2)2 + 2m1(n3 + 2)(m1 − 1+ n2)

+ 3m1(n3 + 2)(n1 − 2)
)

=M1(Hs)+ m2
1n3 + 4m1m3 + 2(n3 + n1 − 1)

× (2m3 + m1n3)− 2M1(Hs)− 4m1m3 + 6n2m3

+ 3n2m1n3 +M1(Hr )+ n21n2 + 4n1m2

+ 2(n2 − 1+ n1)− 2M1(Hr )− 4n1m2 + 6n3m2

+ 3n1n2n3 +M(Hq)+ n1n22 + 4n2m1+2(n1+n2−1)

× (2m1 + n1n2)+ 3(2m2
1−M1(Hq)+n1n2m1−2n2m1)

+m1(n3 + 2)(n3 + 2+ 2m1 − 2+ 2n2 + 3n1 + 6)

= −M1(Hs)−M(Hr )− 2M1(Hq)+ n1n2(n1 + n2 − 4)

+ 4(n1 − 1)(m1 + m2 + m3)+ 3m1n3(m1 + n3 − 2)

+ 6(m1n2 − n2m1 + n3m2 + n2m3)+ 4n3m3

+ 3n1n2(n3 + m1)+ 5n3m1(n1 + n2)+ 2m1(5m1 − 6).

This complete the proof. �

III. CONCLUSION
The analysis of graphs and networks through structural prop-
erties is a research topic with growing significance. One of
the approaches in investigating structural characteristics is
discussing the quantitative measure that encodes structural
statistics of the entire network by a real number. In this
article, we have provided the results related to the eccentric-
connectivity, connective eccentricity, total-eccentricity, aver-
age eccentricity, Zagreb eccentricity, eccentric geometric-
arithmetic, eccentric atom-bond connectivity, eccentric adja-
cency, modified eccentric-connectivity, eccentric distance
sum, Wiener, Harary, hyper-Wiener and degree distance
indices of subdivision vertex-edge join of graphs.
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