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ABSTRACT To perform bearing fault diagnosis under variable speeds, the optimal resonant fre-
quency (ORF) band selection and diagnosis strategy are pivotal. Indexes, such as kurtosis, crest factor (CF)
and smoothness index (SI), are extensively used for guiding ORF selection. Due to that each index has
unique advantages, the hybrid of such indexes has been developed. However, applications of the current
index hybrid method are impeded by problems of: 1) ineffectiveness for signal corrupted by impulsive
noises and 2) equal segmentation of frequency band with human intervention. This paper, therefore, firstly
proposes a dual-guidance based scheme with an embedded tunable Q-factor wavelet transform (TQWT)
to address the problems. The so-called dual-guidance scheme contains two guidance procedures: 1) the SI
guided pre-process for obtaining weight vectors and 2) the index hybrid output guided scheme for ORF
selection. The embedded TQWT is used for frequency band segmentation and sub-band signal acquisition
without subjective interventions. With the proposed scheme, the ORF band can be determined for bearing
fault feature extraction. Then, an algorithm for multiple instantaneous frequency (IF) ridge identification is
exploited based on the peak search algorithm for diagnosis. To tackle the difficulty that, at each time instance,
the amplitudes of IF ridges of interest do not always dominate the time frequency representation (TFR),
a starting point search tactic with a synchronization step is explored. A diagnosis vector can subsequently be
obtained by calculating the average ratios of the identified ridges and bearing fault diagnosis can then be done
bymatching the elements of the diagnosis vector with fault characteristic coefficient (FCC). Comparisons are
performed to illustrate the superiority of the proposed method. The experimental analyses are also conducted
to validate the proposed method for bearing fault diagnosis under variable speeds.

INDEX TERMS Variable speed condition, bearing fault diagnosis, index hybrid, optimal resonant frequency,
time frequency ridge extraction, fault feature extraction.

NOMENCLATURE
FCC Fault characteristic coefficient
SK Spectral kurtosis
IF Instantaneous frequency
SNR Signal to noise ratio

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagarajan Raghavan .

IFCF Instantaneous fault characteristic frequency
STFT Short time Fourier transform
IH Index hybrid
TFA Time frequency analysis
ISRF Instantaneous shaft rotating frequency
TFR Time frequency representation
ORF Optimal resonant frequency
TQWT Tunable Q-factor wavelet transform
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I. INTRODUCTION
Bearings are one of key components in rotating machinery;
thus their fault detection and diagnosis have long been inves-
tigated to prevent severe equipment damage and unscheduled
downtime [1], [2]. When a fault in one surface of a bear-
ing interacts another surface, an impulse is generated which
excites resonances in the system. These impulses are the main
features to be detected to perform bearing fault diagnosis,
regardless of bearing working conditions (constant speeds or
variable speeds). For constant speed conditions, once these
impulses are extracted, the frequency of impulse repetition
can be obtained by frequency analysis, which is related to
the fault existence and fault category [3]–[5]. However, when
the rotational speed is unstable, the speed fluctuations may
cause ‘‘smearing’’ of the discrete frequencies in the frequency
representation, indicating that these frequencies are no longer
detectable [6]. As a result, approaches developed for bearing
fault diagnosis under a constant speed would be ineffective.
Order tracking has proven powerful in bearing fault detec-
tion under variable speeds [7]. Nevertheless, order track-
ing unavoidably propagates error to the result because the
resampling is achieved via polynomial interpolations, while
vibration signals are generated by cyclic phenomena and
thus sinusoidal not polynomial in nature [8]. Moreover, order
tracking might render the carrier frequencies of the transient
responses extend to a wider scope as natural characteristics of
bearing system rarely vary, which is not conductive to bearing
fault feature extraction [9]. Fortunately, time frequency anal-
ysis (TFA) provides an alternative for bearing fault diagnosis
under time-varying speeds; it, therefore, has strong potential
to characterize the vibration signals of bearings working in
nonstationary speed conditions. However, even if a clear TFR
can be obtained with extracted fault signatures, bearing fault
diagnosis cannot be fulfilled yet as the fault type cannot be
determined without knowing the relationship of the IF ridges
on the TFR. Thus, it can be concluded that there are two
major tasks to perform an effective bearing fault diagnosis
under variable speed operations: fault feature extraction and
IF ridge identification from TFR.

Numerous techniques and tools have been developed for
bearing fault feature extraction. One of the most straight-
forward methods is to filter signals by identifying the ORF
band [10], [11]. Lin and Qu utilized wavelet analysis for
the optimal band pass filter design based on the wavelet
entropyminimizationmethod [12]. Later, Qiu et al. attempted
to combine Shannon entropy with a periodicity detection
method to select Morlet wavelet parameters for the wavelet
filter for bearing fault detection [13]. Bozchalooi and Liang
adopted SI for wavelet parameter determination and then they
extended the application of SI for band-pass filter design for
bearing fault diagnosis [14], [15]. He et al. suggested to fuse
Morlet wavelet filter and sparse code shrinkage to identify
bearing fault signatures [16]. Wang et al. introduced a general
sequential Monte Carlo method to optimize a complex Mor-
let wavelet filter for bearing fault feature extraction, which
successfully determined the optimal center frequency and

bandwidth [17]. In addition to wavelet-based filter, spectral
kurtosis (SK) has been also proven an effective tool in locat-
ing the ORF band for rotating machinery fault diagnosis [18].
However, the complete exploration of a whole plane (f ,1f )
is a challenging task (f and 1f representing frequency and
frequency resolution, respectively), which confines the indus-
trial application of SK. To address such a problem, a fast algo-
rithm of kurtogram is proposed for computing the kurtogram
over a dyadic grid in the (f ,1f ) plane [19]. Along this line,
improved kurtogram-based algorithms have been exploited
to enhance the capability of locating OFR band for rotating
machinery condition monitoring [20]–[23]. All the afore-
mentioned SK-related methods are based on a fact that the
kurtosis can effectively measure the impulsiveness of signals.
However, kurtosis does not always truly reflect the signal
impulsiveness when the signal to noise ratio (SNR) is low and
non-Gaussian noise exists, as stated by Moshrefzadeh and
Fasana [24]. They then modify forms of kurtosis and propose
the Autogram for selecting the optimal demodulation band.
Before Autogram, Antoni also advances the SK method by
proposing to measure the negentropy of the squared envelope
and squared envelope spectrum of signals, from which the
squared envelope infogram and squared envelope spectrum
infogram are generated for identifying ORF of signal with
impulsive noise [25]. The infogram is an extension of kur-
togram, extending the domain of applicability of the kur-
togram. However, as reported in ref. [26], negentropy cannot
quantify the repetitive transients masked in strong random
noise.

Different from the approaches mentioned above,
Bozchalooi and Liang suggest to develop indexes which can
tackle signals with impulsive noise. They propose an index,
i.e., SI, to measure the signal impulsiveness [14]. Besides,
crest factor (CF) is also employed as an index to guide the
Morlet wavelet demodulation [27]. Further, due to that each
index has the exclusive virtues, an algorithm which fuses the
three indexes (i.e., kurtosis, CF and SI) to guide the ORF band
selection is proposed by Li et al. [28], where the processing
results of simulated and experimental data validates the supe-
riority of the proposed method, compared with using a single
index. However, there are two issues requiring to be taken
into consideration to further improve the detectability of the
fusion method: (1) multiple indexes may fail to cooperatively
work towards the ORF band selection because one or two
of the indexes may have large values caused by outliers or
interfering signals and still play a leading role to determine
the ORF band due to fixed weights; whereas functions of
other indexes may be weakened; and (2) the frequency band
are empirically segmented equally.

Moreover, it has to mention that most of the afore-
mentioned techniques are applied for bearing fault diag-
nosis under in-variant speed conditions. In the content of
time-varying speeds, bearing health condition monitoring
cannot be done yet onlywith the selectedORF band. As stated
above, a resampling-free method is preferred [9], [29] and
thus TFA becomes an alternative due to its advantages in
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non-stationary signal analysis. The diagnosis can be per-
formed by identifying the IF ridges on the obtained TFRs
and then calculating their ratios. Related research has been
conducted in this direction. Shi et al. develop a novel TFA
method to gain a clear TFR and then apply it for bear-
ing fault diagnosis by computing the point-to-point ratios
between IF ridges [30]. Huang et al. propose to use a fast
path optimization algorithm for multiple IF ridge extraction
from the TFR [31]. Then, the average curve-to-curve ratios
are utilized to achieve the fault diagnosis. The key step of
such TFR-based algorithms for bearing condition monitoring
is to accurately extracted the IF ridges of multiple signal
components. The mentioned two techniques are effective in
time frequency curve extraction; however, they are sensitive
to strong noise as no de-nosing operation is involved. Most
fundamental IF ridge extraction methods are performed via
searching the frequency bins with maximum energy at each
time instance [32], which is extensively used for IF estimation
of non-stationary signals as it is easy to be implemented with
computational efficiency. Nevertheless, this kind of methods
are based on the assumption that at each time instance the IFs
of interest have the maximum amplitude on TFR, which is
not always true, particularly for the multi-component signal
with low SNR under variable speeds. To solve this issue,
Wang et al. developed a novel amplitude-sum based spec-
tral peak search algorithm, where, for each frequency bin,
the sum of the amplitudes of its several multiples is calculated
to replace the original amplitude [33]. The effectiveness of
this algorithm is likely to be weakened if the signal con-
tains shaft-synchronized signal components caused by other
machine components, such as gears. Moreover, to perform
bearing fault diagnosis under variable speeds without using
resampling which is error-prone in the noisy environment,
a single extracted IF ridge is not sufficient [30], [31].

In view of the above, this paper first proposes a dual-
guidance based schemewith TQWT embedded for ORF band
selection to maximally extract the defect-induced impulses.
The proposed scheme is devised to address the issue that
the three indexes may fail to jointly contribute to the ORF
selection for signal with impulsive noise. The utilization of
TQWT aims to tackle the second aforementioned problem
that the frequency band is subjectively divided equally. The
frequency responses of TQWT can partition the frequency
band following the pattern that the frequency resolution
increases with the decrease of frequency, which satisfies the
requirement that high frequency can accept a lower frequency
resolution whereas low frequency requires a higher frequency
resolution. A peak amplitude search based multiple IF ridge
identification method with a synchronization step and novel
starting point search tactics involved is subsequently devel-
oped for bearing fault diagnosis. With the extracted IF ridges,
the bearing fault diagnosis can be conducted using a diagnosis
vector with elements consisting of the average ratios among
the extracted IF ridges.

The rest of the paper is organized as follows. Moti-
vations of the proposed method are given in Section 2.

FIGURE 1. Frequency response of TQWT with Q = 4, r = 5, J = 60: (a) the
frequency response, and (b) the corresponding sub-band signals.

Section 3 presents the proposed dual-guidance based ORF
band selection scheme, the algorithm for multiple IF ridge
path identification and the diagnosis strategy. Experiment
validations of the proposed method are shown in Section 4.
The conclusions are summarized in Section 5.

II. MOTIVATIONS OF THE PROPOSED SCHEME
Prior to the presentation of the proposed method, the motiva-
tions are firstly demonstrated in the following.

A. SUMMARY OF TQWT AND ORIGINAL INDEX HYBRID
METHOD
To begin with, TQWT proposed in ref. [34] is employed
to segment the entire frequency band into a string of
sub-frequency bands and each of the sub-frequency bands
corresponds to a band-pass filter. If the sub-frequency band
combinations corresponding to the ORF of the vibration sig-
nal could be detected, the fault-induced impulses can then
be maximally extracted, paving the way for further TFA
and bearing fault diagnosis. TQWT is determined by three
parameters, including Q-factor Q, redundancy r and decom-
position stage J . Once parameters r , Q and J are specified,
a TQWT-generated frequency response is determined. More
details regarding TQWT can be found in ref. [34]. With a
specific TQWT-related parameter set, the frequency response
can then be obtained, as shown in FIGURE 1 (a). Each
sub-frequency band corresponds to each sub-signal given in
FIGURE 1 (b). For ORF selection, the main objective is
to adaptively select one or several sub-frequency bands to
maximally extract bearing fault induced impulses.

Based on TQWT for frequency band partition, Luo et al.
proposed a kurtosis-guided method for adaptive demodula-
tion for bearing fault diagnosis and the effectiveness of this
method has been validated by experiments [35]. For an N -
point signal x, kurtosis is defined as

kurtosis(x) =

∑N
i=1 (xi − x̄)

4 /N(∑N
i=1 (xi − x̄)

2 /N
)2 , (1)

where x̄ denotes the mean of the signal sequence. However,
as illustrated in ref. [14], the effectiveness of kurtosis as an
impulsiveness measure in the context of bearing condition
monitoring would be undermined by the over-sensitivity to
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outliers, the dependency of kurtosis on rotational speed and
the lack of a meaningful benchmark to be used to distin-
guish the level of impulsivity. To address such problems,
Bozchalooi and Liang proposed to replace the kurtosis by
SI to measure the impulsiveness of signals [14]. For a signal
x(n) with the length of N , the SI is defined as the ratio of the
geometric mean and the arithmetic mean to the signal series,
i.e.,

SI (x) =

(∏N
n=1 x(n)

)1/N
(1/N )

∑N
n=1 x(n)

. (2)

A property of SI is that it approaches unity for flat time
series and drops to zero for a highly impulsive series. Fur-
thermore, SI is not easily influenced by outliers, as indicated
in [14]. The drawback of SI, however, is that it is inca-
pable of distinguishing signals with low SI values [28]. Thus,
Li et al. developed an index hybrid technique for spectral
segmentation, where the kurtosis, SI and crest factor (CF) are
jointly applied. CF is a measure of a waveform, such as sound
or vibration signals, showing the ratio of peak values to the
effective value. In other words, CF indicates how extreme the
peaks are in a waveform. CF equaling 1 manifests no peaks
and higher CF values indicate impulsiveness. It is defined as
the ratio of the peak amplitude to the root mean square (RMS)
of the signal

CF(x(n)) =
max(x(n))−

(∑N
n=1 x(n)

)
/N√(∑N

n=1 x
2(n)

)
/N

. (3)

The joint application makes the three measurements mutu-
ally complement and yields a better outcome for spectral seg-
mentation [28]. Motivated by this, it can be foreseen that the
index hybrid strategy has a great potential application to ORF
determination for bearing condition monitoring. The single
function which fuses multiple indexes is defined as [28]

IH (xi(t)) = F
(
Iq(xi(t))

)
, (4)

where IH (xi(t)) represents the index hybrid output of signal
xi(t), xi(t) denotes the ith sub-band signal obtained by inverse
TQWT, as shown in FIGURE 1, F(·) stands for the hybrid
of indexes, and Iq denotes the qth index (q = 1, 2, and 3,
representing the index of kurtosis, CF and the reciprocal of
SI, respectively). In such a way, it can be concluded that a
high level of impulsivity leads to a large output of Eq. (4).
The three indexes work together to determine the output of
the function. The difference is that each one weighs variously
for different signals. Ideally, the index which can provide
more useful information should be given a greater weight. To
determine the weight of each index, the information entropy,
a measure of the disorder degree of data, is utilized. High
inhomogeneity of the distribution of an index indicates low
entropy of the index, namely an index with a lower entropy
should be given more weights [28]. With the weight for each
index being determined, multiple indexes can be hybrid. The
original index hybrid steps are summarized in the following.

1. Normalize each index Iq using the equation below (5), as
shown at the bottom of the next page where I ′q (xi(t)) repre-
sents the normalized value of each index for the ith sub-band
signal, xi(t) denoted the ith sub-band signal generated by
inverse TQWT.

2. Calculate the entropy Eq of each index using

Eq =
1

ln(J + 1)

∑J+1

i=1
Pq (xi(t)) ln

(
Pq (xi(t))

)
, (6)

where Pq (xi(t)) ln
(
Pq (xi(t))

)
= 0 when Pq (xi(t)) =

0, Pq is the probability of the I ′q (xi(t)) presenting in the

sequence
[
I ′q (x1(t)) , I

′
q (x2(t)) , . . . , I

′
q (xJ+1(t))

]
and calcu-

lated by Pq (xi(t)) = I ′q (xi(t))
/∑J+1

i=1 I
′
q (xi(t)).

3. Determine the weight Wq for the qth normalized index
by

Wq =
1− Eq∑3

q=1 (1− Eq)
. (7)

Then Eq. (4) can be re-formed as

IH (xi(t)) =
∑3

q=1

(
WqI ′q(xi(t))

)
. (8)

The hybrid strategy detailed above takes advantages of
complementary signatures of the indexes and has the potential
of being used to guide the ORF band selection.

B. MOTIVATION ILLUSTRATION
With the TQWT for frequency band segmentation, the pro-
cedure of the ORF selection is that: a) the sub-band signals
corresponding to (J+1) stages of TQWT are firstly generated;
b) the merging operation of neighboring sub-band signals
is implemented if the current merging forms a signal with
a higher IH output calculated by Eq. (4); otherwise the
sub-signal is remained unchanged and the process turns to
the next sub-band signal; c) step b) is repeated under the
guidance of the IH output until all the sub-band signals have
been involved.

However, when vibration signals collected from rotating
machinery under variable speed conditions are polluted by
extensive background noise and outliers which may be gen-
erated by unexpected strikes during the operation, the ORF
would be improperly selected using the original index hybrid
method detailed above. The reason is that both kurtosis and
CF values are over-vigilant to such outliers. Thus, kurtosis
and CF would play a leading role when selecting the fre-
quency band since the weight for each of them is fixed;
whereas the contribution of SI which is negligibly affected by
outliers would be weakened, thus leading to an inappropriate
ORF selection.

To illustrate, a simulated signal containing fault-induced
impulses under time-varying speed operation, cyclic inter-
ferences and outliers are constructed. The simulated signal
x(t) is a mixture of bearing fault induced impulses x1(t),
white Gaussian noise n(t), interferences xint (t) and random
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TABLE 1. Parameters of the simulation model.

interfering impacts ximp(t)

x(t) = x1(t)+ n(t)+ xint (t)+ ximp(t). (9)

The impulsive signal of faulty bearing under ramp-down
speed is firstly generated. The model of vibration signal
collected from faulty bearing under unstable speed operation
can be written as [36]

x1(t) =
L∑
l=1

Ale−β(t−tl ) sin(ωr (t − tl))u(t − tl), (10)

where L is the signal length, Al = A(N /fs − ηtl) is amplitude
which is inversely proportional to time instant tl since the
bearing works under a speed-down case, A and η are con-
stants, n(t) is the white Gaussian noise, and tl is the occur-
rence time of the lth impulse (l = 1, 2, . . .). The parameters
associated with the simulation model is listed in TABLE 1.
More details about the impulsive-like signal generation under
time-varying speed can be found in ref. [36]. The instanta-
neous shaft rotating frequency (ISRF) and simulated FCC
is set to fr (t) = −1.25t + 35 and 3.7, respectively, in this
study. SNR is set to−12 dB. In addition to background noise
n(t), vibration signals of faulty bearing are often polluted by
cyclic interferences xint (t) which is constituted by two parts.
The first part xint_1(t) is often resulted by mechanical or/and
electrical components, thereby a cyclic interferences with a
constant frequency 60 Hz and amplitude 1 being added into
the simulated signal. Meanwhile, to reflect the phenomena of
misalignment, imbalance or/and eccentricity, the other part
xint_2(t) is composed of the cyclic interferences with the
shaft rotational frequency and its harmonics as the frequen-
cies, i.e., xint_2(t) =

∑I
i=1 Ai cos(2πkifr (t)t). Three shaft

speed related signal components are taken into consideration,
therefore ki (i = 1, 2, 3) equals 1, 2, 3. The amplitude Ai
(i = 1, 2, 3) is set to 1.25, 1.5,1 for each signal component.
Apart from the impulses induced by bearing localized fault,
vibration signals might be contaminated by other random
impacts [14]. Hence, two outliers, i.e., ximp, are mixed into
the simulated signal. The simulated signal mixture and the
TFR of its envelope is shown in FIGURE 2 (a) and (b),
respectively.

To extract the impulses from the simulated signal, one of
the effective methods is to identify the ORF band and then
band-pass filter the signal. The original index hybrid strategy
stated above is used for this purpose. Processing results are
shown in FIGURE 3. The Q-factor Q and redundancy r are

FIGURE 2. The simulated signal and its TFR: (a) simulated signal in time
domain, and (b) STFT-generating TFR of the envelope of the simulated
signal.

FIGURE 3. Processing results of the simulated signal using original index
hybrid strategy: (a) frequency responses of TQWT; (b) original kurtosis,
CF and reciprocal of SI of each sub-signal; (c) IH output of each merged
signal; (d) selected ORF band; (e) filtered signal using the selected ORF
band; and (f) TFR of the filtered signal envelope. (Note: Unit of the
simulated signal can be arbitrary)

determined as 2 and 5, respectively (details are presented in
subsection 0). The number of stages is calculated by Eq. (19).
The resulted frequency response is presented in FIGURE 3
(a). FIGURE 3 (b) shows the kurtosis, CF and the reciprocal
of SI values of each subsignal. The index hybrid output (IH
output) is achieved by fusing the three indexes following the
manner detailed above. The larger IH output means the higher
level of impulsivity.

The resulting IH output is shown in FIGURE 3 (c) and the
selected sub-frequency bands are exhibited in FIGURE 3 (d).

I ′q (xi(t)) =
Iq (xi(t))−min

[
Iq (x1(t)) , Iq (x2(t)) , . . . , Iq (xJ+1(t))

]
max

[
Iq (x1(t)) , Iq (x2(t)) , . . . , Iq (xJ+1(t))

]
−min

[
Iq (x1(t)) , Iq (x2(t)) , . . . , Iq (xJ+1(t))

] , (5)
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It can be seen that the center frequency of the selected
band-pass is around 6000 Hz, largely deviating from the
pre-set resonant frequency 2000 Hz. The signal is then puri-
fied using the selected filter centered at 6000 Hz, resulting the
filtered signal in FIGURE 3 (e). STFT-resulting TFR of the
envelope of the filtered signal is presented in FIGURE 3 (f),
where no IF-ridges related to instantaneous fault charac-
teristic frequency (IFCF) and its harmonics can be easily
recognized as the ORF is improperly selected. This exam-
ple demonstrates that the ORF for bearing fault diagnosis
might be mistakenly selected if the vibration signal contains
outliers when using the original criterion fusion strategy.
The underlying reason is that two of the three indexes are
over-sensitive to impulsive noises while the weight for three
indexes are almost identical due to that the indexes present
the similar changing pattern, resulting the incorrect frequency
band is selected (weights equals 0.3214, 0.3466 and 0.3320,
respectively, according to Eq. (7)).

III. PRESENTATION OF THE PROPOSED METHODOLOGY
To correctly determine the ORF of signals corrupted with
impulsive noise and harmonic interferences, the proposed
method for bearing fault diagnosis under unstable rotational
speed conditions is detailed in this section, which is consti-
tuted by three parts, including the dual-guidance based ORF
selection, multiple ridge path identification and diagnosis
strategy. Each part is elaborated in the following section.

A. DUAL-GUIDANCE BASED ORF SELECTION SCHEME
WITH TQWT EMBEDDED
1) PROPOSED DUAL-GUIDANCE BASED SCHEME FOR ORF
SELECTION
To tackle the aforementioned issues, the novel dual-guidance
based ORF scheme is proposed. It is known that two of the
three indexes, i.e., kurtosis and CF, are sensitive to outliers
and shaft rotating speeds; whereas SI is not alert to out-
liers and operation speeds [14]. Inspired by this observation,
we propose to use SI to guide weight vector generation of
the other two indexes before hybrid operations, which is the
first guidance. The purpose of calculating weight vectors
is to make sure that the index correctly reflect the signal
impulsiveness is given more weights while the one that does
not truly reflect signal impulsiveness is given no weights.
Specifically, if the kurtosis andCF change in the samemanner
as SI (i.e., peaks of three indexes are located in the same
intervals), the IH output is calculated using Eq. (4) with
constant weights; otherwise, weight vectors of kurtosis and
CF vectors are calculated.

Further, TQWT is used to partition the frequency band
with desirable frequency resolution, instead of subjective
partition. The index hybrid is then performed to guide ORF
band selection based on TQWT, which is the second guidance
operation. According to the discussion above, the steps of the
proposed dual-guidance scheme are elaborated as follows.

1. Acquire index vectors. Generate the frequency response
and all sub-band signals with determined TQWT-related
parameters (details in section 0). Each sub-band signal,

i.e., x1(t), x2(t), . . . , xi(t), . . . , xJ+1(t), corresponds to each
sub-frequency filter, as illustrated in FIGURE 1,

xi(t) = TQWT−1(wi), i = 1, 2, . . . , J + 1, (11)

where wi represents the wavelet coefficients of the ith stage,
and TQWT−1 denotes the inverse TQWT. Generate three
index vectors of J + 1 sub-band signals, i.e., Iq, q = 1, 2, 3,
denoting the kurtosis, CF and reciprocal of SI, respectively.

2.Calculate weight vectors(first guidance). Use SI to guide
the weight vector calculation. Denote weight vectors by Wq
(q = 1, 2, 3). Comparing peak intervals of vector I1 and
I2 with that of I3, If peak intervals of the three vectors are
situated in the same region (this can be done by comparing
the peak locations of vectors: if their peaks are located at
the same stage, then their peak intervals are in the same
region; otherwise, their peak intervals are situated at different
regions), go to step 3; otherwise, weight vector for Kurtosis
and CF vectors are calculated by the following way. Peak
interval is defined as the region centered at the maximal value
of Iq (q = 1, 2, 3) with the boundaries determined by n
and n′. The n and n′ are stage number located at left and
right sides of the current maximal value of Iq, respectively,
and correspond to the stage number where the index value
Iq(n) (Iq(n′)) is greater than the mean of Iq and its left (right)
neighbor is not greater than the mean of Iq, as shown in
FIGURE 6 (a). Elements of weight vectorW3 are equal since
SI is not sensitive to outliers and calculated by Eq. (7).Weight
vectorsWq (q = 1, 2) are calculate using

Wq(i) =


0, i ∈ [n, n′]

1− Eq∑3
q=1 (1− Eq)

, otherwise

(i = 1, 2, . . . , J + 1), (12)

and Eq. (8) can be re-formulated as

IH (xi(t)) =
∑3

q=1

(
Wq(i)I ′q(xi(t))

)
, (13)

whereWq(i) represents the ith element of vectorWq.
3. Implement merging operations (second guidance). Uti-

lize the obtained weight vectors to calculate IH output via
Eq. (13) to guide the merging operation. Intermediate signal
yim(t), which is defined as the signal being processed at the
current merging operation, is generated. If the addition of
the current sub-band signal xi(t) to the intermediate signal
yim(t) can boost the IH output, the xi(t) is added to yim(t) to
form a new intermediate signal, i.e., yim(t)← yim(t)+ xi(t);
otherwise, the current intermediate signal remains unchanged
and is output, and the new intermediate signal is updated as
yim(t)← xi(t). Namely, if IH (yim(t)) < IH (yim(t)+ xi(t)),
continue merging the intermediate signal yim(t) with the ith
sub-band signal to form the new intermediate signal yim(t);
otherwise, keep the intermediate signal yim(t) as an output
of merging denoted by mxj(t) and set the ith sub-band signal
xi(t) as the new intermediate signal yim(t), then switch to
merging the next sub-band signal with the new yim(t). Repeat
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FIGURE 4. Pseudo code of merging operation.

the process until all sub-band signals are involved, resulting
J∗ output signals. The pseudo code of the merging operation
is shown in FIGURE 4.

4. Select ORF band. Find out the merged signal with max-
imal IH output denoted by mxjopt , which can be formulated
as

mxjopt (t) = xk (t)+ xk+1(t)+ . . .+ xk+m(t),

k ∈ (1, 2, . . . , J ), m ∈ (0, 1, . . . , J − k),

subjected to : jopt = argmax
j

(
IH
(
mxj(t)

))
,

j = 1, 2, . . . , J∗, (14)

which means that the selected merged signal is composed by
m+1 sub-band signals starting from the kth sub-band signal.
Output the corresponding merged sub-frequency band fm(jopt )
determined by [fk fk+m], which is the selected ORF band using
the proposed scheme.

The developed dual-guidance based ORF band selection
is graphically presented in the flowchart of FIGURE 5. The
determined ORF band corresponds to the merged signal seg-
ment with the maximum IH output calculated by Eq. (13).

To validate the effectiveness of the proposed dual-guidance
based scheme for ORF determination, the simulated signal
defined by Eq.(9) in Section 0 is processed. FIGURE 6 shows
the processing results. The normalized indexes are shown in
FIGURE 6 (a), where peak intervals of kurtosis and CF are
located at different regions with that of SI. The black dashed
lines in FIGURE 6 (a) represents the mean of kurtosis and
CF vectors, respectively. For kurtosis vector, n and n′ equal
to 4 and 6, respectively, as presented in FIGURE 6 (a); thus,
the peak interval is [4], [6]. Likewise, the peak interval for CF
can also be obtained [3], [7] from FIGURE 6 (a). The weight
vectors are then calculated, as shown in FIGURE 6 (b). With
the weight vectors, IH output can be obtained. The IH output
of signals which are merged by the guide of the index hybrid
scheme is presented in FIGURE 6 (c), where the maximal

FIGURE 5. Flowchart of the proposed dual-guidance based ORF selection
scheme.

FIGURE 6. Processing results of the simulated signal in Section 2 using
the proposed dual-guidance based scheme (fm(j ) represents the j th
merged filter).

IH output can be easily identified. The 3rd merged signal
mx3(t) yields the maximal IH output (i.e., jopt = 3), which
is constituted by three sub-band filter. From FIGURE 6 (d),
it can be seen that the 8th, 9th and 10th sub-band filters of the
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original frequency response (before merging) composes the
3rd merged signal; hence parameters m and k can be identi-
fied as k = 8, m = 2. The selected ORF is plotted in FIG-
URE 6 (e). The raw signal is then filtered using the selected
ORF band, resulting the filtered signal in FIGURE 6 (f). FIG-
URE 6 (g) shows the spectrum of the filtered signal using the
selected ORF band, where it can be seen that the signal fre-
quency is almost centered at 2000 Hz, identical to the pre-set
resonant frequency. The vibration signal is then demodulated
and time-frequency analyzed using Hilbert Transform and
STFT, respectively. The resulting TFR is exhibited in FIG-
URE 6 (h). As seen, the IFCF and three its harmonics can
be recognized, indicating that the adverse effect of harmonic
interferences and unexpected outliers on ORF determination
are eliminated using the proposed dual-guidance based ORF
selection scheme.

Compared with the results (shown in FIGURE 3) obtained
by the original index hybrid strategy, the ORF band can be
properly selected using the proposed scheme as fixed weights
are replaced by weight vectors to make sure that the vigilance
of kurtosis and CF to outliers and speed variations are weak-
ened and the three criteria then jointly work towards the ORF
determination.

2) PARAMETER DETERMINATION OF TQWT FOR ORF
SELECTION
The proposed dual-guidance based ORF selection is based
on frequency responses generated by TQWT. As stated pre-
viously, TQWT is a kind of wavelet transform with tunable
parameters, including Q-factor (Q), redundancy (r), and the
number of stages (J ). The determination of such param-
eters inevitably has influences on the effective realization
of TQWT for ORF selection. There are numerous types of
combination of Q, r and J . In order to guide the parameter
selection of TQWT for ORF band determination, the effects
of these parameters on frequency response are analyzed.

Our focus of using TQWT is on the ORF selection to
extract the fault-generated impulses as much as possible;
hence, the bandwidth of each sub-frequency band, which
corresponds to a band-pass filter, is vital for the success of the
proposed scheme. A wide sub-frequency band would result
in a low frequency resolution; while a narrow one would
lead to a high frequency resolution, which is desirable by
the proposed scheme. According to ref. [34], the bandwidth
of the frequency response producing sub-frequency band j is
approximately half the width of the interval over which the
frequency response is non-zero. Using this approximation,
the bandwidth of jth sub-frequency band can be calculated
by

BWj =
1
2
βαj−1π. (15)

The scaling parameters α and β can be expressed by

α = 1−
β

r
, β =

2
Q+ 1

. (16)

FIGURE 7. Frequency responses of TQWT with different parameter
combinations (data length N is 250, number of stages J adopts the
maximum. The calculation of maximal J can refer to ref. [28]. Note that
the low frequency is not covered in these figures as the signal length is
only 250.).

From Eqs.(15) and (16), it can be deduced that an increase
of Q will narrow the bandwidth of each sub-frequency
response if the redundancy r is fixed. This observation can
also be echoed by observing the first row of FIGURE 7.
However, Q cannot be unlimitedly large as its increase could
incur the decrease of the covering frequency range. The cov-
ering frequency range is defined as the frequency range that
the frequency response of TQWT can reach. Without losing
the generality, the lowest frequencies flow that frequency
responses can reach versus different Q-factors is plotted in
FIGURE 8, where it can be seen that the lowest frequencies
covered by frequency responses drop with the increase of Q.
In addition, the computation cost is also boosted by the
increase of Q for the index hybrid guided ORF determination
algorithm. This is because the number of stage J grows
with the augment ofQ and consequently more sub-frequency
bands are involved for computation. The computational com-
plexity of the whole algorithm can be approximated as O(J ),
indicating that execution time of the algorithm is linear in J .
Therefore, Q represents a compromise among the band-pass
bandwidth, frequency range and computational cost. The
effect of redundancy r on bandwidth of sub-frequency bands
is similar to that of Q, i.e., the bandwidth becomes narrow
with the increase of r when Q being fixed according to
Eq.(15) and Eq.(16). In terms of the covering frequency range
and computational cost, the former slightly declines when r
increasing, as shown in FIGURE 8, and the latter boosts with
the increase of r because the number of stage J of TQWT
increases according to the following equation [34]

Jmax =
⌊
log(N

/
4(Q+ 1))

/
log

(
1
/
(1− 2

/
(r(Q+ 1))

)⌋
(17)

where bzc stands for the largest integer that is less
than z.Therefore, the growth of r would substantially aug-
ment the computational cost since it linearly increases with J .
As can be observed in FIGURE 8, the covering frequency
range is negligibly affected by the increase of the redun-
dancy r . Thus, r can be determined by achieving a desirable
trade-off between the bandwidth and computational cost. The
number of stages has few effects on the bandwidth of each
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FIGURE 8. Frequency range that the frequency response can cover under
different parameter combinations (data length N is 250, number of stages
J adopts the maximum, flow represents the lowest normalized frequency
that the frequency response of TQWT can reach).

TABLE 2. Effects of TQWT-related parameters for optimal resonant
frequency selection.

sub-frequency band and can be determined by taking the
covering frequency range and computational cost into consid-
eration. The effects of each parameter on bandwidth of each
band-pass filter, covering frequency range and computational
cost are summarized in TABLE 2.

With the analysis above, the general principle for determin-
ing the TQWT-related parameters is to 1) keep the bandwidth
of sub-frequency band narrow enough, 2) cover enough fre-
quency range to ensure that the possible resonant frequency
bands are not left out and 3) minimize the computational cost.
To do so, the Q-factorQ and redundancy r cannot be too large
as it will greatly boost the number of stages J and computa-
tional cost. Therefore, the range of the redundancy factor r
is fixed for a desirable trade-off between the bandwidth and
computational cost. The maximum Q adopts 10 by compro-
mising among the bandwidth, covering frequency range and
computational cost. The number of stages J for ORF selection
is not necessary to take the maximum value since the resonant
frequency of bearing systems is often thousands of Hertz. The
center frequency of each band-pass filter can be calculated
using the following equation [34]

fcj = α
j 2− β

4α
fs, j = 1, 2, . . . , Jmax, (18)

where fcj represents the center frequency of the jth sub-
frequency band and fs is the sampling frequency. To ensure
that the resonant frequency of bearing systems is not left out,
the lowest frequency that the frequency response can reach
should be not less than fbd, where fbd is a threshold that reso-
nant frequency of most bearing systems can be encompassed.
To achieve this, for a determined combination of Q and r ,
the number of stages J can then be calculated by

J = logα
4αfbd
fs(2−β) , (19)

where fbd is a user-specified parameter. J can then be deter-
mined using Eq. (19) when the lower cut-off frequency fbd

FIGURE 9. IH output- Q scatter diagram.

is specified by considering covering all possible resonant
frequencies of analyzed bearing systems.With the fixed range
for Q and r , the combination which is optimal for the signal
analyzed is determined using the strategy introduced below.

As described above, the index hybrid strategy yields a
better outcome for ORF selection, which also suggests that
the IH output can also be employed to determine the optimal
Q and r combination for the signal analyzed. The optimal
combination can be found using

Q, r = argmax
Q,r

IH (y(t)) ,

s.t. Q ∈ [1,Qmax], r ∈ [rmin, rmax], (20)

where y(t) represents the filtered signal using the proposed
index hybrid guided scheme. Given the range of parameters
Q and r , the optimal Q and r combination corresponds to
the merged signal with the maximum IH output. Parameters
Q and r for the simulated signal in Section 0 can then be
determined as 2 and 5, respectively, as shown in FIGURE 9.

B. MULTIPLE RIDGE PATH IDENTIFICATION
ORF can be determined using the proposed dual-guidance
based scheme with the embedded TQWT. Impulse-like sig-
nals can then be extracted. However, bearing health condition
monitoring is not completed yet since the fault types are not
diagnosed only with the filtered signal. Hence, a diagnosis
method based on multiple ridge path identification is devel-
oped in the following. To conduct the diagnosis, extraction of
IFCF and ISRF is critical. In reality, even though the proposed
dual-guidance based ORF scheme can facilitate the identifi-
cation of ridge paths, it cannot make sure that IFCF, ISRF and
their harmonics are accurately extracted as the associated sig-
nal components might be still faint for weak faults. Dynamic
programming algorithms, like the Viterbi algorithm, have
been explored to extract ridge paths [37], [38]. Nevertheless,
the application of such algorithms might be confined by
the taxing computation cost. This paper, therefore, proposes
a fast as well as effective method for multiple ridge path
identification based on the peak search algorithm which is
a fundamental IF extraction method [30], [32].

To begin with, the TFR of the signal analyzed has to be
obtained. Since STFT is a powerful tool for TFA of nonsta-
tionary signal, the TFRs in this paper are obtained via STFT.
For a signal x(t), its STFT can be defined as

X (t, f ) =
∫
+∞

−∞

x(τ )w(τ − t)e−j2π f τdτ, (21)
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FIGURE 10. Pseudo code of ‘Algorithm I’.

where w(t) should be a low-pass filter, X (t , f ) can be
interpreted as the correlation between x(τ ) and w(τ −
t)e−j2π f τ , and w(τ − t)e−j2π f τ is compactly time and fre-
quency supported, with energy concentrated at time t and
frequency f . Therefore, |X (t, f )|2 can be viewed as the
energy in x(t) at time t and frequency f . Let P(t, f ) =
|X (t, f )|2 (P(t, f ) is known as the spectrogram of signal
x(t)). With the STFT-generating TFR, a regional peak search
algorithm presented in [32], [39] is introduced. The pseudo
code of the algorithm (named ‘Algorithm I’) is listed in
FIGURE 10.

The algorithm presented above searches ridge paths in sub-
regions, which increases the accuracy of the extracted ridge
path in a noisy environment. The sub-regions are determined
by the parameter 1f : a large 1f signifying a wide sub-
region and a small 1f indicating a narrow sub-region. Both
too large and too small 1f would decrease the accuracy
of the algorithm. For rotating machinery, the rotating speed
generally does not exhibit a dramatic change; hence,1f is set
as around 2∼5 Hz (2 ∼ 4 times the frequency resolution of
STFT-generating TFR). The 1f is set to 5 Hz for simulated
and experimental signals in this paper. The key step of the
success of ‘Algorithm I’ is to find a proper starting point
for searching as an inappropriate starting point would lead
to incorrect ridge path identification. The extensively used
method of determining the starting point is to find out the
location of the maximum energy in TFR. However, the point
with maximum energy does not always correspond to a point
right on the IF ridge path of interested signals, particularly
for a multi-component signal. It is quite common that when
the ridge path of the first signal component is extracted with
the starting point corresponding to the one of the maxi-
mum energy, ridges paths of remaining signal components
cannot be accurately searched started with the point with
the maximum energy of the updated TFR as the remain-
ing signal components are often even weaker in terms of
energy.

FIGURE 11. (a) The simulated signal, (b) True IF paths of the four signal
components, and (c) TFR of (a).

To illustrate, a simulated signal s(t) composing of multiple
signal components is taken into consideration:

s(t) =
K∑
k=1

Ak cos (2π · IFk (t) · t)+ n(t), (22)

where Ak represents the amplitude of each signal component,
IFk (t) is the IF of each component, n(t) stands for noise
as defined in Section 0 and K denote the number of signal
components. Four signal components are considered in this
example. IF1(t) is set to be−2.5t + 35 and IF2(t), IF3(t) and
IF4(t) are equal to 2IF1(t), 4IF1(t), and 5IF1(t), respectively.
The amplitude of each component is randomly set 1.5, 0.9,
1.05, and 0.8, respectively. The simulated signal and the IF
of each component are shown in FIGURE 11 (a) and (b),
respectively. FIGURE 11 (c) presents the TFR of the simu-
lated signal defined by Eq.(22).

The starting point corresponds to the one with maximum
energy in the TFR shown in FIGURE 12 (a). With such a
starting point, the IF of the first signal component, in FIG-
URE 12 (b), is successfully extracted using ‘Algorithm I’.
However, the IFs of the remaining signal component cannot
be accurately extracted by ‘Algorithm I’. The underlying
reason is that points with maximum energy of the updated
TFR are not located on IF ridge paths of the signal compo-
nents. As displayed in FIGURE 12 (c), the second IF is not
correctly identified as the starting point with the maximum
energy is triggered by interfering signals, rather than signal
components. Similarly, the IFs of the third and fourth signal
components are not accurately identified as well for the same
reason, as shown in FIGURE 12 (e) and (f). Note that the
energy distribution of the fourth signal component is not
plotted.

To ensure that the selected starting point for searching
is located on the IF ridge paths of interested signal com-
ponents, an improved version of ‘Algorithm I’ is proposed.
IF paths of signal components of interest extracted by ‘Algo-
rithm I’ are acted as IF pre-estimators denoted by pre-IFk (t),
k = 12, . . . ,K , where K represents the number of signal
components of interest. The improved algorithm attempts to
employ one of the pre-extracted IFs to guide the starting point
selection for the rest of signal components. The selected IF
used for guidance, denoted by g-IF(t), is the one firstly pre-
extracted from TFR, i.e., pre-IF1, as signal component of the
first extracted IF is generally energy-dominant on TFR and it
is most likely to be accurately extracted.

Then, a synchronizing operation between g-IF(t) and pre-
IFk (t) is subsequently developed for an appropriate starting
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FIGURE 12. Ridge path identification using ‘Algorithm I’: (a), (c) and
(e) Energy distribution of original signal, signal after the first IF path
extracted and signal after the first two IF paths extracted, (b) the first
identified ridge path and true IF 1, (d) the second identified ridge path
and true IF 1, and (f) four identified IF paths.

point selection for IF extraction. The purpose of the synchro-
nization is to find the synchronization coefficient, named sck ,
which makes the summation of absolute values between g-
IF(t) and IFtemp(k)(t) minimal. The IFtemp(k)(t) is defined as

IFtemp(k)(t) =
pre-IFk (t)

sck
, (23)

and the synchronization coefficient sck can be obtained by

sck = argmin
sc

∑M

m=1

∣∣∣∣g-IF(tm)− pre-IFk (tm)
sc

∣∣∣∣,
sc = λ, 2λ, 3λ, . . . , scmax. (24)

The time instant corresponding to the minimal absolute
value between the g-IF(t) and IFtemp(k)(t) is set as the starting
point tst for IF extraction.

tst = argmin
tm

∣∣g-IF(tm)− IFtemp(k)(tm)
∣∣ , m = 1, 2, . . . ,M ,

(25)

where the parameter λ is the resolution of synchronizing
and scmax is the maximum of synchronization coefficients.
The parameter scmax is specified according to the number
of harmonics taken into consideration and the synchronizing
resolution λ should be set small enough to make sure that
shaft rotating IF, IFCF and their harmonics are not left out.
Update the starting point and re-call ‘Algorithm I’. The IF
of the kth signal component, IFk (t), can then be accurately
extracted. The pseudo code of the improved version of ‘Algo-
rithm I’ is given in FIGURE 13. In this work, scmax and λ are
respectively set to 20 and 0.01 for simulated and experimental
signal analyses. The scmax equaling 20 is sufficient to cover
IFCF, ISRF and a few of their harmonics and λ equaling

FIGURE 13. Pseudo code of improved version of ‘Algorithm I’.

0.01 is small enough to distinguish IFCF, ISRF and their
harmonics by ratios among them.

The proposed algorithm is then applied to process the
simulated signal defined by Eq.(22). The pre-estimators of IF,
i.e., pre-IFk (t), are extracted by ‘Algorithm I’ and displayed
in FIGURE 12 (f). The first pre-extracted IF is selected
as the guidance IF g-IF(t) to update the starting point for
the signal components. With the improved algorithm, new
starting points for the rest of signal components are searched
by finding the minimal absolute value between g-IF(t)
andIFtemp(k)(t), as presented in FIGURE 14 (a-c). The syn-
chronizing coefficient sck (k = 1, 2, 3, 4) for each signal
component is determined as 1, 2, 4 and 5 by the synchro-
nization, respectively, which is identical to the pre-set values.
The new starting points, exhibited in FIGURE 14 (a-c), for
the second, third and fourth signal components are located
at 10, 1 and 12, respectively, indicating that the IFs for the
three signal components are obtained by seeking the max-
imum energy in sub-regions starting at the new points and
then moving forwards and backwards till all time instants
are taken into consideration. It is worth mentioning that the
synchronizing for IF of the first signal component is not
plotted in FIGURE 14 since it has been correctly extracted
using ‘Algorithm I’. The improved version of the algorithm
can ensure that starting points of searching are located on
the IF paths of signal components; therefore the IFs can be
accurately extracted, as shown in FIGURE 14 (d).

C. BEARING FAULT DIAGNOSIS USING THE PROPOSED
DUAL-GUIDANCE BASED ORF SELECTION AND MULTIPLE
RIDGE PATH IDENTIFICATION
With the determined ORF band and improved algorithm I,
the fault-induced impulsive signal can be extracted and the
IFCF and its harmonics can be detected. However, the bearing
fault type cannot be revealed yet without knowing the FCC.
The FCC for bearing with outer race fault (FCCo) and inner
race fault (FCCI) under time-varying speed operation can be
calculated using

IFCFo =
Nb
2
(1−

d
D

cosϕ)f 1r = FCCo · fr , (26)
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FIGURE 14. Ridge path identification using the improved version of
‘Algorithm I’: (a-c) the g-IF1 and the IFtemp of the second, third and fourth
signal component, respectively, and (d) the identified IF ridge paths of the
signal defined by Eq. (22).

IFCFI =
Nb
2
(1+

d
D

cosϕ)f 1r = FCCI · fr , (27)

where Nb represents the number of rolling elements, d is the
diameter of the rolling element, D denotes the pitch diameter
of the bearing, ϕ represents the angle of the load from the
radial plane, fr represents the ISRF, and IFCFo and IFCFI
stand for the IFCF of bearing with outer race fault and inner
race fault, respectively. From Eqs. (26) and (27), it can be
seen that FCCo and FCCI are only determined by parameters
of bearings and independent of shaft rotational speed; hence,
they can be employed to perform bearing fault diagnosis
under time-varying speed.

In order to calculate FCC, ISRF (denoted by fr(t)) has to
be estimated in advance. The ISRF and its harmonics may
present in the TFR of envelope of the filtered signal due to
amplitude modulation, particularly for inner race fault. They
are also very likely to present in low frequency band because
of misalignment, imbalanced mass or eccentricity caused
by manufacturing or/and mounting errors etc. [31], [40].
Therefore, to make sure the ISRF and its harmonics can
be extracted, the frequency band of collected vibration is
chopped and the signal of low frequency band is obtained
using a low-pass filter. The cut-off frequency of the low-
pass filter is user-specified and set to cover the ISRF and a
few of its harmonics. The ridge paths of the ISRF and its
harmonics can be identified using the proposed algorithm
in section 0. It has to be noted that it cannot be guaranteed
that the first extracted ridge path just happens to be the
ISRF; however, the ISRF can be always extracted using the
proposed algorithm because the sub-regions are set to zero
after the extraction of the previous ridge paths. The bearing
fault diagnosis can then be implemented via matching the
average ratios of the extracted IFCFi(t) (i = 1, 2, 3, . . .)
to f jr (t) (j = 1, 2, 3, . . .) to FCC and its multiples, where
IFCFi(t) represents the ith extracted IFCF-related IF path
and f jr (t) stands for the jth extracted ISRF-related IF path.

FIGURE 15. Flowchart of the bearing fault diagnosis.

The average ratio between IFCFi(t) and the first extracted
ISRF-related IFf 1r (t) can be expressed as

R1i =
1
M

M∑
m=1

IFCFi(tm)
f 1r (tm)

, i = 1, 2, . . . , imax, (28)

where M is the number of time instant as defined previ-
ously, imax denotes the number of extracted IFCF-related
ridge paths. The average ratio Rji of IFCFi(t) to f

j
r (t), (j =

2, 3, . . .) can be calculated in the same manner. Let a vector
Rj = [Rj1,R

j
2, . . . ,R

j
i, . . . ,R

j
imax], i.e., the vector R

j , named
diagnosis vector, represents the average ratios of imax IFCF-
related ridge paths to the jth ISRF-related IF path. Based
on the statement presented above, the bearing fault diag-
nosis procedure can be summarized using a flowchart of
FIGURE 15.

IV. VALIDATIONS
To exam the performance of the proposed method, exper-
imental signals contaminated by interferences transmitted
from a gearbox and noise are collected on a SpectraQuest
machinery fault simulator (MFS-PK5MT). Vibration signals
from both outer race fault and inner race fault are measured.

A. BEARING OUTER RACE FAULT DIAGNOSIS
The experimental setup for outer race fault is shown in
FIGURE 16, where two ER16K bearings are utilized to sup-
port the shaft of 1 inch in diameter and a mass of 5.03 kg
is mounted on the shaft as an external load. The bearing
shaft is driven by an AC converter controlled motor through a
coupling. The right side is connected to the gearbox shaft by
belts and two sheaves (the smaller one is fixed on the bearing
shaft and the larger one is installed on the gearbox shaft).
Detailed parameters of the bearing are listed in TABLE 3. The
motor shaft rotational speed rises from 35.3 Hz to 60.7 Hz
following a nonlinear manner. The sampling frequency is
20 kHz. In addition, as shown in FIGURE 16, a tachometer
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FIGURE 16. Experimental setup for outer race fault.

TABLE 3. Parameters of the bearings used in the test.

FIGURE 17. Collected vibration signal and TFA for outer race fault case:
(a) raw signal, (b) TFR of the raw signal, (c) TFR of the envelope of the raw
signal, and (d) Collected ISRF.

is used to collect the instantaneous shaft rotational speed for
the purpose of verifying the proposed method.

The collected raw signal is shown in FIGURE 17 (a).
FIGURE 17 (b) and (d) exhibit the TFR of the raw signal
and its envelope signal, respectively. It can be seen that the
instantaneous gear meshing frequency dominates the TFR of
the raw vibration signal. In addition, a few of shaft related
IF components can also be observed in FIGURE 17 (b).
However, IFCF and its harmonics cannot be identified. In
terms of the TFR of envelope of the raw signal, no clear TF
ridges can be recognized, as presented in FIGURE 17 (c). The
collected shaft rotational speed is shown in FIGURE 17 (d),
which can be used to verify the estimated IF obtained by the
improved algorithm.

The proposed dual-guidance based scheme is then
adopted to process the collected signal. To determine the
TQWT-related parameters, Q-factor versus IH output scatter
diagram is plotted in FIGURE 18 (a), showing that the deter-
mined Q and r is 8 and 6, respectively. The corresponding

frequency responses are presented in FIGURE 18 (b).
According to Eq. (19), there are 91 stages, i.e., 91 sub-
signals. The normalized kurtosis, CF and reciprocal of SI
values of each sub-signals are calculated, as exhibited in
FIGURE 18 (c), from which it can be observed that the peak
intervals (indicated by n and n′) of the three indicators are
situated in different positions. Weight vectors are then calcu-
lated via step 2 in sub-section 0. The obtained weight vectors
of the three indexes are displayed in FIGURE 18 (d). The
IH output of the indexes of each merged signal is calculated
during merging, shown in FIGURE 18 (e). The maximum
of IH output corresponds to the 3rd merged signal which
contains 8 original sub-signals from the 6th to 13th according
the merged sub-band filters in FIGURE 18 (f). By observing
FIGURE 18 (f), parameters m and k can be determined
as 8 and 6, respectively. The selected ORF band, FIG-
URE 18 (g), is centralized around 6470 Hz with the band-
width 1699 Hz. The raw signal is subsequently filtered using
the determined ORF band. The band-pass filtered signal is
shown in FIGURE 18 (h). FIGURE 18 (i) and (j) exhibit the
frequency spectrum of the filtered signal and the TFR of its
envelope. The spectrum further indicates that the frequency
of filtered signal is around 6470 Hz. With the weight vectors,
the effects of index values caused by noise and interferences
are weakened and contribution of index values arisen by
target signal is kept when calculating IH output. Then, the
ORF can be successfully selected. From the TFR of envelope
of the filtered signal, two IF paths which are likely to be
IFCF-related ridge paths can be easily recognized. However,
the final diagnosis result cannot be made yet without know-
ing the ISRF information because there is a possibility that
the two IF paths may relate to ISRF or other components,
rather than IFCF and its harmonics, even though this rarely
happens. Furthermore, even if the two IF paths are related to
IFCF, the fault type cannot be determined yet without ISRF
information.

To complete the diagnosis, ISRF related ridge paths are
also required to be extracted and average ratios among the
extracted ridge paths have to be calculated, in addition to
IFCF related ridge paths. The diagnosis results can then
be made by matching the average ratios to bearing FCCs
and its multiples. The ‘Algorithm I’ is applied to extract-
ing the pre-estimator of IFCF-related paths, i.e., pre-IFCF,
and the extracted results are presented in FIGURE 19 (b).
As seen, the IFCF1 can be accurately extracted using ‘Algo-
rithm I’. This is because the maximal energy is located on
IFCF-related path, as shown in FIGURE 19 (a).

Then, the improved version of ‘Algorithm I’ is used. The
extracted IFCF1 acts as the guidance IF. The synchronization
is performed and the synchronization coefficient sc2 is found
to be 2. As shown in FIGURE 19 (c), the starting point of
searching is located at the 38th time instance, where absolute
value between IFCF1(t) and IFtemp(2)(t) is minimal, instead
of the one with maximum energy which might be caused by
interfering signals. With the new starting point, the IFCF2 is
extracted, as displayed in FIGURE 19 (d) (black solid line).
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FIGURE 18. ORF selection using the proposed dual-guidance based
scheme for bearing outer race fault diagnosis.

The lower frequency band signal is obtained by a low-pass
filter with the cut-off frequency 500 Hz. The filtered signal
and its envelope spectra are shown in FIGURE 20 (a) and
(b), respectively. Two IF ridges can be clearly discerned in
FIGURE 20 (b). By ‘Algorithm I’, the results are shown in
FIGURE 20 (d), showing that the first ISRF-related path is
accurately extracted. This is also echo with FIGURE 20 (c),
where the maximal energy is situated in the ISRF-related
path. In this case, the second ISRF-related IF is also success-
fully detected by ‘Algorithm I’, as shown in FIGURE 20 (d).
It is worth mentioning that the second harmonic of ISRF is
extracted prior to ISRF in this circumstance.

Given the extracted IFCF-related ridges and IRSF-related
ridges, the average ratios among them can be calculated
using Eq. (28), as presented in FIGURE 21. The vector R1

FIGURE 19. Multiple ridge path identification using the improved version
of ‘Algorithm I’ for band-pass filtered signal from the bearing with an
outer race fault: (a) energy distribution of the filtered signal, (b) pre- IFCF
obtained by ‘Algorithm I’, (c) synchronized IFCF2 and extracted IFCF1, and
(d) extracted IFCF-related paths and true IFCF.

FIGURE 20. Multiple ridge path identification for lower frequency band
signal from the bearing with an outer race fault: (a) low-pass filtered
signal; (b) TFR of the filtered signal; (c) energy distribution of the filtered
signal, and (d) extracted ISRF-related ridges using ‘Algorithm I’.

represents the average ratios of the extracted IFCF-related
ridges IFCFi(t) (i = 1, 2) to first extracted ISRF ridge f 1r (t),

i.e., 1
M

M∑
m=1

IFCF1(tm)
f 1r (tm)

and 1
M

M∑
m=1

IFCF2(tm)
f 1r (tm)

for the outer race

case. Likewise, the vector R2 represents average ratios of the
extracted IFCFi(t) (i = 1, 2) to the second extracted ISRF-

related ridge f 2r (t), i.e.,
1
M

M∑
m=1

IFCF1(tm)
f 2r (tm)

and 1
M

M∑
m=1

IFCF2(tm)
f 2r (tm)

.

By observing the average ratios in FIGURE 21, it can be
found that 3.49 matches to FCCo (3.57), 6.98 equals to
2×FCCo and 1.74 is around half of FCCo. It can be con-
cluded that the first extracted ISRF-related path is the second
harmonic of ISRF and the second extracted path is the ISRF.
It can also be confirmed that the bearing has a local fault on
the outer race.
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FIGURE 21. Multiple ridge paths from lower frequency band signal and
ORF band signal.

FIGURE 22. ORF band selection using the original criterion fusion
strategy for bearing outer race fault diagnosis: (a) IH output of each
merged signal; (b) selected ORF band; (c) filtered signal using the
selected ORF band; and (d) TFR of the filtered signal.

For comparison, the original criterion fusion strategy is
applied for ORF band determination of the signal from the
bearing with an outer race fault. Merging results in FIG-
URE 22 (a) shows that there are 39 signal components after
merging and the 5th merged signal containing 15 sub-signals
generates the maximum IH output. Accordingly, the selected
ORF band is centered at 4140 Hz with the bandwidth
3074 Hz, as shown in FIGURE 22 (b). The raw signal is
then filtered using the selected ORF band, followed by TFA
of the envelope of the filtered signal in FIGURE 22 (c).
The resulting TFR is presented FIGURE 22 (d), where IF
ridges can barely be recognized. The weights for kurtosis,
CF and SI index are 0.3149, 0.3361 and 0.3490, respectively,
thus it cannot highlight the index which truly reflects the
impulsiveness.

B. BEARING INNER RACE FAULT DIAGNOSIS
To further investigate the performance of the proposed
method, it is applied for bearing inner race fault diagnosis
in this sub-section. The experiment is shown in FIGURE 23.
Two ER16K bearings, the same as the ones in outer race fault
diagnosis experimental setup, are used. Unlike the outer race
fault case, the accelerometer is positioned right on the top of
the faulty bearing. The bearing parameters have been listed
in Table 3. A tachometer and accelerometer are mounted on
the test rig to collect the shaft speed and vibration signal,

FIGURE 23. Experimental setup for bearing inner race diagnosis.

FIGURE 24. Collected vibration signal and TFA for inner race fault case:
(a) the raw signal, (b) TFR of the raw signal, (c) TFR of the envelope of the
raw signal, and (d) Collected ISRF.

respectively. Similar to the outer race fault case, the shaft
speed is measured for the purpose of validation. The signal
is sampled at a rate of 20 kHz for 10 s. The ISRF decreases
from 24 Hz to 12 Hz.

The collected raw signal and shaft rotational speed are
shown in FIGURE 24 (a) and (d), respectively. As stated
above, the ISRF plotted in FIGURE 24 (d) declines from
24 Hz to 12 Hz during 10 s. The TFR of the raw signal is
presented in FIGURE 24 (b). As shown, the TFR of the raw
signal is dominated by harmonics of gear meshing frequency
fmesh and thus no information related to bearing fault can
be revealed. FIGURE 24 (c) shows the blurry TFR of the
envelope of the raw signal, from which no clear IF ridges can
be seen due to the existence of interfering signals.

Applying the proposed method for the raw signal, the opti-
mal parameters Q and r are selected as 7 and 4, respec-
tively, according to FIGURE 25 (a). The frequency responses
with 53 stages resulted by parametrized-TQWT are given in
FIGURE 25 (b). For each stage, kurtosis, CF and reciprocal
of SI are calculated. The normalized vectors are shown in
FIGURE 25 (c). The locations of peak interval, indicated in
FIGURE 25 (c), of the three indexes are different; therefore,
weight vectors are calculated, as presented in FIGURE 25 (d).
Then the IH output is calculated using Eq. (13) for merging
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FIGURE 25. ORF selection using the proposed dual-guidance based
method for bearing inner race fault diagnosis.

operation. After merging, the IH output of eachmerged signal
is displayed in FIGURE 25 (e), fromwhich it can be observed
that the second merged signal containing 3 sub-signals (from
the 4th to 6th) has the maximum IH output. The merged
sub-band filters are exhibited in FIGURE 25 (f), from which
it can be seen that m and k equal to 3 and 4, respectively,
indicating that there are three sub-band filters composed the
select ORF starting from the 4th sub-band filter. The selected
ORF is presented in FIGURE 25 (g) with frequency center
6760 Hz and bandwidth 871 Hz. The raw signal is then
filtered by the selected ORF band, with the result presented
in FIGURE 25 (h). The spectrum of the filtered signal and
TFR of its envelope are plotted in FIGURE 25 (i) and (j),
respectively, showing that the filter signal is centered around
6760 Hz and a few of IF ridges can be identified in the TFR of

FIGURE 26. Multiple ridge path identification using the improved version
of ‘Algorithm I’ for band-pass filtered signal from the bearing with an
inner race fault.

the filtered signal. Compared with the TFR of the raw signal
envelope in FIGURE 24 (c), the filtered signal is dominated
by impulsive signals and the other interfering signal has been
removed. However, it cannot determine what these IF ridges
represent and what the fault type is yet.

The improved version of ‘Algorithm I’ is then applied
for IF ridge extractions. FIGURE 26 presents the extraction
results. The details about performing the improved algorithm
are not given in the paper since they are similar to those
of the outer race fault diagnosis. The extracted IFCF-related
path and ISRF-related path are shown in FIGURE 26. The
true IFCF is also plotted in FIGURE 26 for comparison.
To conduct bearing fault diagnosis, the average ratios of the
IF ridge positioned in the very bottom of TFR and other three
IF ridges are calculated, which forms a vector R1 shown in
FIGURE 26. By observing this vector, the second element
5.42 matches the FCCI (=5.43) very well. The first element
is half of the second one and the third one is 1.5 times of
the second one. It then can be concluded that the extracted
ISRF-related path is the second harmonic of ISRF and the
bearing is inner race defective.

It has to mention that, unlike the outer race fault diagnosis,
the lower frequency band signal is not discussed for the inner
race fault case and the diagnosis can be completed without
being adversely affected. The reason is that the ISRF-related
IF ridges can also be extracted from the band-pass filtered
signal in the inner case as the amplitude modulation often
happens.

Additionally, the original criterion fusion strategy is also
used to filter the raw signal for comparison. The IH out-
put is shown in FIGURE 27 (a) and the selected frequency
band is shown in FIGURE 27 (b). The center of the selected
frequency band is around 4000 Hz with the bandwidth of
1780 Hz. Filtering the raw signal by the selected frequency
band, the filtered signal and TFR of its envelope are dis-
played in FIGURE 27 (c) and (d), respectively. Apparently,
the TFR in FIGURE 27 (d) is more obscure than the one in
FIGURE 25 (j). The comparison indicates that the proposed
IH guided ORF scheme outperforms the original one. The
calculated weights of kurtosis, CF and SI vector of the orig-
inal hybrid method are 0.3023, 0.3400 and 0.3577. Similar
to outer race case, no obvious difference among the weights;
hence index values triggered by impulsive noise cannot be
distinguished from the ones caused by target impulsive sig-
nals, resulting in failure of ORF selection.
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FIGURE 27. ORF band selection using the original criterion fusion
strategy for bearing inner race fault diagnosis: (a) IH output of each
merged signal; (b) selected ORF band; (c) filtered signal using the
selected ORF band; and (d) TFR of the filtered signal.

TABLE 4. Executing time of the proposed method for experimental data
analysis (related to ORF band determination and multiple IF path
identification).

The computational cost the algorithm is important for
industrial applications, particularly for on-line fault diagno-
sis. To give information about the computational efficiency
of the proposed ORF selection method and multiple IF path
identification method, the executing times for experimental
data processing are listed in Table 4. The algorithms are
executed by MATLAB 2014b on the Laptop running Win-
dows 10 with an Intel Core i7-8550U 1.8GHz processor and
8.00 GB of RAM. It can be seen from Table 4 that: 1) the
computational cost of ORF selection is dependent on the sig-
nal length, the number of sub-signals and signal types, and the
computational efficiency of multiple IF extraction algorithm
relies upon the signal length, the number of extracted IF paths
and signal types; and 2) the peak search based multiple IF
extraction algorithm is quite computationally effective, much
more efficiency than the ORF selection algorithm.

For optimal Q and r combination selection, the computa-
tional time is more expensive as all possible combinations
have to be considered to find the optimal one. The compu-
tational time of identifying optimal Q and r combination for
outer race and inner race fault signal is respectively around
8 min and 11.5 min using the same Laptop. However, it is
worth mentioning that the procedure of determining optimal
Q and r is not mandatory for the success of the proposed
method for bearing fault diagnosis. The resonant frequency
band can still be detected without the strategy of determining

optimal Q and r combination; but it may be not the optimal
one. For real applications, if the first priority is given on
the time effectiveness it is not recommended to involve the
procedure of finding optimalQ and r . Otherwise, the strategy
for optimal parameter combination can be executed to obtain
the optimal frequency band for filtering. Additionally, it is
noteworthy that, if the procedure of optimalQ and r combina-
tion is not involved, larger Q and r values are recommended.
Then, frequency resolution of frequency response would be
higher and an inefficient filter, such as the 1st frequency
response in Fig.3, can be avoided.

V. CONCLUSION AND DISCUSSIONS
A. CONCLUSIONS
This paper proposes a technique to address the main chal-
lenges of bearing fault diagnosis under time-varying speed
conditions. The proposed method contains two parts: the
dual-guidance based ORF selection scheme with TQWT
embedded and multiple IF ridge identification by the
improved peak search algorithm. The former is designed to
maximally extract defect-induced fault signature under vari-
able speed conditions and the latter is devoted to identifying
multiple IF ridges from TFR of the extracted fault signatures.
Given the identified ridges, the fault diagnosis can then be
effectively conducted without relying upon tachometers and
resampling, which expands the industrial application of the
proposed technique.

The developed dual-guidance based scheme with TQWT
embedded exploits non-fixed weights for the index vec-
tors, resolving the drawback of the existing criterion fusion
method where constant weights are used. Furthermore,
the frequency band segmentation is realized via frequency
responses of TQWT, instead of equal division, which satisfies
the frequency resolution requirement that high frequency
band accepts a lower frequency resolution and low frequency
band needs a higher frequency resolution for signal analysis.
The optimal TQWT related parameters are also determined
based on IH output. With the extracted impulses, multiple IF
ridge identification algorithm is devised for fault diagnostics.
The algorithm not only keeps the simple yet computationally
effective advantage of the fundamental peak search algo-
rithm, but also can accurately identify IF ridges with the
synchronization step.

In addition, the motivation of the proposed dual-guidance
based ORF selection scheme is illustrated and the comparison
between the original peak search algorithm and improved one
is also performed. Experimental investigations are executed
to have tested the effectiveness of the proposed techniques.

B. DISCUSSIONS
Segmenting frequency bands using TQWT has limitations.
The frequency range that TQWT frequency response can
cover is dependent on signal length, in addition to Q-factor
and redundancy. If the target frequency is quite low and,
unfortunately, meanwhile the signal length is quite short,
the target frequency may not be able to be detected. Besides,
finding optimal Q and r combination is time consuming;
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thus, the future work can be conducted on the direction of
determining optimal Q and r efficiently.

Lastly, it is worth mentioning that the function used for
weight vector calculation is not smooth, where, as long as
needed, the weights for index points are set zero. In future
work, this function still has the room for improvements.
In addition, identifying two or evenmultiple ORF band is also
recommended for future work.
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