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ABSTRACT In addition to target echoes, high frequency surface wave radar (HFSWR) receives sea and
ionospheric clutter. Among these clutters, the ionospheric clutter is dominant and significantly affects the
detection performance of HFSWR, particularly when the targets are located 100 kilometers away from
the radar, rendering it an unsolved problem for HFSWR. Existing studies concerning HFSWR ionospheric
clutter lack empirical research on the nonlinear dynamical characteristics of the ionosphere of HFSWR as
existing ionospheric suppression methods are still insufficient to adapt the project application. Therefore,
the present study utilized the threshold segmentation method to eliminate the sea clutter in HFSWR
Range-Doppler spectrum and extracted ionospheric signals from this spectrum by edge feature extraction.
Subsequently, the chaotic invariants, such as correlation dimension and the largest Lyapunov exponent of
HFSWR ionospheric clutter, were calculated by phase space reconstruction, whilst the chaotic dynamical
characteristics of HFSWR ionospheric clutter were determined by the 0-1 test for chaos and other algorithms.
Furthermore, the present study demonstrated, for the first time, the chaotic dynamics of the ionospheric
clutter of HFSWR with a low-dimensional attractor by processing and analyzing the experimental data from
the Weihai High Frequency Radar Station. The conclusion redefines HFSWR ionospheric clutter based on
chaotic dynamics rather than regarding it as a stochastic process, which is conducive to efforts to explore
the formation mechanism of ionospheric clutter in essence, which can ultimately improve the detection
capability of HFSWR, particularly for long-distance targets.

INDEX TERMS High frequency surface wave radar, ionosphere, chaos, nonlinear dynamical systems.

I. INTRODUCTION
For decades, the high frequency surface wave radar
(HFSWR) has been widely used for the detection of targets
above the horizon (including offshore vessels and low-flying
aircrafts) and sea state remote sensing (ocean currents, wind
direction andwave height) [1]. The echoes of HFSWRconsist
of sea clutter, ionospheric clutter and various types of noise
including environment noise, industrial noise and frequency
modulation (FM) broadcasting. Various forms of characteris-
tics analysis and suppression methods have been widely stud-
ied and adopted in the field of sea clutter research [2]–[4], yet
the study of ionospheric clutter is still in the exploration stage.
In particular, the present study refers to the small amount of
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radiation which is reflected by the ionosphere as ionospheric
clutter in accordance with HFSWR-related literature [5].

The most intuitive and prominent feature of ionospheric
clutter in HFSWR is the stratified structure in the Range-
Doppler spectrum. High frequency electromagnetic waves
can be reflected by the E-layer, F-layer and expanding layer.
The reflection from different layers has specific character-
istics. In general, the echoes reflected from the E-layer are
concentrated in the range dimension and the expansion in
the Doppler dimension occupies small areas [6] and [7].
The ionospheric clutter reflected by the F-layer occupies
more cells in the range and Doppler dimension than the
E-layer, which persists longer than the E-layer and the spatial
correlation of the F-layer is resilient. With regards to the
expanding E- and F-layer which habitually exists between
90 and 400 kilometers, the ionospheric clutter from the
expanding layer has an impact on the detection performance
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FIGURE 1. Propagation path of ionospheric clutter: (a) once reflection directly by ionosphere; (b) reflection by ionosphere and then propagation along
sea surface; (c) propagation along sea surface and then reflection by ionosphere; (d) twice reflection by ionosphere.

of HFSWR because this segment of ionospheric clutter has
extensive expansion in the range and Doppler dimension,
which coincides with the radar detection power region [8].

The modeling of ionospheric clutter is a extensively stud-
ied problem in HFSWR. The majority of the modeling the-
ories of ionospheric clutter are focused on establishing the
mathematical models of ionospheric echoes. Chen et al. [9]
derives an ionospheric clutter power model for vertical reflec-
tion, and it is confirmed that the vertical ionospheric plasma
drift velocity results in a Doppler shift in the Range-Doppler
spectrum. In addition, the vertical ionospheric clutter power
model is developed to adopt the sky-sea mixed-path prop-
agation, and explains that how the ionosphere velocities,
wavelengths and wind directions on the surface of the sea
affect the power spectrum in themixed-path propagation [10].
The existing literature [11] and [12] has proposed similar ana-
lytical models. Moreover, research has derived an expression
for the first- and second-order received electric field after
a single scatter from the sky-sea mixed paths. Ravan [13]
also introduced an ionospheric model based on path integrals
of ray-tracing equations which was proposed to forecast the
power spectrum of ionospheric echoes reflected by the irreg-
ularities in the plasma.Thus, this model is used to simulate
three-dimensional space-time-range radar data cubes [14].
Li [15] demonstrated an ionospheric clutter model concern-
ing only the E-layer and, based on this model, a suppression
method in HFSWR was exposed. However, these theoretical
models have seldom been examined directly using actual
experimental data. Furthermore, the mathematical basis of
these models is sourced from Barrick [2] and [3] the sea clut-
ter Bragg model, yet sea and ionospheric clutter are distinct
physical processes. The ionospheric clutter formation process
is significantly more complex than that of the sea clutter.

In addition, several studies [16]–[18] suggest that iono-
spheric clutter is a stochastic process. The statistical
analysis of ionospheric clutter in HFSWR indicates that
approximately 90 percent of the ionospheric clutter per-
tains to the Rayleigh distribution, and the other satisfies the
Weibull distribution. The correlation of ionospheric clutter in
adjoining range cells is clearly observed [16]. Additionally,
the author demonstrates that the ionospheric clutter satis-
fies the normal distribution when the ionosphere is in the
weak fluctuation state [17]. One study analyzed the DOA of
ionospheric clutter and suggested that there were significant
diversities in ionospheric clutter from various directions

of arrival. It is apparent that the ionospheric clutter in
HFSWR has high time-varying, statistical and strong spatial-
correlation characteristics [18].

The present study acknowledges that a novel approach is
required for themechanism of ionospheric clutter in HFSWR,
which is a nonlinear dynamical method. One of the princi-
pal aims is to determine whether the ionospheric clutter in
HFSWR is a chaotic dynamical process. The present study
will compare results from various chaotic identificationmeth-
ods. Meanwhile, the chaotic characteristics of ionospheric
clutter will be analyzed. The key contribution of the present
study is that it provides a new perspective for studying the
characteristics of ionospheric clutter in HFSWR, which has
symbolic benefits in terms of suppression methods of iono-
spheric clutter.

II. IONOSPHERIC CLUTTER IN HFSWR
In particular, the existing ionospheric clutter suppression
methods [19] to [20] are far removed from the actual system
requirements. Themain cause of this unsatisfactory result can
be clarified from two central aspects.

Firstly, the radio wave propagation path is extremely com-
plex in HFSWR. There are primarily four paths of iono-
spheric echoes from the transmitter to the receiver, namely
one reflection, sky-sea mixed path, sea-sky mixed path and
two reflections, as shown in Figure1. Different paths of
reflection result in varied displays in the Range-Doppler
spectrum after the two-dimensional Fourier transform.
Figure2(a) and (b) show the typical Range-Doppler spectrum
of multi-path effects due to different propagation paths.

Secondly, the physical state of the ionosphere is extremely
unstable. The ionosphere is the ionized part of the Earth
upper atmosphere from approximately 60 to 1,000 kilometers
in altitude, a region that includes the thermosphere as well
as sections of the mesosphere and exosphere. According
to the variation in electron density and altitude, the iono-
sphere can be approximately apportioned into the D-layer
(60 to 90 kilometers), E-layer (90 to 140 kilometers),
F-layer (90 to 400 kilometers) and outer atmosphere (equal
to and exceeding 400 kilometers). The ionosphere is actively
influenced by solar radiation, season, longitude and latitude
as well as day and night [1]. Therefore, high-frequency elec-
tromagnetic waves are refracted, reflected and modulated
as they traverse the varying ionosphere, resulting in the
complex display on the Range-Doppler spectrum. As shown
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FIGURE 2. Multipath effect of ionospheric clutter: (a) Range-Doppler
spectrum of twice multipath effect of ionospheric clutter,
(b) Range-Doppler spectrum of multiple multipath effect of ionospheric
clutter.

TABLE 1. Basic information about the experimental database.

in Figures3(a) to (d), there is standard ionospheric clutter
in HFSWR including the E-layer, F-layer, expanding E- and
F-layer clutter.

A. INFORMATION CONCERNING HFSWR
The database in the present study is sourced from the Weihai
High Frequency Radar Station, China. The surface wave
radar system consists of transmitter and transmitting anten-
nas, receiver and receiving antennas, a signal processor,
a situation displaying and spectrum monitoring system. The
outer experimental environment is shown in Figure4, and the
remote and display system is shown in Figure5. The basic
information concerning the database in this experiment is
shown in Table1.

B. ABSTRACTED IONOSPHERIC DATA
The Range-Doppler spectrum of HFSWR mainly consists of
detections signals, sea clutter and ionosphere clutter [21].
The performance of ionospheric clutter in the Range-Doppler
spectrum is different from that of other echo signals, which
has a number of characteristics. Firstly, as the ionospheric
D-layer cannot reflect the high frequency electro-magnetic
wave, ionospheric clutter is usually located beyond 90kilo-
meters in the range dimension. Secondly, ionospheric clutter
usually appears as a band or sheet in the Range-Doppler
spectrum. If the Range-Doppler spectrum is viewed as a color
image, the sea clutter appears as two slim ridges and the
target signal echoes appear as a point. It was determined
that ionospheric clutter is clearly different from the point
targets and sea clutter in the Range-Doppler spectrum. There-
fore, the Range-Doppler color spectrum can be considered
as image processing and subsequently, ionospheric clutter
can be detected by image segmentation technology. In the
process of segmentation, themethod of image edge extraction
is adopted. The extraction process is shown in Figure6.

The primary concern is the position of the ionospheric
clutter in the range dimension of the Range-Doppler spec-
trum. Thus, the Range-Doppler spectrum can be divided into
two segments, namely the existence and the absence of iono-
spheric clutter. Thereafter, the frequency domain data can
be converted into time domain data using an inverse Fourier
transform. Taking Figure3(a) as example, themost significant
step is to extract the outline of the ionospheric clutter in
the Range-Doppler spectrum, and the result is shown in the
Figure7. In Figure7(b), it is observed that the ionospheric
clutter occupies the range cells from 100 to 350 kilometers.

C. IONOSPHERIC TIME DOMAIN DATA
According to Takens’ theorem [21], a chaotic dynamical
system can be reconstructed from a time sequence of obser-
vations of the state. The time delay embedding method is
the most typical algorithm to reconstruct the phase-space.
Presuming that the ionospheric clutter time series is X =
x1, x2, . . . , xn and reconstruct phase-space in anm-dimension
is reconstructed. The state-space multivariate vector Rm

assigns the coordinates as:

Rm =


X1
X2
...

XN+(m−1)τ



=


x1 x1+τ · · · x1+(m−1)τ
x2 x2+τ · · · x2+(m−1)τ
...

...
. . .

...

xN xN+τ · · · xN+(m−1)τ

 (1)

where, τ is the embedding delay, m is the embedding dimen-
sion, X indicates ionospheric clutter data at different range
cells and x is time-domain sampling points and N is the
total number of sampling points in X . Presuming there are L
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FIGURE 3. Range-Doppler spectrum from four sets of typical ionospheric clutter data: (a) simple E-layer and F-layer, (b) Expanding E-layer,
(c) Expanding F-layer, (d) Expanding E-layer and expanding F-layer coexisting.

FIGURE 4. Transmitting antenna array and Receiving antenna array.

range cells, and the experimental data is processed by pulse
compression, the relationship about X , x and L is shown
in Figure8.

III. INTRODUCTION TO CHAOTIC
IDENTIFICATION METHODS
According to the phase-space reconstruction theorem,
the phase diagrammethod, correlation dimensionmethod and
the largest Lyapunov exponent can be criteria for assessing
the chaotic dynamics of ionospheric clutter in experimental
time-series data.

FIGURE 5. Remote and display system.

FIGURE 6. Ionospheric clutter extraction process.

A. PHASE DIAGRAM METHOD
The phase diagram of time series can describe the state vary-
ing in the nonlinear system and reflect the spatial structure
of the attractor. If the trajectory of the phase-space attractor
exhibits a state of non-periodic motion that the trajectory
continuously extends and folds in a finite space, but it is
not a repetitive motion of the periodic function, also it is
different from random motion without regularity, then the
system can be qualitatively determined as exhibiting chaotic
characteristics. According to the particularity of ionospheric
clutter in HFSWR, the phase diagram method can subjec-
tively identify the chaotic dynamical characteristics of iono-
spheric clutter data.

B. SATURATED CORRELATION DIMENSION
The correlation dimension D2 is the most intensely studied
invariant quantity of the dynamic system.D2 reflects the com-
plexity of the attractors and in the chaotic dynamical process,
D2 has a fractal property. In addition, the strange attractor
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FIGURE 7. Ionospheric clutter extraction process: (a) the original
ionospheric clutter data; (b) the outline of the ionospheric clutter in the
R-D spectrum.

FIGURE 8. Radar data form.

is evidence of a chaotic process. The algorithm developed
by Grassberger and Procaccia(GP) [22] is conceivably the
most widely used for computing D2. Firstly, defining the

correlation integral C (r):

C (r) =
1

N (N − 1)

N∑
i=1

N∑
j=1

θ
(
r −

∥∥Xi − Xj∥∥) (2)

where, θ is the Heaviside function:

θ (x) =

{
0, x ≤ 0
1, x > 0

(3)

And
∥∥Xi − Xj∥∥ is the distance between two points, the mean-

ing of C (r) is the proportion of pairs (distance between two
points less than r) in all points. When r → 0, C (r) and r
obeys the following law:

lim
r→0

C (r) ≈ rD2 (4)

where,D2 is the correlation dimension, it can be expressed as:

D2 = lnCr/ ln r (5)

For the chaotic time series, correlation integral C (r) decays
in exponential form, and the correlation dimension C (r),
which is taken as the power exponent of the correla-
tion integral, gradually becomes stable, with the embedded
dimension m increasing. Therefore, the saturation of the cor-
relation dimension can be used as the criterion for judging the
chaotic dynamical process of ionospheric clutter time-series
data [23].

C. LARGEST LYAPUNOV EXPONENT
It has been confirmed that whether the largest Lyapunov
exponent is exceeding zero can be an important characteris-
tics in distinguishing strange attractors from ordinary attrac-
tors, which is also the criterion for the judgement of chaotic
processes [24]. According to the definition of the Lyapunov
exponent:

|δx (tn)| = |δx (t0)|
n−1∏
i=0

|f [x (ti)]| = |δx (t0)| eλtn (6)

where, |δx (t0)| is initial distance between two points, and
|δx (tn)| is the new distance after n-iterations. Note:

λ= lim
tn→∞

1
tn

n−1∑
i=0

ln |f [x (ti)]| (7)

where, τ is called the Lyapunov exponent, which reflects the
sensitivity of the dynamic behavior of the system in com-
parison with the initial value over time. The largest positive
Lyapunov exponent reflects that the time series has chaotic
characteristics; the largest negative Lyapunov exponent indi-
cates that the time series is random or periodic. The larger the
Lyapunov exponent is, the more sensitive it is to the initial
value. In the present study, the Wolf algorithm is selected to
estimate the largest Lyapunov exponent, which is widely used
in chaotic system research. All three aforementionedmethods
are based on phase-space reconstruction, which depends on
the selection of the embedding dimension m and the delay
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time τ . Varying values of m and τ may lead to different
results, particularly when the experimental database contains
a substantial amount of noise. Thereafter, two additional
identification methods were selected, removing the necessity
for phase-space reconstruction, namely, the power spectrum
analysis method and the 0-1 test for chaos.

D. POWER SPECTRUM METHOD
The actual experimental time-series ionospheric clutter X (t)
exhibits the following spectrum F (ω) :

F (ω) =
∫
X (t)eiωtdt (8)

The corresponding power spectral density function S (ω) is:

S (ω) =
1
T
|F (ω)|2 (9)

Concerning the periodic or quasi-periodic motion systems,
the power spectrum is a straight line or a narrow peak pulse.
With reference to random noise, the power spectrum is a con-
tinuous curve of approximate level and for a chaotic process,
the power spectrum is a continuous curve with an oscillation
decline. Principally, the power spectrum method can iden-
tify and distinguish the chaotic dynamical process, periodic
motions and random noises from the unique characteristics of
time series in the time-frequency domain.

E. 0-1 TEST FOR CHAOS
The 0-1 test for chaos for deterministic dynamical systems is
designed to distinguish between regular, periodic or quasi-
periodic, and chaotic dynamics. It functions directly with
the time series and does not require any phase-space recon-
struction which needs to estimate the time delay and the
embedding dimension. The 0-1 test for chaos analyses time
series data directly without data preprocessing. Presuming
that discrete ionospheric clutter time-series X (t) with sam-
pling time t = 1, 2, . . . ,N , and c is the random constant on
the domain (0, 2π), the define function p (n) and q (n) are:

p (n) =
n∑
t=1

X (t) cos (θ (t)), n = 1, 2, . . . ,N (10)

q (n) =
n∑
t=1

X (t) sin (θ (t)) , n = 1, 2, . . . ,N (11)

where,

θ (t) = t + c+
t∑
i=1

X (i), t = 1, 2, . . . , n (12)

Based on function p (n) and q (n) , define mean square dis-
placementM (n) is:

M (n) = Mc (n)− (E (X))2 × ((1− cos nc)/(1− cos c))

(13)

where,

Mc(n)= lim
N→∞

N∑
t=1

[(p(t + n)− p(j))2 − (q(t + n)− q(t))2]

(14)

and

E (X) = lim
N→∞

1
N

N∑
t=1

X (t) (15)

Defining the asymptotic growth ofM (n) is Kc :

Kc = lim
n→∞

lgM (n)
/
lg n (16)

If Kc ≈ 1, the ionospheric clutter is a chaotic process.

IV. EXPERIMENT RESULTS
In this section, the first stage requires a separation of iono-
spheric clutter from sea clutter and other noise according to
the method depicted in Section II. Subsequently, the chaotic
identification methods in Section IV were applied to process
the actual experimental data. A comparison and analysis of
the results produced by the different methods will now be
presented.

A. IONOSPHERIC CLUTTER DATA PROCESSING
The radar echo signal of HFSWR is primarily composed
of sea clutter, ionospheric clutter and other noise as shown
in Figure2(a) to (d). According to Barrick [25] sea clutter
Bragg theorem, the time-domain echo signal from sea clutter
will peak at a specific frequency after pulse compression and
the Fourier transform. In addition, the range cells occupied
by ionospheric and sea clutter are different in Rang-Doppler
spectrum, which indicates that the ionospheric clutter exists
90 kilometers away from the receiver, generally. Therefore,
using the particular properties between two types of echo
signals in the Range-Doppler spectrum, and then using the
boundary abstraction method to track the location of the iono-
spheric clutter. The time-domain data of ionospheric clutter is
obtained after an inverse Fourier transform. Finally, the data
is subjected to filtering with a 102-tap FIR filter designed
for concealing the high-frequency burrs. Four typical sets
of ionospheric clutter data including E-layer clutter, F-layer
clutter, expanding E-layer and expanding F-layer clutter, are
selected in this experiment. Figure9(a) refers to unfiltered
F-layer data, whilst Figure9(b) refers to the corresponding
filtered data, and the additional three sets are processed in
the same way, respectively.

B. PHASE-SPACE RECONSTRUCTION
The phase diagram method, the saturated correlation dimen-
sion and the largest Lyapunov exponent are all centered on the
phase-space reconstruction, where the most important aspect
is to estimate the time delay τ and the embedding dimen-
sion m. There are numerous alternative methods available to
estimate τ andm. Thus, the mutual information(MI) [26] and
false nearest neighbor(FNN) [27] method can be selected as
they are proven to be effective and practical. The MI of X (t)
and X (t + τ) is defined as I (τ ):

I (τ ) =
∑

P (X (t) ,X (t + τ))

= log2

[
P (X (t) ,X (t + τ))
P (X (t))P (X (t + τ))

]
(17)
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FIGURE 9. An example of time domain data from ionospheric F-layer clutter: (a) unfiltered F-layer time domain data, (b) filtered F-layer time
domain data with FIR.

FIGURE 10. MI plots and FNN plots of typical ionospheric clutter data: (a) MI of E-layer data, (b) FNN of the same E-layer data, (c) MI of F-layer data,
(d) FNN of the same F-layer data, (e) MI of expanding E-layer data, (f) FNN of the same expanding E-layer data, (g) MI of expanding F-layer data,
(h) FNN of expanding F-layer data.

where P (X (t)) and P (X (t + τ)) are normalized distribution
functions of X (t) and X (t + τ), and P (X (t))P (X (t + τ))
is the joint probability distribution. The first minimum
of the MI plot is selected as the embedding delay
τ . Concerning the FNN method, presuming X (t) =

x (t) , x (t + τ) , . . . , x (t + (m− 1) τ ), and XF (t) is the
nearest neighbor point of X (t), the distance between these
two points is Rm (t)=‖X (t)− XF (t)‖. Once the dimension
of the phase space increases from m to m + 1, the distance

between the two points changes:

R2m+1 (t) = R2m (t)+ ‖X (t + mτ)− XF (t + mτ)‖
2 (18)

Defining:

Sm =
‖X (t + mτ)− XF (t + mτ)‖

Rm (t)
(19)

If Sm > Sr , XF (t) is the FNN point of X (t), where Sr is
usually located in (10, 50). In the event that the number of
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FNN points decreases to zero or down to 5% stably with
the embedding dimension increasing, m is referred to as the
optimum embedding dimension. The time delay and embed-
ding dimension of four sets of specific ionospheric clutter
data are shown in Figure10. It can be observed from the
Figure10(a), 10(c),10(e) and 10(g), that the time delay τ is
approximately 8 or 9, where the plot reaches a minimum for
the first time. Figure10(b), 10(d),10(f) and 10(h) indicate that
the percentage of FNN points decreases with the embedding
dimension. The optimum value is found to be 5 for four typi-
cal data sets. The MI method and FNN methods are repeated
in each database sourced from HFSWR for the purpose of
research, and the results are identical.

FIGURE 11. Typical phase diagram of random series and chaotic series:
(a) phase diagram of random white noise,(b)phase diagram of Lorenz
system.

C. PHASE DIAGRAM METHOD
The phase points of random time series are uniformly dis-
tributed in three-dimension spaces in Figure11(a). However,
the chaotic dynamical process has a strange attractor and the
phase points in three-dimension construct a special shape,
resembling the attractor of the Lorenz [26] system which
appears as a butterfly when plotted in Figure11(b).

According to the Equation (1), we can draw the attractor
in the three-dimension space, by taking N = 3 and τ = 8
obtained from the MI method. And the formula of the

attractor is shown as:

Rm =

 X1
X2

X3+(m−1)×8


=

 x1 x1+8 · · · x1+(m−1)×8
x2 x2+8 · · · x2+(m−1)×8
x3 x3+8 · · · x3+(m−1)×8

 (20)

The Figure12(a) to (d) indicate the phase diagram of
E-layer, F-layer, expanding E- and F-layer ionospheric clutter
data using the coordinated delay method with time delay.
It can be observed from Figure12 that different types of
ionospheric clutter data possess similar attractors, which all
have a ‘‘funnel’’ shape, but not uniformly distributed in three-
dimension. Thus, this provides the preliminary evidence that
the ionospheric clutter is also a chaotic process.

D. SATURATED CORRELATION DIMENSION
The algorithm of estimating the correlation dimension D2 is
illustrated earlier in Section X. The typical result of a set of
ionospheric clutter data is as shown in Figure13. The results
from repeating this method to obtain 50 sets of ionospheric
data indicate that the correlation dimension from different
data sets is approximately 4.5 to 4.8, with the embedding
dimension increasing from 2 to 30. Consequently, the sat-
urated correlation dimension method can be used to deter-
mine the ionospheric time series with recognizable chaotic
characteristics.
In this experiment, ionospheric clutter from expanding

E- and F-layer exist between 100 to 300 kilometers, therefore,
the results of ionospheric clutter from different range cells are
presented in Table2.

TABLE 2. Estimated results of correlation dimension.

Figure14 displays a graphical representation of the rela-
tionship between D2 (only from the expanding E- and
F-layer) and the ionospheric height.The correlation dimen-
sion is affected by height variation, and the plotted trends are
similar to the electron density curve in Figure14(c), which
indicates that the correlation dimension is relative to electron
density.

E. LARGEST LYAPUNOV EXPONENT
As stated, Lyapunov exponents indicates how the trajecto-
ries of the attractor adjust under the evolution of dynamics,
and the reciprocal of largest Lyapunov exponent is also the
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FIGURE 12. Attractors by coordinate time delay method in 3-dimension: (a) attractor of E-layer data, (b) attractor of F-layer data, (c) attractor of
expanding E-layer data, (d) attractor of expanding F-layer data.

FIGURE 13. Correlation dimension of a set of typical ionospheric clutter
data.

TABLE 3. Estimated results of largest Lyapunov exponent.

longest predictable time of a chaotic process, which suggests
that the greater the largest Lyapunov exponent is, the more
difficult it is to predict. The Table3 displays the results of the
estimated largest Lyapunov exponents of ionospheric clutter
data, in correlation with the data in the previous section,
according to the Wolf algorithm.

The Table3 suggests that the largest Lyapunov expo-
nents are positive, and the estimated values range from
approximately 0.200 to 0.280, which can confirm the chaotic
feature of ionospheric clutter. The relationship between the
largest Lyapunov exponent and ionospheric height is dis-
played in Figure15. Figure15 indicates that the largest Lya-
punov exponent of F-layer exceeds that of E-layer, and the
trend of the largest Lyapunov exponent plots increases as the
height escalates.

According to Figure15(c), at height ranging from
100 to 300 kilometers, the temperature of the ionosphere
elevates gradually. Higher temperatures lead to more intense

electronic motion, which renders it more difficult to predict
the changes of ionosphere, therefore, the largest Lyapunov
exponent becomes greater with augmented height and
temperature.

F. POWER SPECTRUM METHOD
The three aforementioned identification methods are associ-
ated with the phase-space reconstruction, and how the ver-
ification method has changed. It is apparent that a power
spectrum density function curve with oscillatory descent is a
necessary condition for a chaotic process. Figure16(a) to (d)
present the power spectrum density function curves of four
typical sets of ionospheric clutter data, and the trend of four
curves is similar.

The graphs of the power spectrum of ionospheric clutter
indicate that the dynamical system of ionospheric clutter
has a dissipative structure. It is distinct from the peak pulse
power spectrum of periodic motion and the horizontal fluctu-
ation power spectrum of random noise.Therefore, the chaotic
feature of ionospheric clutter time-series data can also be
qualitatively determined by power spectrum analysis.

G. THE 0-1 TEST FOR CHAOS
In a regular system (periodic or quasiperiodic dynamics),
the trajectories of the phase diagram of p (n) and q (n) are
typically bound, whilst for a chaotic system, the trajectories
typically exhibit a two-dimensional Brownian motion with
zero drift [28]. For example, a logistic map is a type of chaotic
process which has been studied extensively at present:

xn+1 = λxn (1− xn) , n = 1, 2, . . . (21)

where 0 ≤ x ≤ 1 and 0 ≤ λ ≤ 4.The value of λ determines
whether the logistic system is chaotic. When 0 < λ ≤ 1,
the system function has only one regular solution zero; when
1 < λ ≤ 3, the system function has two regular solution
zero and 1 − 1/λ, and when 3 < λ ≤ 4, the system
gradually transforms from period doubling bifurcation into
chaotic series. Figure17(a) shows the relationship between x
and λ when 3 < λ ≤ 4. Figure17(b) and (c) show the 0-1 test
for chaos using the logistic map data.

Similarly, the 0-1 test for chaos is repeated to determine the
chaotic dynamics of the entire ionospheric database obtained
from HFSWR. The plots of p (n) and q (n) from four typical
data sets of E-layer, F-layer, expanding E- and F-layer are
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FIGURE 14. Relationship between correlation dimension and height: (a) correlation dimension and ionospheric height in expanding E-layer,
(b) correlation dimension and ionospheric height in expanding F-layer, (c) ionospheric electron density and height.

FIGURE 15. Relationship between largest Lyapunov exponent and ionospheric height: (a) largest Lyapunov exponent and ionospheric height in
expanding E-layer, (b) largest Lyapunov exponent and ionospheric height in expanding F-layer.

FIGURE 16. Typical power spectrum: (a) power spectrum of E-layer data, (b) power spectrum of F-layer, (c) power spectrum of expanding E-layer,
(d) power spectrum of expanding F-layer.

FIGURE 17. 0-1 test for Logistic map: (a) Bifurcation diagram of Logistic map, (b) p (n) and q (n) plot when λ = 2.55, (c) p (n) and q (n) plot when
λ = 3.55.

shown in Figure18(a) to (d). In four typical cases, the plots
exhibit a two-dimensional Brownian motion, similar to the
logistic map when 3 <λ ≤ 4.

Furthermore, the values for asymptotic growth Kc esti-
mated from different heights of ionospheric clutter are shown
in Table4, where asymptotic growth Kc is not dependent on
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FIGURE 18. p (n) and q (n) plot :(a) p (n) and q (n) plot in E-layer data, (b) p (n) and q (n) plot in F-layer data, (c) p (n) and q (n) plot in expanding
E-layer data, (d) p (n) and q (n) plot in expanding F-layer data.

TABLE 4. Estimated results of largest Lyapunov exponent.

the ionospheric heights and each result is approximately 1.
According to the p (n) and q (n) coordinates and asymptotic
growth Kc, it can be assumed that the ionospheric clutter
exhibits chaotic features once again.

V. CONCLUSION
The present study is the first to demonstrate that the iono-
spheric clutter of HFSWR is a chaotic dynamical process
according to the comparison of five identification meth-
ods, namely phase diagram reconstruction, saturated corre-
lation dimension, largest Lyapunov exponent analysis, plot
of power spectrum and the 0-1 test for chaos. The experi-
mental data consists of authentic measured experimental data
from HFSWR. Moreover, throughout the procedure of data
processing, several additional significant characteristics of
ionospheric clutter were discovered:

1) The ionospheric clutter in HFSWR has chaotic fea-
tures, which [is/are] independent of ionosphere expan-
sion in the Range-Doppler spectrum.

2) The time delay of ionospheric clutter is approximately
8 or 9 and the embedding dimension is 5.

3) The correlation dimension D2 of ionospheric clutter
is in the range of 4.5-4.9, less than the embedding
dimension. In addition, the correlation dimension has
positive relevance with the electron density.

It is worth studying the chaotic dynamics of ionospheric
clutter in HFSWR. At present, chaotic nonlinear analysis
methods can be used to process the signals. Subsequently,
the predicted model of ionospheric clutter in HFSWR will
be established and this chaotic dynamical model may help
to suppress the ionospheric clutter for ultimately improving
high-frequency radar detection performance.
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