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ABSTRACT Optical-neuro-imaging based functional Near-Infrared Spectroscopy (fNIRS) has been in use
for several years in the fields of brain research to measure the functional response of brain activity and apply
it in fields such as Neuro-rehabilitation, Brain-Computer Interface (BCI) and Neuroergonomics. In this paper
we have enhanced the classification accuracy of a Mental workload task using a novel Fixed-Value Modified
Beer-Lambert law (FV-MBLL) method. The hemodynamic changes corresponding to mental workload are
measured from the Prefrontal Cortex (PFC) using fNIRS. The concentration changes of oxygenated and
deoxygenated hemoglobin (1cHbO (t) and 1cHbR (t)) of 20 participants are recorded for mental workload
and rest. The statistical analysis shows that data obtained from fNIRS is statistically significant with p <
0.0001 and t-values> 1.97 at confidence level of 0.95. The Support Vector Machine (SVM) classifier is used
to discriminate mental math (coding) task from rest. Four features, namely mean, peak, slope and variance,
are calculated on data processed through two different variants of Beer-lambert Law i.e., MBLL and FV-
MBLL for tissue blood flow. The optimal combination of the mean and peak values classified by SVM
yielded the highest accuracy, 75%. This accuracy is further enhanced using the same feature combination,
to 94% when those features are calculated using the novel algorithm FV-MBLL (with its optical density
modelled form the first 4 sec stimulus data). The proposed technique can be effectively used with greater
accuracies in the application of fNIRS for functional brain imaging and Brain-Machine Interface.

INDEX TERMS Functional near-infrared spectroscopy (fNIRS), modified Beer-Lambert law (MBLL), men-
tal workload (MWL), emotion, prefrontal cortex (PFC), support vector machine (SVM), neuroergonomics.

I. INTRODUCTION
Stress measurement is a key factor in enhancement of effi-
ciency of a task. If the stress of a person can be pre-
dicted, the quality of work and health of the person can
be improved. The measurement of stress can be done in
different ways: some techniques [1]–[3] use facial gestures,
some use questioners to assess the stress level, some meth-
ods involve recording of respiration and cardiac activity and
recent researches use brain signal recording to monitor the
stress and anxiety state in the brain. For mental workload
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monitoring using brain signals, a Brain-Computer Interface
(BCI) is used that can translate brain signals into machine
commands. Mostly, neuronal signals recorded by electroen-
cephalography (EEG) are used to monitor the cognitive state
of the brain. EEG records stress state in the form of pas-
sive neuronal activity of the brain. Several EEG researches
[4]–[6] have shown that mental workload can be measured
from dorsolateral region of the brain. Moreover, the anx-
iety, fatigue stress can be measured from the same brain
regions [7], [8].

In comparison to EEG, functional near-infrared spec-
troscopy (fNIRS) measures the hemodynamic activity of the
brain. fNIRS has a vital role in active BCI where it is able to
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decode multiple brain activates for control and rehabilitation
of patients. Also, fNIRS is hybridized with other brain imag-
ing modalities (e.g., EEG) to improve the performance of a
BCI system [9]–[13]. fNIRS is widely used to monitor cogni-
tive state of a person. Various cognitive studies [14]–[16] have
explored the application of fNIRS for measurement of emo-
tions and cognitive processing, especially in the prefrontal
cortex (PFC) region. These studies provided insight into
the neural mechanisms behind emotional processing in var-
ious cognitive functions. Through investigation of NIRS data
yields fine, inclusive representations of neural activation as
well as assessments of positive, negative, and natural stimuli
during emotion processing. Different researchers have stud-
ied diverse emotional responses by presenting corresponding
pictures as positive, negative and natural stimuli and have
analyzed consistent changes in the PFC [17], [18]. One of the
important cognitive dimensions linked to emotional process-
ing is mental-workload or mental-task processing [16], [19].
Various fNIRS studies also have been performed in
order to measure mental workload under different real-life
conditions [20]–[22].

In fNIRS, brain activity is measured as an increase in oxy-
gen consumption and increase in cerebral blood flow due to
neuro-vascular coupling. The main light absorbing molecules
in brain tissues are the chromophores including oxygenated
hemoglobin (HbO), deoxygenated hemoglobin (HbR), water
(H2O) and other cytochromes. Hemoglobin species are the
dominant absorbers in NIR window. Brain activity leads to
a change in the concentration of HbO and HbR [23], [24].
In Near infra-red spectroscopy (NIRS), NIR light is used
to measure the change in concentration of oxygenated
haemoglobin (1cHbO (t)) and deoxygenated haemoglobin
(1cHbR (t)) present in the blood and brain tissues. The men-
tal cognitive states are measured using fNIRS device that
directs a NIR light on PFC area and measures 1cHbO (t) and
1cHbR (t) in brain tissues using Modified Beer-Lambert law
(MBLL) method. MBLL accounts for properties like NIR
light scattering in brain tissues by means of the average value
of path length journeyed by NIR photons and the optical
density of NIR photon with a concentration of medium -
brain tissues [25]–[27]. Mostly, researchers use the difference
of the HbO and HbR at every time instant to measure the
changes in the blood flow [25], [28], [29]. The drawback here
is the small values and abrupt changes in hemodynamic sig-
nals that make it difficult to distinguish between the activity
and rest states. So, in order to cater this issue, in this study,
hemodynamic changes are measured in reference to a fixed
value so as to precisely measure these changes and better
classify them in BCI applications.

In this study, we have incorporated a novel fixed value
approach in the modified Beer-Lambert law to improve
the classification accuracy of a mental workload task. This
approach uses a reference value of absorbance of the detected
light signal to compute difference in optical density in
the standard MBLL equation. Since the changes in optical
density became more prominent and thus used in accurate

classification of different states of neural activity. This ref-
erence value of light intensity is different from baseline
calculation. In this study, the mental workloads of partici-
pants were acquired by fNIRS in the forms of changes in
the concentrations of HbO and HbR using the Modified
Beer-Lambert law (MBLL) [25], [26], as mentioned below.

[
1Cr_HbO(ti)
1Cr_HbR(ti)

]
=

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1 [
1ODr (ti; λ2)
1ODr (ti; λ2)

]
l × d

where optical properties; α is extinction coefficient of the
medium, l is the length of the path covered by the light, d(λ)
is the differential pathlength factor at wavelength λ and OD is
the optical density. Details on MBLL will be covered in next
sections.

The complete eight-step system, including experimenta-
tion, data acquisition and processing, is shown in Fig. 1.
One of the major contributions of this study is the develop-
ment of a novel variant of MBLL, the Fixed-Value MBLL
(FV-MBLL), and its comparison with MBLL for discrimi-
nation of mental math (coding) task from rest. In the FV-
MBLL, the difference in optical density is calculated in a
slightly different manner (the previous value of absorption is
kept constant as reference value Iref (λ) and is calculated form
the first 4 sec stimulus data). The support vector machine
(SVM) classifier was used to discriminate mental-workload
from rest tasks for both MBLL and FV-MBLL data. The
classification accuracies acquired using SVM on FV-MBLL
data were significantly higher than those acquired on MBLL
data. The results demonstrate the feasibility of using the
FV-MBLL for mental-workload discrimination.

FIGURE 1. fNIRS data acquisition and pre-processing.

II. MATERIALS AND METHODS
A. INSTRUMENTATION AND EXPERIMENTAL SETUP
The fNIRS signals were acquired using a custom-built device
‘‘P-fNIRSSys’’. The fNIRS system (P-fNIRSSyst) used in
this study was a continuous-wave (CW) type indigenously
developed by our research group working at the School of
Mechanical and Manufacturing Engineering (SMME) in the
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National University of Sciences and Technology (NUST).
This fNIRS system has 12 channels in an array of three dual-
wavelength (760 nm and 850 nm) NIR sources and eight
detectors, as shown in Figure 2. The emitter-detector distance
was set as 2.82 cm in accordance with the literature [30]–[35].
We have compared the mental math results of our machine
(P-fNIRSSys) with CW-fNIRS system ‘DYNOT-932’ from
NirX Medical Technologies with sampling rate of 7.94 Hz.
Each of the source LEDs consists of two wavelengths but
just one of wavelengths (760 nm) of all sources is turned on
at one time and then other wavelength (850 nm), so precise
switching circuitry was designed to accomplish this task.
Circuitry to trigger a particular wavelength of source LED
is based on the principle of transistor switching. The detec-
tors were connected in reverse biased configuration. When
the light falls on detectors, they conduct and cause current
flow that depends upon the intensity of detected light. The
analogue pin of the microcontroller is connected to the anode
of the photodetector. This voltage is harnessed by the micro-
controller using its Analogue to Digital Converter (ADC)
module that discretizes the voltage level. Since this voltage
level reflects current flowwhich propositional to the intensity
of light reflected, so the detected voltage is proportional of
the intensity of reflected light vide Beer’s Law [36]. Eight
near infrared (NIR) detectors used to detect back reflected
radiation. Summing up, in this fNIRS system (P-fNIRSSyst);
there are total of 12 channels to be triggered. Each channel
consists of a source and a detector as shown in Fig. 2.

FIGURE 2. Dual-Wavelength fNIRS System (P-fNIRSSyst) with structural
mapping of LED sources, detectors and channels positions.

B. DATA ACQUISITION
One 760 nm wavelength in each source (NIR LED) was
triggered at a time, and data from the corresponding four
channels was acquired. Similarly, the other, 850 nm wave-
length was triggered, and again, data from all four cor-
responding channels was acquired. A delay of 20 ms is
introduced between triggering of NIR source wavelength and
reading the channels, allowing the NIR source to gain its peak
intensity. The process is repeated for all source LEDs and
corresponding channels are read. Time of 3µs is provided
for reading the voltage values of the channels. In this study,

hemodynamic activitywas recorded at a sampling rate of 8Hz
per channel (each wavelength of an LED was triggered eight
times per second). The data samples were acquired at all
12 channels as follows:

Total data samples on all 12 channels per second =
(12 channels × 8 HbO samples) + (12 channels × 8 HbR
samples) equals 192 samples per second. The functional
response of the fNIRS system ‘‘P-fNIRSSyst’’ was measured
as shown in Fig. 3. This was achieved by presenting the
stimulus-response of 25 sec (working-task) to subject 1 at
channel 1 and the time course for 25 sec prior to the workload
(25 sec) and 15 sec after the stimulus, as shown in Fig. 3. The
entire time course of 65 sec was selected in such a manner
as to record 520 samples of data (both working memory load
and idle state) during that period. Fig. 3 clearly shows that the
during the mental activity, the 1 HbO signal state rose in a
specific time window of 25 sec with initial dip at the start of
activity, and that before and after the activity, we don’t have
(working-task) signal.

FIGURE 3. fNIRS system (P-fNIRSSyst) functional response, presenting
stimulus-response (working-task) in particular time window (25 sec).

Similar results were obtained in various other studies
[11], [37], while measuring the function response with
fNIRS systems. The results verified that this fNIRS system
‘‘P-fNIRSSyst’’ is capable of measuring real-time functional
response. Further, in order to verify the functional-response-
measuring capability of the fNIRS system, a similar test was
carried out on the rest state alone as well as on mental-
workload versus rest data.

C. PARTICIPANTS
Twenty subjects (10 males, 10 females; age range:
20 – 32 years; average age: 28 years) participated in this
study. Before final selection, a medical screening interview
under the supervision of a medical doctor was conducted in
order to reject any prospective participant with any cardio-
vascular or neurological illness (no participant was rejected).
All participants signed a statement of their informed consent
to their participation in the study. The participants were given
details of the experiment prior to start. All of the experiments
were approved by the Ethical Research Council of SMME-
NUST and were performed in accordance with the latest
Declaration of Helsinki.
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D. EXPERIMENTAL PROTOCOL AND MENTAL-WORK LOAD
Participants were briefed about the task in writing and asked
for any queries or questions before the start of experiment.
In this study, two states were classified to measure improve-
ment in discriminative accuracies. The participants were
permitted to write the code in their preferred programming
language and were provided a suitable environment in which
to concentrate on the task. A visual cue was presented on the
screen placed at 70 cm away from the subject. When the cue
was given the subject were asked to perform mental math in
which the ceil task was used. The cue was given in the form
of random numbers displayed on the screen. The sum of the
number was greater or less than 743. The subjects were asked
to add the random numbers and calculate the sum. If the sum
was greater than 743 the subjects were asked to find the value
that needs to be subtracted to reach the score of 743. In case
the sum was less than 743 the subjects were asked to find the
value that needs to be added to reach the score of 743. A total
of 5 digits were displayed to estimate the sum. In the last five
second the cue was changed and the subjects were asked to
think of logic to reach the score using the given number.

FIGURE 4. Experimental paradigm and data-collection sequence.

The task was composed of both mental math task and
mental logic [38]–[42]. The task was selected to evoke the
brain activity and entails a certain amount of mental work-
load, which is prominent is case of mental arithmetic and
program coding problems [43]–[45]. The initial two minutes
was the rest period, during which the signals could settle
to the baseline reference. After the rest period, the partici-
pants were asked to perform a 30 sec mental-workload task,
which was followed by another 30 sec rest period. The task’s
duration (30 sec) was selected based on the relevant previous
studies [46]–[48]. During rest period, the participants were
asked to relax their mind and place mind at rest [39]–[42],
[49], [50] so that no brain activity is generated during rest
(because focusing on a point or cross, in turns, could generate
a brain activity [51], which was not required in this study) and
that could be easily differentiated from the mental math task
with fNIRS system. This sequence of sessions was repeated
ten times (10 trials) for mental task and ten times (10 trials)
for rest, for a total of 20 trials for each participant. The signals
were recorded in the same sequencewith same protocol for all
20 participants as shown in Fig. 4. The total duration of each

session consisting 10 trials is 720 seconds per participant and
for 20 participants the total experiment time was 14400 sec
(240 min). The signal acquired contain artifacts of both high-
frequency components such as heartbeat and low-frequency
noise due to respiration and Mayer waves [52], [53]. This
range of noise components was eliminated by band-pass
filtering with a cut-off frequency of 0.1 Hz to 2 Hz.

E. PROPOSED ALGORITHMS: FIXED-VALUE MODIFIED
BEER-LAMBERT LAW (FV-MBLL) FOR TISSUE
BLOOD FLOW
The MBLL is extensively employed in biophysics and
neuro-engineering applications to calculate changes in
concentrations of various chromophores present in tis-
sues [36]. TheMBLL is a mathematical relationship for com-
putation of1cHbO (t) and1cHbR (t) using information on the
intensities of detected NIR light at two different time instants
[28], [29], [54], [55]. In other words, MBLL relates differen-
tial changes in light transmission to differential changes in
tissue absorption in brain. Differential changes refer to an
assessment between a baseline state and a perturbed state.
Absorption is assumed as constant during the measurement
and any change in received light is caused by a change
in absorption by hemoglobin. fNIRS uses this property of
change in received light to calculate a change in concentration
of hemoglobin [25], [26], [28]. But this change is relative
to a starting-line or baseline. The MBLL equation basically
derived from the first order Taylor expansion of the optical
density (OD).

(OD) = OD0
+ (∂OD0/∂µa)1µa + (∂OD0/∂µs)1µs (1)

where OD0 is the baseline optical density and ∂OD/∂µ is
the differential pathlength which is the mean pathlength that
diffusing NIR photons travels from source location to the
detector. The partial derivatives are evaluated in the baseline
state that is µ0

a = µa and µ
0
s = µs

Thus

OD0
= −Log[I0/I s] (2)

whereµa is the absorption coefficient andµs is the scattering
coefficient of themedium. The differential changes in absorp-
tion 1µa and scattering 1µs are denoted as:

1µa = µa(t)− µ0
a and 1µs = µs(t)− µ0

s (3)

The change in optical density w.r.t the baseline and is
denoted as

1OD = −Log[I (t; λ)/I0] (4)

In order to set a baseline I0, while analyzing data of mental
math tasks, the subjects are required to stops their activity
(stimuli) during the baseline periods by offering a point to
focus so that it will not lead to any extra activity while focus-
ing. The baseline I0 values are calculated before the activity in
the rest period and in some cases after the activity to measure
the difference in two base lines I0 and I0

′

. According to the
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MBLL, the optical density (OD) or absorbance of light (A) is
dependent on its wavelength, and is given as:

OD(ti; λ) = µa(ti; λ)× lx d(λ)+ η (5)

where µa(t; λ) is the absorption coefficient of the medium,
l is the length of the path covered by the light, d(λ) is the
differential pathlength factor, and η is a geometry-dependent
factor that accounts for the signal attenuation loss due to
scattering. The total attenuation (absorbance/OD) of light
of wavelength λ in terms of its detected light intensity
Iout (ti; λ) or incident intensity Iin(ti; λ) is given as:

OD(ti; λ) = − ln
Iout (ti; λ)
Iin(λ)

(6)

In real time data acquisition with CW-fNIRS the light inten-
sities are measured at 1/8th (sampling rate) of sec and every
time the change in optical density is calculated with reference
to previous acquired value. Therefore, change of OD of light
may be written as:

1OD(ti; λ) = OD(ti; λ)− OD(ti; λ)

= − ln
Iout (ti; λ)
Iout (ti−1; λ)

= µa(ti; λ)× l × d(λ) (7)

where1µ(ti; λ) = [αHbO(λ)1CHbO(ti)+αHbR(λ)1CHbR(ti)]
Solving these equations for changes in concentrations

1cHbO (ti) and 1cHbR(ti), we obtain:

1OD(ti; λ) = [αHbO(λ)1CHbO(ti)

+αHbR(λ)1CHbR(ti)]x l × d(λ) (8)

Therefore,[
1CHbO(ti)
1CHbR(ti)

]

=

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1 [
1OD(ti; λ2)
1OD(ti; λ2)

]
l × d

(9)

The MBLL is applied to the raw intensities of detected
NIR light, 1cHbO (ti) and 1cHbR(ti) are calculated for
time instant ti. It can be seen from equations (7) and (9)
that the change in optical density counts for the differ-
ence in the intensity of light I (ti; λ) present instant ti
and that of light I (ti−1; λ) at the previous instant
ti−1 [25], [28], [29], [55]–[57]. If we fix the value of
I (ti−1; λ) at a reference (value) Iref (λ), equations (7) and (9)
become:

1ODr (ti; λ) = − ln
Iout (ti; λ)
Iref

(10)

After substituting equation (10) into equation (9), it becomes[
1Cr_HbO(ti)
1Cr_HbR(ti)

]

=

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1 [
1ODr (ti; λ2)
1ODr (ti; λ2)

]
l × d

(11)

where ti is the present instant of time. The value of Iref (λ)
is set as the average optical intensity of light under normal
conditions for a reference. The reference value Iref (λ) is cal-
culated form the first 4 sec activity (stimulus) period data,
average it and subtract the average of that from all data points
of that trace during activity (stimuli) and similarly for the rest
period. Here it is pertinent to mentioned that this reference
value Iref (λ) is not the baseline I0 (which has to be calculated
before the start of stimuli). Iref (λ) is the initial average activity
data and used in real time data processing and calculating the
real-time differential change in optical density. Now,whenwe
insert these values into equation (9) and find the difference in
the OD of light, it comes out as the difference of intensity
of light I (ti; λ) at present instant ti to light intensity Iref (λ)
at the reference value, as shown in equation (10). Hence,
by substituting the value of equation (10) into equation (9),
we find the 1cHbO (t) and 1cHbR (t) with respect to the
fixed reference value as mentioned in equation (11). New
values of change in OD (1Ar ) are also termed as fixed
reference OD. Similarly, the with introduction of 1Ar in
equation (10) the change in concentration of oxygenated
(1Cr_HbO(ti)) and deoxygenated hemoglobin 1Cr_HbR(ti)
become more prominent. Various research studies on CW
fNIRS [25], [49], [58]–[60] have tried similar approaches to
calculate improved OD values for taking either the baseline
intensity of light Io(t) or absolute intensity of light (IB) to
improve measuring ability of the concentration changes. The
above-proposed algorithm is termed the Fixed-Value Modi-
fied Beer-Lambert Law (FV-MBLL). Using the FV-MBLL,
we could achieve better classification accuracies, as will be
explained in sections below.

F. FEATURE SELECTION, EXTRACTION AND
CLASSIFICATION
In this study, SVM classifiers were used to discriminate
mental math (coding) task from rest. SVM has certain
advantages over other classifiers, like its flexibility for
non-linear classification. Features are calculated for both
1cHbO (t) and 1cHbR (t), and there are different features
that can be used for data classification. From various stud-
ies [13], [34], [38], [40], [61]–[63], it has been revealed that
the maximum accuracy is achieved with mean, peak, slope
and variance of 1cHbO (t) and 1cHbR (t) as features. In this
study, features were calculated temporarily using a window
size of 20 samples (data points) in both workload and rest
tasks. They were calculated in consecutive small-time slots
of 2.5 sec so as to preserve maximum information in time-
series data [64], [65].

The signal mean of1cHbO (t) and1cHbR (t) are calculated
as:

m =
1
n

∑n

i=1
Xi (12)

where n is the number of observations and Xi represents the
1cHbO (t) and 1cHbR (t) data. The variance is calculated as:

v(X ) =
∑

(X − ε)2/n (13)
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where ε is the mean value of X. The signal peak value is
assessed using the Matlab ‘‘max function’’. The signal slope
is estimated by fitting a line to all the data points during the
mental math task and rest period using polyfit function of
Matlab. These features were calculated for the mental math
task and rest across 12 channels. So, in order to attain maxi-
mum discriminative accuracy between mental-workload and
rest tasks, feature combinations are used to ascertain the opti-
mal combination for 4-features data classification [34], [66].
In this study, six different combinations of mean, peak, slope
and variance were used for classification: Mean-Variance
(M-V), Mean-Peak (M-P), Mean-Slope (M-S), Peak-Slope
(P-S), Peak-Variance (P-V), and Slope-Variance (S-V). The
objective of SVM is to find the function f (x, w) in the
following equation [13];

f (x,w) = Ew.Ex + b (14)

so as to minimize the objective function;

min JEw,ξ (w, ξ ) =
1
2
‖ w ‖ +C

n∑
i=1

ξn (15)

subject to;

yi(Ew.Ex + b) ≥ 1− ξ, ∀i, ξ ≥ 0 (16)

where the scalar b is the bias, the value of C is main-
tained at 0.5 so as to avoid either overfitting or underfitting
[67], [68], and w is the width of a hyperplane, the objective
being to minimize w in order to maximize the SVM accuracy
of classification. The hyperplane of SVMdemarcates the data
sets. In other words, SVM is a mapping function, where data
x is input and the data is processed with the help of mapping
function f (x, w) in order to obtain output y, which is either
+1 if the output is greater than 1 or −1 if it is less than
−1 [69], [70]. The classification was performed both inter
and intra-subject to verify the performance validation of the
device and the discriminative accuracies of the FV-MBLL.
All machine learning algorithms and data analysis is imple-
mented with the help of Matlab 2018b (MathWorks). In SVM
classification, the next step is cross-validation, which is used
to calculate classification accuracy. Cross-validation entails
segregation of the data samples into subsets and analysis of
training and validation data sets. Multiple iterations of cross-
validation are executed using different segments or portions
to reduce variability, and the results are averaged over all
iterations [34], [71], [72]. As a standard, in this study, we
used 10-fold cross-validation to compute accuracies for all
12 channels separately against four features in the forms of
two-feature combination. In order to calculate the 10-fold
cross-validation, the data set was separated into ten subsets,
and ten iterations were performed. For each iteration; one of
the 10 subsets were used as the test set and the remaining
subsets were used as the training sets. The classification
accuracy was calculated, and the overall accuracy for all 10
iterations was averaged.

FIGURE 5. Use of MBLL with subject 1’s 2-features (mean-peak)
combinations in SVM classification for 1cHbO(t) at 6 channels sequence.

III. RESULTS
Fig. 5, shows the use of the MBLL with subject 1’s 2-feature
(mean-peak) combinations for 1cHbO (t) for 20 trials. Simi-
lar plots were obtained using subject 1’s mean-peak feature
combination for 1cHbR (t). Herein, we propose the applica-
tion of fNIRS for discrimination of the cognitive workload
in the PFC from rest tasks. The evidence provided for this
application was obtained via fNIRS during 30s mental math
task embedded in two rest periods as shown in Table 1.
Table 1, shows the quantified average classification and
discriminative accuracies achieved for all combinations of
2-dimensional features (mean, peak, slope, and variance) for
1cHbO (t) with both MBLL and FV-MBLL data across all
12 channels for each participant. The individual and aver-
age classification accuracies in discriminating the mental-
workload tasks and rest activities range from 63 to 74 %
in case of MBLL and 80 to 94 % in case of FV-MBLL.
Similar results were shown for 1cHbR (t) using both the
FV-MBLL and MBLL; however, due to space limitations,
only the 1cHbO (t) results were provided. Fig. 6, shows the
2-feature combinations for1cHbO (t) at 6 channels for 20 tri-
als obtained using the FV-MBLL. For clarity and owning to

FIGURE 6. 2-Feature (mean-peak) combination in SVM classification plot
for 1cHbO(t) using FV-MBLL for subject-1 on 6 channels.
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TABLE 1. All combinations of 2-dimensional features in SVM for 1cHbO
(
t
)

by MBLL, FV-MBLL using 10-fold cross-validation.

space limitations, only the relevant figures (at 6 channels) are
shown; similar figures and tables with results for the other
participants on all channels and for other features combina-
tions were omitted.

A. STATISTICAL ANALYSIS OF FNIRS DATA
In this study, in order to gauge the statistical significance
of MBLL and FV-MBLL data. Data were analyzed using
the software package SPSS Statistics 23 (IBM, Armonk,
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FIGURE 7. t-scores of the data (with p-value < 0.05).

NY, USA). We compared the medians of data sets (MBLL
and FV-MBLL). Wilcoxon rank-sum test is used for statis-
tical analysis, two independent data sets (MBLL and FV-
MBLL) are considered using null hypothesis and alternative
hypothesis. The data’s sample size is 1000 both in case of
MBLL (n1) and FV-MBLL (n2). For that matter, first we
demarcate the hypothesis: In first scenario, null hypothesis
(H0): the two populations (MBLL and FV-MBLL) are equal,
there is no significant difference between these two datasets
[14], [39], [73] and the p-value is greater than 0.05. Similarly,
alternative hypothesis (H1): the two populations are not equal,
a significant difference between two data sets and the p-value
is less than 0.05. Two-tailed hypothesis is performed and the
p-value comes out to be 0.0001 with a confidence level (α)
of 95%. The result is significant with p < 0.05 so we reject
the null hypothesis-Ho [14], [39]. Similarly, significance of
fNIRS data sets is verified by a paired t-test with |t value
| > 1.96 (critical value) [75], [76]. The data recorded from all
the trials showed a significant t-score, as indicated in Fig. 7.
t-value data of twenty participants’ data sets with sequence
of ten consecutive trials are presented to validate the find-
ings and accuracies mentioned in Table 1. These t-values
show an evident significant difference level between the
data from two (MBLL and FV-MBLL) populations for
20 subjects.

B. INTER-SUBJECT CLASSIFICATION
The results were interesting when inter-subject classification
and validation was measured and calculated for 20 sub-
jects. Inter-subject HbO and HbR data for participants 1-20
were taken and classified using 2 feature combination and
10-fold cross validation as shown in Fig. 8. It shows that
the inter-subject classification accuracy is above 80% in all
the 2-feature combinations, which is most desirable in most
BCI applications [11], [13], [77]. Each participant has an
independent feature sign depicted with different colors as
shown in the Fig. 8. Subjects are classified based on features
against 1cHbO (t) and 1cHbR (t) datasets. The inter-subject
classification results show similar patterns in case of opti-
mum classification features Mean-Peak and Peak-Variance
combination. Inter-subject classification showed the discrim-
inative average accuracies ranged from 79.75 - 92.12% using
FV-MBLL.

FIGURE 8. Inter-Subject classification and validation for 2-Feature
combinations in SVM classification for 1cHbO(t) using FV-MBLL.

IV. DISCUSSION
The data from the 20 participants were obtained using,
as noted above, the continuous-wave fNIRS system. The
changes in concentrations of oxygenated haemoglobin HbO
(1cHbO (t)) and deoxygenated haemoglobin HbR (1cHbR (t))
were measured using both the MBLL and its variant
herein proposed, the FV-MBLL. To measure the signifi-
cances of those changes and the classification accuracies
for the mental-workload and rest tasks, the data was pro-
cessed with SVM classifiers. The four most commonly used
features, ‘‘mean, peak, slope and variance, ‘‘with 2-feature-
combination (mean-peak, mean-variance, mean-slope, peak-
slope, peak-variance, slope-variance) were selected for
measurement of classification accuracies. One-one feature
combinations (mean-mean, peak-peak) were used to mea-
sure the auto-correlation among the data sets. To be more
specific, these discriminative accuracies were extracted from
2-dimensional features derived from1cHbO (t) and1cHbR (t)
signals. Table 1 shows the discriminative accuracies obtained
using the MBLL for (1cHbO (t)); were within the range
of 63– 74% and the discriminative accuracies obtained by
applying FV-MBLL on (1cHbO (t)); were within the 80 - 94%
range using all combinations of 2 features in SVM settings.
The first-trial experimental results were verified in next ten
trials performed on 20 participants in a similar manner, shown
in Table 1 for the MBLL and FV-MBLL data sets. Similarly,
the accuracies in all the ten trials showing a strong corre-
lation with the discriminative accuracies obtained for each
participant with the FV-MBLL data sets. If we summarize the

VOLUME 7, 2019 143257



U. Asgher et al.: Assessment and Classification of MWL in the PFC Using Fixed-Value MBLL

FIGURE 9. Comparison of average accuracies of all 2-Feature combinations in SVM classification for 1cHbO(t) using
MBLL and FV-MBLL.

findings, the individual (each participant across 12 channels)
and average (20 participants with 10 trials of each participant)
classification (mental math and rest-task) accuracies with
SVM classifiers for the 2-dimensional feature combinations
were 68.0 ± 6% in the case of 1cHbO (t), and 67.0 ± 5% in
the case of 1cHbR (t) using MBLL data. The individual and
average classification accuracies in the case of the FV-MBLL
were 87.0 ± 7% for1cHbO (t), and 85.0 ± 7% for1cHbR (t)
as shown in Table 1. Therefore, a prominent increase of 20%
in average classification accuracy was obtained by using the
newly proposed FV-MBLL. A comparison among Figs. 5, 6
clearly shows that the 1cHbO (t) and 1cHbR (t) data for the
FV-MBLL was more segregated than that obtained with the
MBLL. Hence, we can claim that better mental-workload/rest
classification accuracies can be achieved using the new FV-
MBLL algorithm. The data from the further analyses, shown
in Tables 1, Fig. 9 and Fig. 10, indicates that the optimal clas-
sification accuracies were obtained with the mean-peak and
peak-variance combinations using the MBLL and FV-MBLL
as evident in multi-trials results. For analytical convenience
and ease of comparison, the discriminative classification data
from Tables 1 that shows the average values of classification
accuracy for all 2-feature combinations for 1cHbO (t) using
both algorithms MBLL and FV-MBLL was summarized in
graphical form and complete data findings of 1cHbO (t) and
1cHbR (t).

From Fig. 9, we conclude that classifying mental-math and
rest tasks with the SVM classifier using FV-MBLL data in
the multi-trial yields the highest classification accuracies up
to 93.75%; using the MBLL data meanwhile, the highest
classification accuracy was 73.25%, for 1cHbO (t) and the
same consistent results were evident after performing ten con-
secutive trials as shown in Table 1. In order to validate the sta-
tistical significance of these SVM classification accuracies,
we additionally applied a rank test. The p-values and t-values
obtained from the FV-MBLL data versus those from the
MBLL data with p< 0.05 and t> 1.96 for all of the1cHbO (t)
signals and1cHbR (t) signals, thus establishing the statistical
significance [27] of the FV-MBLL’s performance as shown
in Fig. 7. The combined results plotted in Fig. 10 shows
that the mean-peak feature combinations yielded the highest
classification accuracies (93.75% for 1cHbO (t) and 90.50%
for 1cHbR (t) with FV-MBLL and 73.25% for 1cHbO (t)
and 69.50% for 1cHbR (t) with MBLL) and peak-variance

(92.25% for 1cHbO (t) and 90.25% for 1cHbR (t) with FV-
MBLL and 70.50% for 1cHbO (t) and 71.25% for 1cHbR (t)
with MBLL) in all ten trials. The results from the relevant
previous studies [34], [38], [61], [62], [71], [78], [79] likewise
demonstrate good accuracies (70-90%) for the peak, mean,
slope and variance features for both1cHbO (t) and1cHbR (t)
signals. Various similar studies [33], [34], [37], [63],
[78], [80] also shows that combinations of the mean, peak,
and variance features achieve the best classification accura-
cies in mental task/rest discrimination.

Our study also demonstrates the practicability of using
those features in combination to attain high discriminative
accuracies (up to 94% in multi-trial testing, as noted above).

In our research study, we have 96 data sets in the first trial
(48 data sets for MBLL and 48 data sets for FV-MBLL) and
same sequence for ten trials, the total data sets come out to
be 960 data sets in ten trials setting. The large data sets of
twenty participants and multi-trial setup also serve to validate
our findings.

Fig. 11, shows the average values of 1-1 feature (mean-
mean, peak-peak) combinations in SVM classification and
a correlation plot for both 1cHbO (t) and 1cHbR (t) using
the MBLL and FV-MBLL. In case of 1-1 feature correla-
tion, the data was highly correlated and that in both cases,
the correlation was up to 75.20% for 1cHbO (t) and 76.10%
for1cHbR (t) with MBLL. Similarly, the auto-correlation for
the FV-MBLL dataset was as high as 95.40% for 1cHbO (t)
and 93.90% for 1cHbR (t) with FV-MBLL. These results
verify the significance of the FV-MBLL in that its data more
strongly discriminates mental workload than does MBLL
data, and to a statistically significant extent. The results for
the FV-MBLL data shows that the data’s auto-correlation
was above 90%; this means that the data set’s inter-variance
of classification had increased and that the intra-variance of
classification had not (the data points of one class were placed
very close to each other but far away from the other class’s
data set). This is the reason that classification/discrimination
was easy as compared with the case for MBLL data (the auto-
correlation of which was only about 70%). The intra-subject
classification was performed to verify the performance val-
idation of the device and the discriminative accuracies of
the FV-MBLL as shown in Fig. 6, Fig. 9, Fig. 10 and
Table 1. However, the inter subject classification results
were promising and data showed similar patterns in case of
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FIGURE 10. Comparison of average accuracies of all 2-Feature combinations in SVM classification for
1cHbO(t) and 1cHbR (t) using MBLL and FV-MBLL.

Mean-Peak and Peak-Variance combination and were the
optimum classification features as shown in Fig. 8. Also,
peak was the common feature identified both intra and inter-
subject classifications.

Inter-subject classification also showed the better clas-
sification accuracies ranged from 79.75 - 92.12% in case
of FV-MBLL. These results also validate the intra-subject’s
FV-MBLL findings.

Different researchers have used different classifiers includ-
ing LDA, QDA, SVM, KNN, and ANN in discrimination
of mental arithmetic and rest tasks [34], [37], [39], [63],
[71], [78], [79], the classification accuracies of which ranged
from 70 to 85%. The highest average classification accu-
racies achieved in any of those previous studies for two-
class (mental arithmetic and rest task) discrimination was
97.8% using the ANN classifier [63] and 96.3% for 2-feature
combinations using the SVM classifier [79], both derived
from 1cHbO (t). In our study, in multi-trials settings, for
two-class mental-workload task and rest-task discrimination,
the average classification accuracies achieved were as high
as 93.75% for 1cHbO (t) and 90.50% for 1cHbR (t) using a
2-feature ‘‘mean-peak’’ combination and 92.25% for
1cHbO (t) and 90.25% for1cHbR (t) using a 2-feature ‘‘peak-
variance’’ combination.

The accuracies obtained in this study were analogous to
previous highest achieved SVM accuracies; this precision
reflects the contribution of the new FV-MBLL algorithm
in classification. The comparative histograms in Fig. 10 all
shows that the overall classification accuracies obtained using
the FV-MBLL were on average 20% higher at all features
than those obtained using the MBLL in the paradigm of
ten trials. These results support our contention that the FV-
MBLL outperforms the conventional MBLL in classification
using SVM classifiers. Its performance was further optimized
by optimal feature selections, which in our case were the
mean-peak and peak-variance feature combinations were the
optimal as evident from Table 1, Fig. 9 and Fig. 10. For

data acquisition, most of the previous studies [33], [74],
[78], [79] have used small sample sizes (5 - 13 participants);
in the present study, we compensated for this limitation and
validate our findings by implementing a fair sample size (i.e.,
20 subjects) with representation of both genders.

The first limitation of this study was the single mental math
task and its discrimination from rest. Here, two-state men-
tal workload (mental coding versus rest) are used, whereas
varying levels of mental workloads in a more practical way
like varying the difficulty level coding problem with varying
intensities, could have been considered. The second limita-
tion in our study was that we used only one SVM classifier to
measure classification accuracies in discriminating between
mental math (coding task) and rest activity. The third limita-
tion was the fact that only four main data features were con-
sidered for SVM classification, using 2-feature combinations
at a time for classification. In future work, comparison with
other classifiers as well as 3-features combination analysis
with a wider range (levels) of mental-workloads will further
augment the results of this research endeavor.

FIGURE 11. Comparison of average accuracies of 1-1 Feature
(mean-mean, peak-peak) combinations in SVM classification and
autocorrelation plot for 1cHbO(t) and 1cHbR (t) using MBLL and FV-MBLL.

VOLUME 7, 2019 143259



U. Asgher et al.: Assessment and Classification of MWL in the PFC Using Fixed-Value MBLL

V. CONCLUSION
In this research, the MBLL (Modified Beer-Lambert Law)
and its proposed variant FV-MBLL (Fixed-Value Modi-
fied Beer-Lambert Law) were compared for measurement
of changes in concentration of oxygenated haemoglobin
(1cHbO (t)) and deoxygenated haemoglobin (1cHbR (t)) with
functional near-infrared spectroscopy (fNIRS) in discriminat-
ing mental-workload from rest tasks. The results were inves-
tigated with a continues-wave fNIRS system ‘‘P-fNIRSSyst’’
for 2-class mental-workload tasks with a consecutive ten
trials setup. Four main data classification features (mean,
peak, slope and variance) of the MBLL and FV-MBLL
data were used in SVM classifiers to measure the mental-
workload / rest-state discriminative accuracies. The signifi-
cances of the discriminative accuracies were arbitrated across
bothMBLL and FV-MBLL data sets obtained from 20 partic-
ipants. We calculated the effects of using different combina-
tions of features for discriminative classification, and for the
first time, for measurement of the statistical significance of
the results thereby obtained, we investigated 1-1 pair com-
binations (mean-mean and peak-peak) and determined the
autocorrelation with both the MBLL and FV-MBLL data sets
using the two-dimensional same-feature-combination tech-
nique. We showed that the combination of the peak-mean
and variance-peak feature values of 1cHbO (t) and 1cHbR (t)
yield the best average classification accuracies, in both par-
ticipant genders, using both the MBLL and FV-MBLL data
sets. The major contribution of this study is its demonstration
of the substantially improved SVM classification accuracy
(93.75% and 90.50% for 1cHbO (t) and 1cHbR (t), respec-
tively) that is possible with the newly proposed FV-MBLL
algorithm (optical density modelled form the first 4 sec stim-
ulus data). The auto-correlation’s precision, inter- subject and
intra-subject classification accuracies of the FV-MBLL were
much superior to those of the MBLL.
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