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ABSTRACT The aim of this article is to define the notion of Fρ-contraction and obtain some new fixed
point theorems for a new class of contractive conditions in the context of complete metric spaces. The
obtained results extend and improve the well-known results of literature by means of this new class of
contractions. As application, we discuss the electric circuit equation and apply our result to solve the second
order differential equation arising in it. To rationalize the notions and outcome, the existence of solution for
a certain Volterra-type integral inclusion is also obtained.

INDEX TERMS Fρ-contraction, fixed point, multivalued mappings, complete metric space, volterra-type
integral inclusion.

I. INTRODUCTION AND LITERATURE REVIEW
In nonlinear analysis, the theory of fixed points plays one of
the chief and important part and many applications in com-
puting science, physical science and Engineering. In 1922,
Stefan Banach [1] established a prominent fixed point result
for contractive mappings in complete metric spaces. Follow-
ing the Banach contraction principle Nadler [2] initiated the
notion of multi-valued contractions utilizing the Hausdorff
metric and proved that a multi-valued contraction owns a
fixed point in a complete metric space. Let (S, σ ) be a metric
space. For ζ ∈ S and A ⊆ S, we indicate σ (ζ,A) =
inf{σ (ζ, ξ ) : ξ ∈ A}. Let us indicate by N (S), the class of all
nonempty subsets of S, 2S , the class of all nonempty subsets
of S, CL(S), the family of all nonempty closed subsets of
S, CB(S), the family of all nonempty closed and bounded
subsets of S and K (S), the family of all compact subsets of
S. LetH be the Hausdorff-Pompeiu metric induced by metric
σ on S, that is,

H (A,B) = max{sup
ζ∈A
σ (ζ,B), sup

ξ∈B
σ (ξ,A)}

for every A,B ∈ CB(S). For more details in this direction, we
refer the reader to [3]–[5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Now, following the lines in [6], we denote by E the set of
all continuous mappings ρ : (R+)5 → R+ satisfying the
following assertions:
(%1) ρ(1, 1, 1, 2, 0), ρ(1, 1, 1, 0, 2), ρ(1, 1, 1, 1, 1)∈ (0,1],
(%2) ρ is sub-homogeneous, that is, for all (ζ1, ζ2, ζ3, ζ4,

ζ5)∈ (R+)5 and α ≥ 0, we have ρ(αζ1, αζ2, αζ3, αζ4,
αζ5) ≤ αρ(ζ1, ζ2, ζ3, ζ4, ζ5);

(%3) ρ is a non-decreasing function, that is, for ζi, ξi ∈ R+,
ζi ≤ ξi, i = 1, . . . , 5, we have

ρ(ζ1, ζ2, ζ3, ζ4, ζ5) ≤ ρ(ξ1, ξ2, ξ3, ξ4, ξ5)

and if ζi, ξi ∈ R+, i = 1, . . . , 4, then

ρ(ζ1, ζ2, ζ3, ζ4, 0) ≤ ρ(ξ1, ξ2, ξ3, ξ4, 0)

and

ρ(ζ1, ζ2, ζ3, 0, ζ4) ≤ ρ(ξ1, ξ2, ξ3, 0, ξ4).

The following lemma of [7] is needed in the sequel.
Lemma 1.1: If ρ ∈ E and ζ, ξ ∈ R+ are such that

ζ < max{ρ (ξ, ξ, ζ, ξ + ζ, 0) , ρ (ξ, ξ, ζ, 0, ξ + ζ ) ,

ρ (ξ, ζ, ξ, ξ + ζ, 0) , ρ (ξ, ζ, ξ, 0, ξ + ζ )},

then ζ < ξ.

Wardowski [8] introduced and studied a new contraction
called F -contraction to prove a fixed point result as a gener-
alization of the Banach contraction principle.
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Definition 1: Let F : R+ → R be a mapping satisfying
the following conditions:
(F1) F is strictly increasing;
(F2) for all sequence {ζn} ⊆ R+ , limn→∞ ζn = 0 ⇐⇒

limn→∞ F(ζn) = −∞;
(F3) ∃ 0 < r < 1 so that limζ→0+ ζ

rF(ζ ) = 0.
Consistent with Wordowski [8], we denote by z the set of

all functions F : R+ → R satisfying conditions (F1), (F2)
and (F3).
Definition 2 [8]: Let (S, σ ) be a metric space. A self-

mapping G on S is called an F-contraction if there exist some
F ∈ z and τ > 0 such that

σ (Gζ,Gξ ) > 0 H⇒ τ + F
(
σ (Gζ,Gξ )

)
≤ F

(
σ (ζ, ξ )

)
for ζ, ξ ∈ S .
Lemma 1.2 [7]: Let (S, σ ) be a metric space and A,B ∈

CL(S) with H (A,B) > 0. Then, for every h > 1 and for
each a ∈ A, there exists b = b(a) ∈ B such that σ (a, b) <
hH (A,B).

In this paper, we define the notion of Fρ-contraction and
establish some generalized fixed point theorem in the setting
of complete metric spaces. As application of our main result,
we discuss electric circuit equation and the existence of solu-
tion for a certain Volterra-type integral inclusion.

II. MATERIALS AND METHODS
In this article, we utilize the family E of all continuous
mappings % : (R+)5 → R+ and the class z of all functions
F : R+ → R to define the notion of F% -contraction. Some
generalized fixed point theorems for multivalued mapping
G : S → CB(S) involving Housdorff metric defined by

H (A,B) = max

{
sup
ζ∈A

σ (ζ,B), sup
ξ∈B

σ (ξ,A)

}
for all A,B ∈ CB(S), have been established. To verify the
effectiveness and applicability of our main results, the solu-
tions of Volterra-type integral inclusion are also discussed.

We take ζ0 as an arbitrary point in complete metric space
S and use the hypothesis given in the statement of our main
theorem to prove {ζn} is a Cauchy sequence in S. Then by
using the completeness of (S, σ ), we get the convergence of
{ζn} which converges to a point ζ ∗ ∈ S . Subsequently we
prove that ζ ∗ is a fixed point of mpping G : S → CB(S).

III. RESULTS
Definition 3: Let (S, σ ) be a metric space. A multivalued

mappingG : S → CB(S) is said to be Fρ-contraction, if there
exist F ∈ z, ρ ∈ E and τ > 0 so that

2τ + F(H (Gζ,Gξ ))

≤ F
(
ρ

(
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ ), σ (ξ,Gζ )

))
(3.1)

∀ζ, ξ ∈ S with H (Gζ,Gξ ) > 0.
From now to onward, we take (S, σ ) as a complete metric

space.

Remark 1: If G : S → CB(S) is Fρ-contraction, then by
(3.1), we get

F(H (Gζ,Gξ )) ≤ F
(
ρ

(
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ ), σ (ξ,Gζ )

))
− 2τ

< F
(
ρ

(
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ ), σ (ξ,Gζ )

))
By (F1), we have

H (Gζ,Gξ ) < ρ

(
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ ), σ (ξ,Gζ )

)
for all ζ, ξ ∈ S with Gζ 6= Gξ .
Theorem 1: Let G : S → CL(S) be an Fρ-contraction.

Then there exists ζ ∗ ∈ S such that ζ ∗ ∈ Gζ ∗.
Proof: Let ζ0 ∈ S be an arbitrary and ζ1 ∈ Gζ0. If

ζ1 = ζ0 or ζ1 ∈ Gζ1 then ζ1 is a fixed point of G and so the
proof is finished. So we suppose that ζ1 6= ζ0 or ζ1 6∈ Gζ1.
Then σ (ζ1,Gζ1) > 0 and hence H (Gζ0,Gζ1) > 0. From
(3.1), we get

2τ + F (σ (ζ1,Gζ1))
≤ 2τ + F (H (Gζ0,T ζ1))

≤ F
(
ρ

(
σ (ζ0, ζ1), σ (ζ0,Gζ0), σ (ζ1,Gζ1),

σ (ζ0,Gζ1), σ (ζ1,Gζ0)

))
≤ F

(
ρ

(
σ (ζ0, ζ1), σ (ζ0, ζ1), σ (ζ1,Gζ1),

σ (ζ0,Gζ1), 0

))
and so

σ (ζ1,Gζ1) < ρ

(
σ (ζ0, ζ1), σ (ζ0, ζ1), σ (ζ1,Gζ1),

σ (ζ0,Gζ1), 0

)
Then Lemma 1.1 gives that σ (ζ1,Gζ1) < σ (ζ0, ζ1). Thus,
we obtain

2τ + F (σ (ζ1,Gζ1))
≤ 2τ + F (H (Gζ0,Gζ1))

≤ F
(
ρ

(
σ (ζ0, ζ1), σ (ζ0,Gζ0), σ (ζ1,Gζ1),

σ (ζ0,Gζ1), σ (ζ1,Gζ0)

))
≤ F

(
ρ

(
σ (ζ0, ζ1), σ (ζ0, ζ1), σ (ζ1,Gζ1),

σ (ζ0,Gζ1), 0

))
< F

(
ρ

(
σ (ζ0, ζ1), σ (ζ0, ζ1), σ (ζ0, ζ1),

2σ (ζ0, ζ1), 0

))
≤ F (σ (ζ0, ζ1)ρ (1, 1, 1, 2, 0))

≤ F (σ (ζ0, ζ1))

Thus

2τ + F (σ (ζ1,Gζ1)) ≤ F (σ (ζ0, ζ1)) (3.2)

Since F ∈ z is continuous from the right function, so there
exists a real number h > 1 such that

F (hH (Gζ0,Gζ1)) < F (H (Gζ0,Gζ1))+ τ. (3.3)

Next as

σ (ζ1,Gζ1) ≤ H (Gζ0,Gζ1) < hH (Gζ0,Gζ1) (3.4)
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by Lemma 1.2, there exists ζ2 ∈ Gζ1 (obviously, ζ2 6= ζ1)
such that

σ (ζ1, ζ2) ≤ σ (ζ1,Gζ1). (3.5)

Thus by (3.3), (3.4) and (3.5), we have

F (σ (ζ1, ζ2)) ≤ F (hH (Gζ0,Gζ1)) < F (H (Gζ0,Gζ1))+ τ
(3.6)

which implies by (3.2) that

2τ + F (σ (ζ1, ζ2)) ≤ 2τ + F (H (Gζ0,Gζ1))+ τ
≤ F (σ (ζ0, ζ1))+ τ

Thus we have

τ + F (σ (ζ1, ζ2)) ≤ F(σ (ζ0, ζ1)). (3.7)

From (3.1), we get

2τ + F (σ (ζ2,Gζ2))
≤ 2τ + F (H (Gζ1,Gζ2))

≤ F
(
ρ

(
σ (ζ1, ζ2), σ (ζ1,Gζ1), σ (ζ2,Gζ2),

σ (ζ1,Gζ2), σ (ζ2,Gζ1)

))
≤ F

(
ρ

(
σ (ζ1, ζ2), σ (ζ1, ζ2), σ (ζ2,Gζ2),

σ (ζ1,Gζ2), 0

))
and so

σ (ζ2,Gζ2) < ρ

(
σ (ζ1, ζ2), σ (ζ1, ζ2), σ (ζ2,Gζ2),

σ (ζ1,Gζ2), 0

)
.

Then Lemma 1.1 gives that σ (ζ2,Gζ2) < σ (ζ1, ζ2). Thus,
we obtain

2τ + F (σ (ζ2,Gζ2))
≤ 2τ + F (H (Gζ1,Gζ2))

≤ F
(
ρ

(
σ (ζ1, ζ2), σ (ζ1,Gζ1), σ (ζ2,Gζ2),

σ (ζ1,Gζ2), σ (ζ2,Gζ1)

))
≤ F

(
ρ

(
σ (ζ1, ζ2), σ (ζ1, ζ2), σ (ζ1, ζ2),

2σ (ζ1, ζ2), 0

))
≤ F (σ (ζ1, ζ2)ρ (1, 1, 1, 2, 0))

≤ F (σ (ζ1, ζ2)) .

Thus we get

2τ + F (σ (ζ2,Gζ2)) ≤ F (σ (ζ1, ζ2)) (3.8)

Since F ∈ z is continuous from the right function, so there
exists a real number h > 1 such that

F (hH (Gζ1,Gζ2)) < F (H (Gζ1,Gζ2))+ τ. (3.9)

Next as

σ (ζ2,Gζ2) ≤ H (Gζ1,Gζ2) < hH (Gζ1,Gζ2) (3.10)

by Lemma 1.1, there exists ζ3 ∈ Gζ2 (obviously, ζ3 6= ζ2)
such that

σ (ζ2, ζ3) ≤ σ (ζ2,Gζ2) . (3.11)

Thus by (3.9), (3.10) and (3.11), we have

F (σ (ζ2, ζ3)) ≤ F (hH (Gζ1,Gζ2)) < F (H (Gζ1,Gζ2))+ τ
(3.12)

which implies by (3.8) that

2τ + F (σ (ζ2, ζ3)) ≤ 2τ + F (H (Gζ1,Gζ2))+ τ
≤ F (σ (ζ1, ζ2))+ τ.

Thus we have

τ + F (σ (ζ2, ζ3)) ≤ F(σ (ζ1, ζ2)). (3.13)

So pursuing in this way we obtain {ζn} in S such that ζn+1 ∈
Gζn and

τ + F(σ (ζn, ζn+1)) ≤ F(σ (ζn−1, ζn)) (3.14)

for all n ∈ N. Therefore by (3.14), we have

(σ (ζn, ζn+1)) ≤ F (σ (ζn−1, ζn))− τ

≤ F (σ (ζn−2, ζn−1))− 2τ

≤ · · · ≤ F (σ (ζ0, ζ1))− nτ. (3.15)

Taking n → ∞, we have lim
n→∞

F (σ (ζn, ζn+1)) = −∞ that
jointly with (F2) gives

lim
n→∞

σ (ζn, ζn+1) = 0.

Thus from (F3), ∃ r ∈ (0, 1) so that

lim
n→∞

[σ (ζn, ζn+1)]rF (σ (ζn, ζn+1)) = 0. (3.16)

By (3.15) and (3.16), we obtain

[σ (ζn, ζn+1)]rF (σ (ζn, ζn+1))− [σ (ζn, ζn+1)]rF (σ (ζ0, ζ1))

≤ [σ (ζn, ζn+1)]r [F (σ (ζ0, ζ1))− nτ ]

− [σ (ζn, ζn+1)]rF (σ (ζ0, ζ1))

≤ −nτ [σ (ζn, ζn+1)]r ≤ 0.

Taking n→∞, we have

lim
n→∞

n[σ (ζn, ζn+1)]r = 0. (3.17)

Hence lim
n→∞

n
1
r σ (ζn, ζn+1) = 0, which implies that∑

∞

n=1 σ (ζn, ζn+1) converges. Hence the sequence {ζn} is
Cauchy in S. As (S, σ ) is a complete metric space, so there
exists a ζ ∗ ∈ S such that

lim
n→∞

ζn = ζ
∗. (3.18)

Now, we prove that ζ ∗ ∈ Gζ ∗. Assume on the contrary that
ζ ∗ 6∈ Gζ ∗, then ∃ n0 ∈ N and a subsequence {ζnk } of {ζn}
such that σ (ζnk+1,Gζ ∗) > 0 for all nk ≥ n0.Now, using (3.1)
with ζ = Snk+1 and ξ = ζ ∗. Taking Remark 1 into account,
we have

σ (ζnk+1,Gζ ∗)
≤ H (Gζnk ,Gζ ∗)

≤ ρ

(
σ (ζnk , ζ

∗), σ (ζnk ,Gζnk ), σ (ζ ∗,Gζ ∗),
σ (ζnk ,Gζ ∗), σ (ζ ∗,Gζnk )

)
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≤ ρ

(
σ (ζnk , ζ

∗), σ (ζnk , ζnk+1), σ (ζ
∗,Gζ ∗),

σ (ζnk ,Gζ ∗), σ (ζ ∗, ζnk+1)

)
Taking n→∞, we get

σ (ζ ∗,Gζ ∗) ≤ ρ
(
0, 0, σ (ζ ∗,Gζ ∗), σ (ζ ∗,Gζ ∗), 0

)
which implies by Lemma 1.1 that

0 < σ (ζ ∗,Gζ ∗) < 0

which is a contradiction. Hence σ (ζ ∗,Gζ ∗) = 0. Since Gζ ∗
is closed, we deduce that ζ ∗ ∈ Gζ ∗ . Thus ζ ∗ ∈ Gζ ∗. �

IV. CONSEQUENCES
In all these consequences, we assume F ∈ z is a continuous
from the right function.
Corollary 1: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 such that

2τ + F(H (Gζ,Gξ )) ≤ F (σ (ζ, ξ ))

for all ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exist ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Consider ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4, ζ5) =
ζ1. Then the result follows from Theorem 1. �
Corollary 2: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 such that

2τ + F(H (Gζ,Gξ )) ≤ F (σ (ζ,Gζ )+ σ (ξ,Gξ ))

∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = ζ2 + ζ3 inTheorem 1. �
Corollary 3: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 such that

2τ + F(H (Gζ,Gξ )) ≤ F (σ (ζ,Gξ )+ σ (ξ,Gζ ))

∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = ζ4 + ζ5 in Theorem 1. �
Corollary 4: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 and non-negative real numbers
α, β, γ with α + β + γ ≤ 1 such that

2τ + F(H (Gζ,Gξ ))≤F (ασ (ζ, ξ )+βσ (ζ,Gζ )+γ σ (ξ,Gξ ))

∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = αζ1 + βζ2 + γ ζ3 in Theorem 1. �
Corollary 5: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 and non-negative real number
α ∈ (0, 1] and L ≥ 0 such that

2τ + F(H (Gζ,Gξ )) ≤ F (ασ (ζ, ξ )+ Lσ (ξ,Gζ ))

∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = αζ1 + Lζ5 in Theorem 1. �
Corollary 6: [10] Let G : S→ CB(S). Suppose that there

exist some F ∈ z and τ > 0 and non-negative real numbers
α, β, γ, δ and L with α + β + γ + δ + 2L ≤ 1 such that

2τ + F(H (Gζ,Gξ ))

≤ F
(
ασ (ζ, ξ )+ βσ (ζ,Gζ )+ γ σ (ξ,Gξ )
+δσ (ζ,Gξ )+ Lσ (ξ,Gζ )

)
∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = αζ1 + βζ2 + γ ζ3 + δζ4 + Lζ5 in Theorem 1. �
Corollary 7: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 such that

2τ + F(H (Gζ,Gξ ))

≤ F
(
max

{
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ )+σ (ξ,Gζ )
2

})
∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = max

{
ζ1, ζ2, ζ3,

ζ4+ζ5
2

}
in Theorem 1. �

If we take self mapping G : S→ S in the above Corollary,
then we get the following result.
Corollary 8: Let (S, σ ) be a complete metric space and let

G : S→ S. Suppose that there exists some F ∈ z and τ > 0
such that

2τ + F(σ (Gζ,Gξ ))

≤ F
(
max

{
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ )+σ (ξ,Gζ )
2

})
for all ζ, ξ ∈ S with σ (Gζ,Gξ ) > 0.Then there exists ζ ∗ ∈ S
such that ζ ∗ = Gζ ∗.
Corollary 9: Let G : S→ CB(S). Suppose that there exist

some F ∈ z and τ > 0 such that

2τ + F(H (Gζ,Gξ ))

≤ F
(
max

{
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ ), σ (ξ,Gζ )

})
(4.1)

∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.

Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = max {ζ1, ζ2, ζ3, ζ4, ζ5} in Theorem 1. �
Corollary 10: Let G : S → CB(S). Suppose that there

exist some F ∈ z and τ > 0 such that

2τ + F(H (Gζ,Gξ ))

≤ F
(
max

{
σ (ζ, ξ ),

σ (ζ,Gζ )+ σ (ξ,Gξ )
2

,

σ (ζ,Gξ )+ σ (ξ,Gζ )
2

})
∀ ζ, ξ ∈ S with H (Gζ,Gξ ) > 0. Then there exists ζ ∗ ∈ S
such that ζ ∗ ∈ Gζ ∗.
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Proof: Considering ρ ∈ E given by ρ(ζ1, ζ2, ζ3, ζ4,
ζ5) = max

{
ζ1,

ζ2+ζ3
2 ,

ζ4+ζ5
2

}
in Theorem 1. �

V. APPLICATIONS
A. APPLICATION TO ELECTRIC CIRCUIT EQUATION
In this subsection we apply our result to solve electric circuit
equation which is in the form of second order differential
equation. It is conventional that electric circuit contains an
electromotive force E , a resistor R, capacitance C and an
inductance L. If the current I is the rate of change of electric
charge Q with respect to time t , I = dQ

dt . We are familiar with
the following relations:

(i) V = IR;
(ii) V = Q

C ;

(iii) V = L dI
dt .

Now by Kirchhoffs voltage law, the sum of these voltage
drops is equal to the supplied voltage, i.e.,

IR+
Q
C
+ L

dI
dt
= V (t)

or

L
d2Q
dt2
+ R

dQ
dt
+
Q
C
= V (t)

Q(0) = 0, Q/(0) = 0. (5.1)

The Green function associated to (5.1) is given by

G(t, s) =

{
−seτ (s−t), 0 ≤ s ≤ t ≤ 1
−teτ (s−t), 0 ≤ t ≤ s ≤ 1,

(5.2)

where τ > 0 is a constant, calculated in terms of R and L. Let
S = C([0, a],R+) be the set of all non negative real valued
functions defined on [0, a]. For an arbitrary ζ ∈ S, we define

‖ζ‖τ = sup
t∈[0,a]

{
|ζ (t)| e−2τ t

}
. (5.3)

Define σ :S × S → R+ by

σ (ζ ,ξ ) =‖ζ − ξ‖τ = sup
t∈[0,a]

{
|ζ (t)− ξ (t)| e−2τ t

}
. (5.4)

Then clearly (S, σ ) is a metric space. We now state and the
prove the result for the existence of a solution of the LCR-
circuit equation of the second order differential equation:
Theorem 2: LetG : C([0, a])→ C([0, a]) be self mapping

such that the following condition hold:
there exists a function K : [0, a] × [0, a] × R → R such

that

|K (t, s, ζ )− K (t, s, ξ )| ≤ τ 2e−2τM (ζ, ξ )

where

M (ζ, ξ ) = max

{
σ (ζ, ξ ), σ (ζ,Gζ ), σ (ξ,Gξ ),

σ (ζ,Gξ )+ σ (ξ,Gζ )
2

}
for all t, s ∈ [0, a], ζ, ξ ∈ C([0, a]) and τ > 0. Then
equation (5.1) has a solution.

Proof: Above problem is equivalent to the integral
equation

ζ (t) =
∫ t

0
G(t, s)K (t, s, ζ (s))σ s, (5.5)

t ∈ [0, a]. Consider G : C([0, a])→ C([0, a]) defined by

G(ζ (t)) =
∫ t

0
G(t, s)K (t, s, ζ (s))σ s (5.6)

for t ∈ [0, a] and a > 0. Then clearly ζ ∗ is a solution of (5.5),
if and only if ζ ∗ is a fixed point of G. Now

|G(ζ (t))− G(ξ (t))|

≤

∫ t

0
G(t, s) |K (t, s, ζ (s))− K (t, s, ξ (s))| σ s

≤

∫ t

0
G(t, s)τ 2e−2τM (ζ, ξ )σ s

which implies

|G(ζ (t))− G(ξ (t))|

≤

∫ t

0
τ 2e−2τ e2τ se−2τ sM (ζ, ξ )G(t, s)σ s

≤ τ 2e−2τ ‖M (ζ, ξ )‖τ ×
∫ t

0
e2τ sG(t, s)σ s

≤ τ 2e−2τ ‖M (ζ, ξ )‖τ

[
−
e2τ t

τ 2

(
2τ t−τ te−τ t + e−τ t − 1

)]
.

This implies that

|G(ζ (t))− G(ξ (t))| e−2τ t

≤ e−2τ ‖M (ζ, ξ )‖τ ×
(
1− 2τ t + τ te−τ t − e−τ t

)
.

Thus

‖G(ζ (t))− G(ξ (t))‖τ
≤ e−2τ ‖M (ζ, ξ )‖τ ×

(
1− 2τ t + τ te−τ t − e−τ t

)
.

Evidently,
(
1− 2τ t + τ te−τ t − e−τ t

)
≤ 1, so we have

‖G(ζ (t))− G(ξ (t))‖τ ≤ e−2τ ‖M (ζ, ξ )‖τ

that is

σ (G(ζ ),G(ξ )) ≤ e−2τ ‖M (ζ, ξ )‖τ .

Taking logarithm both sides, we get

ln (σ (G(ζ ),G(ξ ))) ≤ ln
(
e−2τ ‖M (ζ, ξ )‖τ

)
,

which implies

2τ + ln (σ (G(ζ ),G(ξ ))) ≤ ln
(
‖M (ζ, ξ )‖τ

)
.

Hence all the conditions conditions of result 8 are satisfied by
taking F(t) = ln(t) for t > 0 and G has a fixed point which is
the solution of differential equation arising in electric circuit
equation. �
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B. APPLICATION TO VOLTERRA-TYPE
INTEGRAL INCLUSION
The aim of this subsection is to apply the established results
to obtain the existence of solutions for a determined Volterra-
type integral inclusion. Consider the Volterra-type integral
inclusion as

ζ (t) ∈ f (t)+

t∫
a

K (t, s, ζ (s))σ s, t ∈ [a, b] (5.7)

where f ∈ C[a, b] is a given real-valued function and K :
[a, b]×[a, b]×R→ Kcv(R) andKcv(R) indicates the class of
nonempty compact and convex subsets of R and ζ ∈ C[a, b]
is the unknown function.

Let C([a, b],R) be endowed with the metric

σ (ζ, ξ ) = ( max
t∈[a,b]

|ζ (t)− ξ (t)|) = max
t∈[a,b]

|ζ (t)− ξ (t)| (5.8)

for all ζ, ξ ∈ C[a, b]. Subsequently (C[a, b], σ ) is a complete
metric space.

We will suppose the following conditions:
(A1) for each ζ ∈ C[a, b], K : [a, b] ×[a, b] ×R →

Kcv(R) is such that K (t, s, ζ (s)) is lower semicontinuous in
[a, b]× [a, b],

(A2) there exists some continuous function l : [a, b] ×
[a, b]→ [0,+∞) such that

|kζ (t, s)− kξ (t, s)|

≤ l(t, s) {max{|ζ (s)− ξ (s)|, |ζ (s)− K (t, s, ζ (s))|,

|ξ (s)− K (t, s, ξ (s))|, |ζ (s)− K (t, s, ξ (s))|,

|ξ (s)− K (t, s, ζ (s))|}}

for all t, s ∈ [a, b], ζ, ξ ∈ C[a, b].
(A3) there exists some τ > 0 such that

sup
t∈[a,b]

∫ t

a
l(t, s)σ s ≤ e−2τ .

Theorem 3: With the assertions (A1)–(A3), the integral
inclusion (5.7) has a solution in C[a, b].

Proof: Let S = C[a, b]. Define the multivalued map-
ping G : S→ CB(S) by

Gζ =
{
ξ ∈ S : ξ (t) ∈ f (t)+

∫ t

a
K (t, s, ζ (s))σ s, t ∈ [a, b]

}
.

It is simple and direct that the set of solutions of the integral
inclusion (5.7) synchronizes with the set of fixed points of G.
Thus, we have to show that with the stated conditions, G has
at least one fixed point in S. For it, we shall examine that the
conditions of Corollary 9 are satisfied. �
Let ζ ∈ S be arbitrary. For the multivalued operator

Kζ (t, s) : [a, b] × [a, b] → Kcv(R), it act in accordance
with the Michael’s selection theorem that there exists a con-
tinuous function kζ (t, s) : [a, b] × [a, b] → R such that
kζ (t, s) ∈ Kζ (t, s) for all t, s ∈ [a, b]. It follows that
f (t) +

∫ t
a kζ (t, s)σ s ∈ Gζ . Hence Gζ 6= ∅. It is an obvious

matter to prove that Gζ is closed, and so specific aspects are
excluded (see also [13]). Moreover, since f is continuous on

[a, b] and Kζ (t, s) is continuous on [a, b] × [a, b], so their
ranges are bounded. It follows that Gζ is also bounded. Hence
Gζ ∈ CB(S).
We now analyze that (2.19) holds for G on S with some

τ > 0 and F ∈ z, i.e.,

2τ + F(H (Gζ 1,Gζ 2))

≤ F
(
max

{
σ (ζ1, ζ2), σ (ζ1,Gζ 1), σ (ζ2,Gζ 2),

σ (ζ1,Gζ 2), σ (ζ2,Gζ 1)

})
for ζ1, ζ2 ∈ S . Let ξ1 ∈ Gζ 1 be arbitrary such that

ξ1(t) ∈ f (t)+
∫ t

a
K (t, s, ζ1(s))σ s

for t ∈ [a, b] holds. It implies that ∀ t, s ∈ [a, b], ∃ kζ1 (t, s) ∈
Kζ1 (t, s) = K (t, s, ζ1(s)) such that

ξ1(t) = f (t)+
∫ t

a
kζ1 (t, s)σ s

for t ∈ [a, b]. For all ζ1, ζ2 ∈ S, it follows from (A2) that

H (K (t, s, ζ1)− K (t, s, ζ2)

≤ l(t, s)

 max{|ζ1(s)− ζ2(s)|, |ζ1(s)− K (t, s, ζ1(s))|,
|ζ2(s)− K (t, s, ζ2(s))|, |ζ1(s)−K (t, s, ζ2(s))|,

|ζ2(s)− K (t, s, ζ1(s))|}

.
This implies that ∃ z(t, s) ∈ Kζ2 (t, s) such that∣∣kζ1 (t, s)− z(t, s)∣∣
≤ l(t, s)

 max{|ζ1(s)− ζ2(s)|, |ζ1(s)− K (t, s, ζ1(s))|,
|ζ2(s)−K (t, s, ζ2(s))|, |ζ1(s)−K (t, s, ζ2(s))|,

|ζ2(s)− K (t, s, ζ1(s))|}

.
for all t, s ∈ [a, b].
Now, we can deal with the multivalued mappingU defined

by

U (t, s) = Kζ2 (t, s) ∩ {u ∈ R :
∣∣kζ1 (t, s)− u∣∣

≤ l(t, s)|ζ1(s)− ζ2(s)|}.

Hence, by (A1), U is lower semicontinuous, it implies that
there exists a continuous mapping kζ2 (t, s) : [a, b]×[a, b]→
R such that kζ2 (t, s) ∈ U (t, s) for t, s ∈ [a, b]. Then ξ2(t) =
f (t)+

∫ t
a kζ1 (t, s)σ s satisfies that

ξ2(t) ∈ f (t)+
∫ t

a
K (t, s, ζ2(s))σ s, t ∈ [a, b].

t ∈ [a, b]. That is ξ2 ∈ Gζ 2 and

|ξ1(t)− ξ2(t)|

≤

∫ t

a

∣∣kζ1 (t, s)− kζ2 (t, s)∣∣ σ s
≤

∫ t

a
l(t, s)|ζ1(s)− ζ2(s)|σ s

≤ max
t∈[a,b]


∫ t

a
l(t, s)


max{|ζ1(s)− ζ2(s)|,
|ζ1(s)− K (t, s, ζ1(s))|,
|ζ2(s)− K (t, s, ζ2(s))|,
|ζ1(s)− K (t, s, ζ2(s))|,
|ζ2(s)− K (t, s, ζ1(s))|}

 σ s

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≤ e−2τ max
{
σ (ζ1, ζ2), σ (ζ1,Gζ 1), σ (ζ2,Gζ 2),

σ (ζ1,Gζ 2), σ (ζ2,Gζ 1)

}
for all t, s ∈ [a, b]. Hence, we have

σ (ξ1, ξ2) ≤ e−2τ max
{
σ (ζ1, ζ2), σ (ζ1,Gζ 1), σ (ζ2,Gζ 2),

σ (ζ1,Gζ 2), σ (ζ2,Gζ 1)

}
Interchanging the roles of ζ1 and ζ2 , we obtain that

H (Gζ 1,Gζ 2)

≤ e−2τ max
{
σ (ζ1, ζ2), σ (ζ1,Gζ 1), σ (ζ2,Gζ 2),

σ (ζ1,Gζ 2), σ (ζ2,Gζ 1)

}
Taking natural log on both side, we have

2τ + ln (H (Gζ 1,Gζ 2))

≤ ln
(
max

{
σ (ζ1, ζ2), σ (ζ1,Gζ 1), σ (ζ2,Gζ 2),

σ (ζ1,Gζ 2), σ (ζ2,Gζ 1)

})
Taking F ∈ z defined by F(t) = ln(t) for t > 0, we have

2τ + F(H (Gζ 1,Gζ 2))

≤ F
(
max

{
σ (ζ1, ζ2), σ (ζ1,Gζ 1), σ (ζ2,Gζ 2),

σ (ζ1,Gζ 2), σ (ζ2,Gζ 1)

})
.

All other conditions of Corollary 9 immediately follows by
the hypothesis by taking the function ρ ∈ E given by
ρ(ζ1, ζ2, ζ3, ζ4, ζ5) = max {ζ1, ζ2, ζ3, ζ4, ζ5} and the given
integral inclusion (5.7) has a solution.

VI. CONCLUSION
In this article, we have defined the notion of Fρ-contractions
to establish new fixed point results for a new class of con-
tractive conditions in the context of complete metric spaces.
The given results extended and improved the well-known
results of Banach, Kanan, Chatterjea, Reich, Hardy-Rogers,
Berinde and Ćirić by means of this new class of contractions.
As application of our main results, the existence of solution
of second order differential equation and a certain Volterra-
type integral inclusion is also investigated. Our results are
new and significantly contribute to the existing literature in
fixed point theory.
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