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ABSTRACT The needs for continuous size reduction of metal-oxide-semiconductor field effect transis-
tor (MOSFET) devices can cause serious reliability concerns. In particular, gate oxide breakdown is a key
mechanism concerning the lifetimes of MOSFET devices. In this paper, several spatial point processes are
employed to represent general patterns of defect generation in gate oxide. By defining oxide breakdown as
a creation of conduction path connecting two oxide interfaces by overlapped defects, percolation models
are discussed to predict reliability of MOSFET devices in terms of critical defect density. In the final,
we proposed a method to evaluate lifetimes of area-scaled gate oxides in MOSFET devices mainly through
their fractal structure. The method suggests an easy way to predict the lifetimes of the devices with area-
scaled gate oxides by examining their fractal structure through a fractal dimension without involving
breakdown distributions of gate oxides with different areas.

INDEX TERMS Fractal structure, oxide breakdown, percolation model, spatial point process, time-
dependent dielectric breakdown.

I. INTRODUCTION
A metal-oxide-semiconductor field effect transistor (MOS-
FET) device operates at lower electric field. The oxide layer
slowly degrades as lower electric field is applied during
operating time. This phenomenon (called ‘‘time dependent
dielectric breakdown’’ (TDDB)) is one of key limitations
to reliability of MOSFET devices. The oxide breakdown of
MOSFET device can be largely classified into two types:
intrinsic and extrinsic breakdown. the intrinsic breakdown,
sometimes referred to as ‘‘wear-out’’, is intrinsic to materials
consisting of the gate oxide. On the contrary, the extrinsic
breakdown is generally caused by defects generated in a
series of manufacturing processes such as metallic, organic,
or other contaminants on the crystalline silicon surface.
With the trend of continuous reduction of oxide thickness
and increase of electric field, the intrinsic breakdown has
become the most likely problem as far as oxide reliability
is concerned. Peng and Feng [1] characterized the overall
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intrinsic breakdown process of ultrathin gate oxides as a
logistic degradation process with a random onset time.

Intrinsic breakdown generally begins with defect (or trap)
generation and resulting formation of bulk oxide states as the
device is stressed at elevated voltage and temperature [2].
With increasing defects during electrical stressing, conduct-
ing path of neighboring defects can be generated from the top
to the bottom of the oxide layer, resulting in the dielectric
breakdown. This is called ‘‘percolation’’ because electrons
can percolate through the oxide layer along this conductive
path [3]. The schematic illustration of a percolation path
built by sphere-shaped defects is given in Figure 1. The
percolation path depends highly on the patterns of defect
generation, i.e., whether the defects are generated randomly
or in cluster. It has been generally accepted that defects
increase in the oxide layer as the current is injected over time,
then a breakdown is triggered whenever the defects reach
at the critical level of defect density [4], [5]. To accurately
predict reliability of theMOSFET device, especially of newly
developed devices with gate oxide as thin as 1 nm, well-
defined models for defect generation and understanding of
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FIGURE 1. A schematic illustration of a percolation model
(The percolation path is indicated by heavily shaded spheres.
tox denotes oxide thickness).

their physical structure must be established a priori. Never-
theless, the procedure for determining correct distribution of
defect density and proper way to formulate defect effects on
oxide lifetime have not been completely resolved yet.

This paper proposes a new method to evaluate lifetimes
of area-scaled gate oxide in the operation of MOSFET
devices, mainly based on a percolation model for spatially
distributed defects and its fractal structure. Several spatial
point processes are introduced to model the patterns of defect
generation, and the oxide lifetime is estimated by calculat-
ing critical defect density forming the percolation path by
spatial defects. Many existing studies on the reliability of
MOSFET devices have been focused on physical aspects of
the percolation models. Furthermore, the percolation mod-
els have been simply constructed on the basis of randomly
generated defect structure. Recently, Yuan and Zhu [6] pro-
posed a spatio-temporal percolation model considering the
relationship between defect occurrences and oxide failure-
times. Their percolation model was constructed based on
the random generating structure of sphere-shaped defects
using a homogeneous Poisson process. Later, Kim et al. [7]
proposes a spatio-temporal percolation model for progressive
breakdowns of ultra-thin gate oxide in a convolution form.
Because spatial defect patterns in the oxide layer connote
its own physical mechanisms for defect generation, spatial
defect distribution must be explicitly expressed for reliability
analysis of MOSFET devices. Nevertheless, relatively less
efforts have been devoted to evaluation of oxide reliability by
taking spatially distributed defects in the oxide into account.

II. SPATIAL MODELING OF DEFECT GENERATION
Degraeve et al. [4] assumed that electron defects are gener-
ated randomly in the oxide layer with constant defect gen-
eration probability p. The only parameter in this model is
an effective radius of the electron defect, r . The random
defect generation procedure can be simply modeled by a
(spatial) homogeneous Poisson process (HPP). The detailed
explanation of spatial HPP is given in Appendix A. The
random defect generation procedure by Degraeve et al. [4]
is realized by placing spheres with common radius r on the
points following the homogeneous Poisson point process.

Khosru et al. [8] introduced an exponentially decreasing
function from the oxide interface to a spatial distribution of
hole traps in the oxide layer. Its probability function of trap

generation is

p(s) = k0e−s/η, (1)

where s is the distance from the interface, k0 is a constant, and
η represents a decay length from the interface. The model (1)
is called ‘‘gradient percolation’’ which is one of inhomoge-
neous percolationmodels introduced by Rosso et al. [9]. Such
inhomogeneous defects pattern can be modeled by a (spatial)
nonhomogeneous Poisson process (NHPP). The details on
the NHPP is given in Appendix B. Quintanilla and Torquato
[10] proposed an intensity function for spheres following the
NHPP as

λ(x, y) =
C0

r2
e−κy/L , (2)

where C0 is a constant, L is the length scale of the entire
system, and κ is the length scale of the variation of λ(x, y) for
Cartesian coordinates x = (x, y). The exponentially decreas-
ing pattern of defects from the interface can be specified by
the NHPP with the intensity function (2).

In general, defects are more likely to be formed around the
neighborhood of other defects. Chandra et al. [11] observed
that defects occur mainly within an ‘‘interacting distance’’,
which is defined as the minimum distance between two
defects of the same kind that do not interact. Uno et al. [12]
defined the defect generation probability p as a function of
the distance from other existing defects:

p =

{
cζ Within 2r from existing traps
ζ Otherwise

(3)

where c is a constant larger than unity to represent the
fact that new defects are more likely to occur around other
defects and ζ is a constant determined by a normaliza-
tion integral. To generalize the Eq. (3) in a more flexible
framework, we apply a pair-potential Markov point pro-
cess [13] to the defects distributed in the oxide layer. The
pair-potential Markov point process have been most com-
monly used to model a repulsive interaction between points.
This more highly developed point process has the poten-
tial in generalizing the defect patterns formed in the oxide,
including the defects’ attraction/repulsion toward each other
(see Appendix C for details on pair-potential Markov point
process).

III. PERCOLATION MODELS FOR OXIDE BREAKDOWN
Several percolation models have been applied to describe
the oxide breakdown and successfully explained theoretical
and experimental results of the oxide breakdown. We will
introduce three important percolation models in turn.

A. TILE-BASED PERCOLATION MODEL
Suñé et al. [14] assumed that the breakdown of oxide layer
is final consequence of degradation of the oxide layer. The
obtained distribution of failures preserves main properties of
extreme-value statistics. The main idea is as follows. Sup-
pose that the total area of gate oxide ST is divided up into

VOLUME 7, 2019 143161



S.-J. Kim et al.: Reliability Prediction of Highly Scaled MOSFET Devices via Fractal Structure of Spatial Defects

FIGURE 2. Suñé’s percolation structure.

N cells having identical area S0 with given thickness tox
(see Figure 2). It is assumed that gate oxide breakdown is
triggered when critical number of defects (nbd ) occurs in at
least one cell. Denote pbd be the probability that any one cell
breaks down, then the probability of gate oxide breakdown
Fbd = 1− (1−pbd )N . The probability to find a cell including
k randomly distributed defects with average defect density
λ̄ = n̄/S0 tox , where n̄ is the average number of defects per
cell, is given by the Poisson distribution

p(k, λ̄) =
(λ̄S0tox)k exp(−λ̄S0tox)

k!
, k = 0, 1, 2, . . . (4)

Because one cell breaks down when k reaches nbd , the prob-
ability that a cell breaks down is

pbd (λ̄) = 1−
nbd−1∑
k=0

(λ̄S0tox)k exp(−λ̄S0tox)
k!

, (5)

and the probability of gate oxide breakdown is given by

Fbd (λ̄) = 1−


nbd−1∑
k=0

(λ̄S0tox)k exp(−λ̄S0tox)
k!


N

, (6)

for an MOSFET structure of area ST = NS0. This dis-
tribution function only depends on S0 and nbd , which are
naturally related to the breakdown physics. For example,
the distribution function of oxide breakdown is plotted at
different cell areas and different critical number of defects
in Figure 3, as the function of λ̄. At this time, tox = 4 nm, and
N = 100. Note that at identical λ̄ and S0, the probability of
oxide breakdown decreases as the critical number of defects
increases. This percolationmodel, however, has the limitation
to describe the dependence of nbd on oxide thickness (see
Stathis [15] for more details).

B. SPHERE-BASED PERCOLATION MODEL
Degraeve et al. [4] introduced a simulation-based percolation
model dealing with the relation between oxide thickness and
failure distribution, that is, ‘‘three-dimensional percolation
model’’. They considered a number of spherical defects ran-
domly generated inside the oxide with fixed dimension. The
only parameter of this model is a radius of the defect, r .
If two neighboring spherical defects overlap, it is considered
that conduction between these defects occurs. By model-
ing the interface as an infinite set of defects, the algorithm
continuously generates spherical defects until a conducting
path (called ‘‘percolation path’’) is created from top to bot-
tom of the oxide, and the oxide-breakdown event occurs

FIGURE 3. A distribution plot of oxide breakdown as the function of λ̄.

(see Figure 1). The critical electron trap density can be cal-
culated as the total number of generated traps divided by
the volume of the oxide layer. The dimension of the oxide
is chosen to be significantly larger than the sphere radius
r , but sufficiently small enough to keep simulation time
within a practical time frame. Through various simulations,
they observed that the oxide breakdowns can be successfully
modeled with the Weibull distribution and the Weibull shape
parameter decreases as the oxide thickness decreases. Addi-
tionally their simulation results showed that if the oxide thick-
ness gets smaller, the shape parameter of theWeibull distribu-
tion approaches to one, meaning that the failure distribution
of ultrathin gate oxide becomes an exponential distribution
(see Degrave et al. [16] for details). However, their results
are based mainly on randomly generated defects and do not
consider clustered defects which have been often observed in
the oxide layer.

C. CUBE-BASED PERCOLATION MODEL
Another percolation model assuming cubic defects was
firstly suggested by Stathis [15]. Similar to Degraeve et al.’s
approach [4], he defined oxide-breakdown as the formation
of a percolation path. Instead, he used cubic defects on a
fixed cubic lattice. The cubic defects are randomly generated
on a cubic lattice of size (l × l × m) according to a cer-
tain probability p0 in the case of homogeneous percolation,
or p(s) = p0 e−(s/η) for gradient percolation. After plac-
ing all the defects under a given defect density distribution,
the individual clusters are labeled in the lateral directions
using a modified Hoshen-Kopelman algorithm [17] with
periodic boundary conditions. All occupied sites at (l × l)
face of the sample are assigned to the percolation cluster.
The percolation model by Stathis [15] is based mainly on
the Poisson statistics by assuming that defects are randomly
generated in the oxide layer. It also successfully described the
oxide breakdown with the Weibull distribution. This model,
however, has a limitation in that only one defect can trigger
oxide breakdown when the oxide thickness is smaller than
cube size. Nevertheless, it has been widely adopted as an
oxide breakdown model because the cubic lattice greatly
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simplifies cluster identification along with significant reduc-
tion of computational time.

In summary, sphere- and cube-based percolation models
are reasonable choices for simulating gate oxide failures than
tile-based one. In a comparison of both models, the cube-
based percolation model is a discretized approximation of
the sphere-based approach for fast computation. The sphere-
based model can reproduce more various defect patterns in
a number of situations. Thus, it is recommended to adopt a
sphere-based model if computing power is sufficient. How-
ever, its biggest drawback is that computational complexity
increases exponentially with the number of defects generated
during the simulation. Kim et al. [7] proposed a partitioned
enumeration scheme for the sphere-based model in order to
cope with the computation issue. It drastically reduced the
computation burden by introducing the cube-based model
concept where the oxide space is divided into cube cells.

IV. FRACTAL STRUCTURE FOR DEFECTS
As in the three percolation models, a Weibull distribution
is an appropriate and widely accepted model for describing
the time to the oxide breakdown. The Weibull distribution
represents the ‘‘weakest’’ link characteristic of the breakdown
process of gate oxides caused by generated defects [18]–[20].
The distribution function of a Weibull distribution is given by

FT (t) = 1− exp
[
− (t/α)β

]
, (7)

where α(> 0) is a scale parameter and β(> 0) is a shape
parameter. The Weibull distribution can also be used to
predict lifetime distribution of area-scaled gate oxides [21].
Consider two MOSFET devices with identical oxide thick-
ness, but different area A1 and A2, respectively. They have a
breakdown distribution shifted with device area as

α1

α2
=

[
A2
A1

]1/β
, (8)

where α1 and α2 areWeibull scale parameters having areasA1
and A2, respectively, and β is a common shape parameter of
theWeibull distribution. A smaller β means a greater sensitiv-
ity to the area. It is very important to accurately estimate the
value of β because an incorrect estimation of β value results
in a large error in extrapolated lifetimes of the oxides with
different areas. Suñé et al. [14] recognized that general fea-
tures of the breakdown distribution of thinner oxides can be
accounted for by the area scaling model (8), where a critical
defect density is needed to trigger a destructive breakdown.
However, the area-scaling model (8) fails to represent actual
real structure of defects in the gate oxide because it assumes
that the gate oxide is divided by independent cells [21].

As an alternative, we introduce the fractal theory to
describe breakdown statistics of area-scaled gate oxides as
a complex system. Mandelbrot [22] introduced the word
‘‘fractal’’ to describe objects with the dimension smaller
than the Euclidian dimensionality of underlying lattice or
space. Nature provides numerous examples of fractal struc-
tures ranging from those with a fraction of the scale of the

universe down to those of atomic scale. These structures can
be observed in the distribution of galaxies, cloud structures,
mountain reliefs, turbulent flows on the surface of a planet
like Jupiter, fractured rocks, rough surfaces, and disordered
materials like percolation. Percolation plays a fundamental
role in a considerable number of physical phenomena in
which disorder is present within the medium [23]. Disordered
media is composed of a random agglomeration of at least
two types of materials. Examples include alloys, discontin-
uous deposits of metallic films, diluted magnetic materials,
polymer gels, and general composite materials.

The fractal structure has two main properties: First, it sat-
isfies the following power law relationship [23]

E[M (r)] ∝ rdf , df < d, (9)

whereM (r) denotes a mass of the cluster with a radius r , df is
the fractal dimension as a measure of how quickly the object
moves away from the starting point, and d is the Euclidean
dimension. Here, E[·] represents an expectation (or average).
Because the average mass of the cluster is proportional to
the number of quantities within a radius r , E[N (r)], the
equation (9) can be rewritten as

E[N (r)] = κ0 · rdf , df < d, (10)

for a constant κ0. Second, the fractal structure has self-
similarity; an object with self-similarity is exactly or approx-
imately similar to a part of itself. Mandelbrot [22] used a
standard method for estimating the fractal dimension; that is,
a large square lattice is divided into G2 equal squares, and
the number of squares intersected by the largest cluster is
counted. Then, the fractal dimension df is determined through
N (r) ∝ Gdf . A second method for estimating the fractal
dimension is to take circles or spheres with increasing size,
and tomeasure their contents or mass. Forrest andWitten [24]
estimated the fractal dimension of two-dimensional electron
microscope pictures of large smoke particles consisting of
many small iron spheres of uniform size in this way.

The damage structures observed in dielectric breakdown
have the form of trees in many cases. A tree is like a fractal
or self-similar object in the sense that a branch of tree looks
like a tree. Recently, Niemeyer et al. [25] showed that the
simplest stochastic model of general dielectric breakdown
leads to fractal structure. They introduced a stochastic model
to simulate the growth of a fractal structure. Huo et al. [26]
also used this fractal concept to analyze gate current noise
phenomena in ultrathin gate oxide of pMOSFETs undergo-
ing soft breakdown. Based on their results, we may regard
percolation paths or spatial structures of defects in the oxide
as statistical fractal structures. This assumption is extremely
useful because the critical defect density of area-scaled gate
oxide can be predicted based on the fractal dimension df
without involving breakdown distributions of the oxides with
different area.

Based on the fractal structure of spatial defects in oxides,
we suggest a new approach for the breakdown of area-scaled
oxides. If it is assumed that defects are randomly distributed
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FIGURE 4. Simulated spherical defects with radius r = 0.45 nm at the oxide thickness tox = 3 nm and oxide area (20× 20) nm2

(a percolation path is represented by overlapped shaded-spheres).

in 3-dimensional space, that is, they follow aHPPwith critical
defect density λbd , then

κ0 · rdf−3 ≡
E[M (r)]

r3
∝

E[Nbd (r)]
l × w× tox

≡ λbd , (11)

for the oxide with length (l), width (w), and thickness (tox),
from Eq. (9) and Eq. (10). Here, Nbd (r) denotes critical
number of defects in gate oxide with (l × w × tox) volume.
Under assumption that the fractal dimension of defects in gate
oxide depends on oxide thickness, the critical defect density
for area-scaled oxide with thickness tox can be represented as

λbd,tox = κ0 · r
df ,tox−3. (12)

V. EXPERIMENTAL RESULTS
In context of percolation model, oxide breakdown occurs
when a percolation path is created from the bottom to the
top of the oxide layer. In order to investigate the impact of
spatially distributed defects and oxide thickness dependence
on the statistics of oxide breakdown, a variety of simulations
are executed based on the percolation models. Because tile-
based percolation model cannot explicitly represent thickness
dependence on the oxide breakdown, sphere-based and cube-
based percolation models are used in this experiment. The
fractal structure of oxide breakdown according to oxide area
is evaluated in terms of percolation conduction path via spa-
tially generated defects.

A. RELATIONSHIP BETWEEN OXIDE THICKNESS
AND DEFECT SIZE
First, we investigate the relationship between oxide thick-
ness and critical number of defects (nbd ) for cube-shaped
and sphere-shaped defects formed in random fashion. Spa-
tial defects are generated from the HPP by assuming that
the defects are uniformly distributed in the oxide layer. The
defect radius r (edge length l) and oxide thickness tox are
varied to investigate the characteristics of oxide breakdown
distribution according to oxide thickness in the sphere-based
(cube-based) percolationmodel. The simulations are repeated
100 times at same oxide thickness and defect size. The algo-
rithm continues to generate defects until a conducting path
is created from the top to the bottom of the oxide layer.
Failure-time of the oxide is envisioned as the critical number
of defects (nbd ) up to the creation of a percolation path
connecting the two oxide interfaces by overlapped defects.

The simulated example of randomly generated spherical
defects with radius r = 0.45 nm at oxide thickness
tox = 3 nm and oxide area (20 × 20) nm2 are given
in Figure 4-(a). We confirmed that the Weibull distribution
successfully fits all the failure-times of oxide layers with dif-
ferent thicknesses in sphere-based percolation model, as well
as cube-based percolation model (even if the fitting results
are not given here). For homogeneously generated spherical
defects, it was observed that the values of Weibull shape
parameter increase as the oxide thickness increases (see
Table 1). Such trend was also observed in the simulation
results by Degraeve et al. [21] for spherical defects. It is
due to the fact that a smaller number of defects form the
percolation path in thinner oxide and consequently there is
a large statistical spread on the average density to form such
a short path.

Next, we investigated thickness dependence on failure-
times based on the spatial defects generated from the NHPP
in the oxide. To generate the defects following the NHPP in
the oxide layer, we applied the exponential decay model (1)
in Khosru et al. [8]: p(s) = k0 e−s/η, 0 ≤ x ≤ tox , where
tox is the thickness of gate oxide. Since

∫ tox
0 p(x)dx = 1,

the constant k is determined as [η(1 − e−(tox/η))]−1. In gen-
erating 3-dimensional defects in the oxide, we assumed a
homogeneous spatial point process on planar region (x, y)
and the exponential decay model (1) on z-axis. The plot of
the simulated spherical defects, with size (r = 0.45 nm) at
oxide thickness tox = 3 nm and oxide area (20 × 20) nm2,
are given in Figure 4-(b). At this time, the decay length from
the interface was fixed at η = 1.2. We also simulated defects
following the pair-potential Markov point process to examine
localization effects of spatial defects in the oxide layer. The
pair-potential function is selected to describe inhibition char-
acteristics of defects in the oxide. The pair-potential function
is: 9θ (s) = − log γ for 0 < s ≤ ψ , and 0 for s > ψ .
It was noticed that the process was little different from the
HPP when the parameter γ ranges 0.7 ∼ 0.8, hence γ was
set at 0.6 in the consideration of computational time, and the
Markov range ψ at 2× radius to make the percolation model
be effective. The simulation plot of the spherical defects with
size (r = 0.45 nm) is given in Figure 4-(c). We observed
that the oxide breakdowns from defects following the NHPP
and the pair-potential Markov point process can also be suc-
cessfully fitted by the Weibull distribution. All of simulation
results are given in Table 1.
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TABLE 1. Simulation results for defects following several spatial point processes.

In summary, failure density of the gate oxides decrease as
oxide thickness decreases and defect size increases because
relatively small number of defects can cause the oxide break-
down. The decreasing trend of Weibull shape parameter
decrease with decreasing oxide thickness is also observed
for breakdown distributions caused by defects following the
NHPP and the pair-potential Markov point process with
inhibition characteristic. It is also expected that decrease in
oxide thickness will cause serious reliability concerns in both
nonhomogeneous Poisson process and inhibition process.

B. AREA SCALING EFFECTS FOR OXIDE
BREAKDOWN DISTRIBUTION
To investigate distributional characteristics of area-scaled
gate oxides, we generated cube-shaped defects following the

HPP inside the oxide layer with the volume (la × wa × ta),
where la, wa, and ta represent a length, a width, and a
thickness of the gate oxide, respectively. Here, a lattice (cell)
volume corresponds to a3. It is assumed that the length and
the width are the same in this simulation; that is, la = wa.
Because the cube-based percolation model has a structure
to show area scaling effects on breakdown distribution more
clearly than sphere-based percolation model, cubic defects
with length l = 0.5 nm are used at this moment. The Weibull
plot ( log[− log(1 − F)] vs. log(defect density)) for area
scaled gate oxides, at different oxide thicknesses, are plotted
in Figure 5. In general, the breakdown distribution for area-
scaled gate oxides has been modeled by (8) along with the
assumption about common shape parameter of a Weibull
distribution. Simulation results show that the slopes (β) for
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FIGURE 5. Weibull plot of critical defect densities for different oxide thicknesses along with various oxide areas.

FIGURE 6. Log-transformed graph of critical defect density and oxide
area.

gate oxides with different areas are not the same at same oxide
thickness. It can be suspected whether there are confounding
boundary effects in the simulations. However, even in simula-
tion results at Table 1, we also observe that β for gate oxides
with different areas are varied at same oxide thickness for
any defects following both the HPP and the NHPP. Statistical
tests for the same values of β for gate oxides at different areas
rejected the null hypothesis H0 : βi = βj for ∀ i, j. It means
that large prediction error may exist when predicting area-
scaled oxide reliability by assuming common shape parame-
ters from equation (8) at identical oxide thickness.

We evaluated area-scaling effects through fractal structure
of gate oxides with different areas, but same oxide thick-
ness. First, we investigated the relationship between critical
defect density and oxide area using Eq. (11). We performed
100 times Monte Carlo simulations for each oxide. Figure 6
shows log-log transformed graph of critical defect density
and oxide area. The straight line indicates that defects in
the gate oxide with same thickness have fractal structure
with same fractal dimension df ,tox equivalent to the slope
in the line. We estimated the fractal constant κ0 and the
fractal dimension by fitting the straight line using simple
linear regression. Figure 7 shows the fractal dimensions for

FIGURE 7. Fractal dimensions for each oxide thickness.

TABLE 2. Simulation results for area-scaled gate oxides based on the
model (12).

each oxide thickness. Based on the values, critical defect
densities of gate oxides with different areaA2 are predicted by
plugging the estimates in (12), where r ≡ l ≡ w. The results
are summarized in Table 2 for true defect densities (λbd,tox )
calculated from data sets. Note that the biases are negligible.
The critical defect density of area-scaled gate oxides can
be predicted by only examining fractal structure through the
fractal dimension df ,tox without involving breakdown distri-
butions of the oxides with different areas.

VI. CONCLUSION
Continuous size reduction ofMOSFET devices for increasing
circuit speed and improving packing density are expected to
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cause serious reliability concerns to semiconductor manufac-
turers. To accurately predict reliability of newly developed
MOSFET devices with ultra-thin gate oxide, spatial patterns
of defects generated inside the oxide, as well as defect gener-
ation mechanisms, must be explicitly reflected in reliability
model.

We discussed several percolation models by envisioning
oxide failure as creation of a percolation path connecting
two oxide interfaces by overlapped defects. Because the
percolation model depends highly on the patterns of defect
generation, the defect patterns following popular spatial point
processes are investigated based on physical defect gener-
ation models. It was observed that the Weibull distribution
successfully fits the breakdown data caused by creation of a
percolation path connecting two oxide interfaces. However,
simulation results showed that the shape parameter in the
Weibull distribution depends on oxide area, hence existing
area-scaling model may provide biased prediction results by
assuming common shape parameter regardless of oxide areas.
As an alternative, we proposed a new method to evaluate life-
times of area-scaled gate oxides of MOSFET devices mainly
through their fractal structure. We observed that defects in
gate oxide can be modeled via fractal structure, and they have
same fractal structure at identical oxide thickness.

In recent years, high-k gate stack structure is widely
adopted to reduce leakage current problems caused by tun-
nelling [28]. Therefore, time dependent dielectric break-
downs with high-k materials are expected to be a prominent
study to more accurately project lifetimes of the MOSFET
devices [29]. In this regard, further understanding for physical
models of gate stacks with high-k materials is required to
accurately project the failures of MOSFET devices in future
research.

APPENDIX A
SPATIAL HOMOGENEOUS POISSON PROCESS
Consider a point process {N (A) : |A| ≥ 0} on any disjoint
sequence of d-dimensional planar regions A ∈ Rd , where
N (A) is the number of events on A and |A| is the area of A.
A point process N (·) is defined as a homogeneous Poisson
process with intensity λ(> 0) when the number of events in
any bounded region A has a Poisson distribution with mean
λ|A|, that is, for independent random variables N (A),

pk ≡ Pr(N (A) = k) = e−λ|A|
(λ|A|)k

k!
, k = 0, 1, 2, . . .

Let x1, . . . , xn be the locations of n traps. In the HPP, given
N (A) = n, x1, . . . , xn are independently and identically
distributed uniformly on A partitioned by A1, . . . ,An, i.e.

Pr(x1 ∈ A1, . . . , xn ∈ An)

= Pr(x1 ∈ A1)× · · · × Pr(xn ∈ An)

=
|A1|
|A|
× · · · ×

|An|
|A|

.

Uniformity refers to the fact that the traps exhibit no tendency
to occupy particular regions of the space, while independence

suggests that the location of a given trap is determined with-
out reference to that of any other trap.

APPENDIX B
SPATIAL NONHOMOGENEOUS POISSON PROCESS
A NHPPN (A) is defined on a finite planar region A with the
following postulates:

(i) The number of events in any bounded region A,
N (A) has a Poisson distribution with mean3(A) =∫
A λ(x) dx, for x ∈ A, where λ(x) is the intensity
function on A defined as

λ(x) ≡ lim
|dx|→0

E[N (dx)]
|dx|

,

where E[·] denotes an expectation (or average).
(ii) GivenN (A) = n, the n events form an independent

sample from the distribution on Awith a probability
density function proportional to λ(x).

This general framework on the NHPP can be used to define
systems on a finite region R by choosing the intensity func-
tion to restrict λ toR, that is; λR(x) = λ(x) for x ∈ R, and 0,
otherwise. The nano-structure functions for such finite sys-
tems (i.e., oxide layer with finite region) are then calculated
by using λR in place of λ. Constructing realizations of the
NHPP can be easily done in two stages if the density function
λ(x) is bounded onR, say, λ(x) ≤ λ∗. First, a Poisson process
of density λ∗ is simulated. Second, the resulting point pattern
is thinned. Each point x, independently of the other points,
is kept with probability λ(x)/λ∗ or deleted with probability
1 − λ(x)/λ∗. The resulting point pattern is reduced to a
NHPP with intensity function λ(x). Finally, we place spheres
of common radius r on the points of N (·) to construct a
realization of inhomogeneously Poisson distributed traps.

APPENDIX C
PAIR-POTENTIAL MARKOV POINT PROCESS
The pair-potential Markov point process is expressed in terms
of a pair-potential function {9θ (s) : θ ∈ 2}, indexed by
a parameter vector θ in a parameter space 2 for Euclidian
distance s. An observed spatial point process in some area
A is Markov of range ψ if the conditional intensity at point
x, depends only on the events in the circle of radius ψ
centered at x.
Define a function of the distance between traps xi and xj as

h(xi, xj) = −9
(
‖xi − xj‖

)
, xi 6= xj,

and two events interact are called neighbors if their distance
||xi − xj|| is less than ψ . At the start, we assume that there
are no large-scale effects (h(xi, xj) ≡ 0) and no higher-order
interactions. Then, the number of traps and the ordered n-
tuple of their locations are jointly distributed according to the
Gibbs grand canonical distribution [27] as

f ((x1, . . . , xn), n)=
e−ν(A)

αn!
exp

− ∑
1≤i<j≤n

9
(
‖xi − xj‖

) ,
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where f (·) is a joint density function of x ≡ (x1, . . . , xn)T .
Here, ν(A) is a mean (Lebesque) measure for the bounded
subset A ∈ Rd , and the normalizing constant α is chosen so
that
∞∑
n=0

∫
An
f ((x1, . . . , xn), n) ν(dx1)ν(dx2) · · · ν(dxn) = 1.

For distance s such that9(s) < 0, the model shows clustering
among the traps, whereas for s such that9(s) > 0, the model
shows an inhibition among traps, and9(s) = ∞ corresponds
to complete inhibition.
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