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ABSTRACT The purpose of this study was to quantitatively evaluating lower leg muscle ischemia measured
from dynamic computed tomographic angiography (dyn-CTA) for patients with peripheral arterial occlusive
disease (PAOD). A total of 35 patients with known PAOD underwent a dyn-CTA of the lower leg first
with 70 kV tube voltage and 30 mL iodinated contrast media. Five minutes later, a standard CTA (s-CTA)
of the peripheral runoff from the diaphragm to the toes was scanned. For each of four lower leg artery
segments, a runoff score was given by a radiologist according to s-CTA images as a reference standard.
The muscle enhancement measured from the dyn-CTA was analyzed by automated muscle segmentation
using curve-based Fuzzy C-means (CBFCM) algorithms with three classes for bone, two classes for muscle
and one class for fat and background. The muscle enhancement ratio (MER) was calculated for (i) higher
enhanced area over total area; and (ii) corresponding average signal value at higher enhanced are over total
area. Lower extremities were diagnosed as a normal group (n = 22) with each vessel segment score ≤ 1
and runoff score ≤ 7, and otherwise as an ischemia group (n = 48). The MER for the ischemia group
was significantly different (p < 0.05) than the normal group. There were weak correlations (|r| = 0.47,
p < 0.05) between runoff scores and the MER values. The receiver operating characteristics (ROC) analysis
between the two groups had area under the curve of 0.71-0.73. Our study demonstrated that CBFCM could
be used for automated muscle segmentation from the dyn-CTA images for qualitatively evaluation of lower
leg muscle ischemia.

INDEX TERMS Curve-based Fuzzy C-means, dynamic computed tomographic angiography, lower leg
muscle ischemia, peripheral arterial occlusive disease, standard computed tomographic angiography.

I. INTRODUCTION
Lower leg peripheral arterial occlusive disease (PAOD)
prevalence and incidence are both sharply age-related and
rising >10% among patients in their 60s and 70s [1]. The
prevalence in high income country at age 85–89 years was
∼18% in women and ∼19% in men. Globally, 202 million
people were living with peripheral artery disease in 2010 [2].
Lower leg ischemia has a direct adverse effect on calf skeletal
muscle area [3], [4]. Patients with PAOD not only have their
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physical functions most affected, but often have concomitant
coronary and cerebral artery disease [5], [6].

The PAOD has often been diagnosed with noninvasive
angiography, such as using computed tomography (CTA),
magnetic resonance angiography (MRA), as well as with
duplex ultrasonography (US) [7], [8]. Both CTA and MRA
provide a high resolution 3-dimensional road map of the
peripheral arterial tree in patients for visualization of the vas-
culature [9]. However, the diagnostic value is only promising
for large caliber arteries (from the aorta to the popliteal
artery). For the arteries beneath knees, there were stud-
ies demonstrated that dynamic CTA (dyn-CTA) increased
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diagnostic confidence for the assessment of the presence
and degree of arterial stenosis than standard CTA (s-CTA)
[10], [11]. The dyn-CTA is very useful for identification
of specific calcified vessels and can distinguish between
calcified and occluded vessels [12]. However, up to now,
almost all diagnosis of PAOD is qualitative based on vascu-
lar anatomical appearance and there is lack of quantitative
parameters for evaluating muscle ischemia.

MRI and CT images are also commonly used for the study
of skeletal muscle distribution and quantification in differ-
ent body regions with relevant clinical impact [13]. There
are many automated tissue segmentation methods to find
‘‘hard partition’’ of a given dataset based on certain criteria
that evaluate the goodness of partition, such as histogram-
based, region-based, edge-based, model-based, watershed
methods [14]–[16]. In contrast, the Fuzzy C-Means algorithm
is an unsupervised fuzzy clustering algorithm used in tissue
segmentation [17], such as liver [18]–[20], brain [21], [22],
breast [23]–[25] and head and neck cancer [26]. All above
studies using Fuzzy C-Means mainly focused on identifica-
tion of cancer. To the best of our knowledge, there is no study
using Fuzzy C-Means on dyn-CTA images for automated
muscle segmentation for diagnosis of PAOD to evaluate mus-
cle ischemia.

In this study, the curve-based Fuzzy C-means (CBFCM)
algorithmwas used to segment the lower leg muscle enhance-
ment measured from the dyn-CTA to quantitatively evaluate
muscle ischemia. The dyn-CTA and s-CTA were performed
using 70 kV tube voltage and low dose of iodinated con-
trast media (CM) to significantly reduce the radiation dose
[27]–[29]. The segmented muscle area and corresponding
average signal over themuscle area at the last time point of the
dyn-CTAwere calculated and used for calculating the muscle
enhancement ratios (MER).

II. MATERIALS AND METHODS
A. PATIENTS AND DATA ACQUISITION
This study was approved by the Institutional Review Board
at Peking Union Medical College Hospital, Beijing China.
Patients were enrolled from November 2015 to March 2016.
Informed consent was obtained from all patients prior to
any study procedures. A total of 35 patients (average age =
66.6±11.7 years old; 11 female, 24 male) with known PAOD
were enrolled in this study. Based on runoff score obtained
from diagnosis of s-CTA images, all 35 patients with 70 lower
extremities were divided into a normal group and an abnormal
group with ischemia.

All scans were performed on a third generation dual source
CT system (Somatom Definition Force; Siemens Health-
care, Forchheim, Germany) with the capability of dynamic
imaging by using a shuttle mode. The dyn-CTA scan was
immediately started as soon as the arteries were enhanced
at the premonitory position, where it was 15 cm above the
superior border of the scan range of the dyn-CTA. The scan
was performed from the knees to the toes with 150 slices.
Five minutes later, the s-CTA of the peripheral runoff from

TABLE 1. Detailed CTA scan parameters.

the diaphragm to the toes was performed [11], [13]. The
s-CTA scans were triggered with a bolus tracking technique.
A region of interest (ROI) was placed on the healthy popliteal
artery, and the s-CTA scan automatically initiated after 6 s
when a threshold of 100 Hounsfield Unit (HU) was achieved.
All the dyn-CTA and s-CTA scan parameters are given
in Table 1.

For estimating the CTA radiation dose, the volume CT
dose index (CTDIvol) and the dose length product (DLP)
of each patient were recorded. The conversion coefficients
k for effective dose (ED) was adopted from the study of the
estimation ED of lower legs by Saltybaeva [30].

For each of four lower leg artery segments, stenosis per-
centage and occlusion length were evaluated and a score
was given by a vascular imaging radiologist (DZ, 8-year
experience) according to the s-CTA diagnostic outcome. The
score ranges from 0 to 19, with a higher score indicating more
severe disease. The evaluation criterion is given in Table 2.
The score for the popliteal artery is multiplied by 3 according
to existing standard and 1 is added before sum all 4 vessel
scores together as runoff score for a lower leg [31].

TABLE 2. Evaluation criterion.

B. TISSUE SEGMENTATION
Tissue segmentation was achieved by applying curve-based
Fuzzy C-means (CBFCM) clustering for the dyn-CTA data.
The CBFCM algorithm is based on tissue time attenuation
curves, while the traditional FCM algorithm is mainly based
on the image pixel values. All the data analysis was performed
using MATLAB (MathWorks, Natick, MA) with in-house
software. The dyn-CTA data were analyzed by a medical
physicist, who was blinded to the patients’ diagnostic results.
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Prior to applying the CBFCM to the dyn-CTA data,
the patient bed needs to be removed from the source data to
avoid confusion with tissue segmentation. Since there was a
big gap between patient bed and legs in CT image, the bed
was easily isolated and its image was replaced by CT value
of air. Then the 20th, 30th, and 40th axial slices were used
for tissue segmentation using the CBFCM algorithm, because
these slices were at the larger section of the legs with clear
blood vessels and muscle region. Based on some trial analy-
sis, the number of classes was set to be six, including three
classes for bone, two classes for muscle and one class for fat
and the background.

For each pixel, there was a time attenuation curve (TAC)
measured from the dyn-CTA data. For each slice, there was
a data set S = {si, i = 1, 2, . . . ,N }, where N (= 512 × 512)
is total number of pixels, si = (TACi1, TACi2, . . . , TACi,T )
is a vector containing CT value of the ith pixel at time point t
(TACit), and T (= 9) is total number of time points in the dyn-
CTA. In this research, we attempted to partition the dataset S
into c (= 6) classes.
The detailed CBFCM algorithm was published by

Chen et al. in 2006 [25]. In brief, the prototypic curves
corresponding to the c classes were represented by a c × T
matrixV, with the k th (k = 1, 2, ..., c) row is a T -dimensional
vector representing the prototypic curve of the k th class. The
partition of the data set is represented by a c × N matrix U,
with each element represents the ith data point si to the k th

class. In the calculations, matrix V was randomly initialized,
and then U and V were obtained through an iterative pro-
cess. The convergence criterion of the iteration was that the
Euclidean distance between the current prototype matrix and
the prototype matrix in the previous iteration was less than
some user-specified number ε, i.e., ||Vnew−Vold || < ε. The
flowchart of the segmentation steps is shown in Fig. 1.

C. MUSCLE ENHANCEMENT
Total automated muscle segmentation area was compared
with manually segmented muscle area as verification of accu-
racy. The manual segmented muscle was achieved by using
threshold value to remove bone first, and then manually
traced around edge of muscle regions.

For each slice, the muscle enhancement ratio (MER) based
on area (MERarea) was calculated by higher enhanced muscle
area over total muscle area, i.e.,

MERArea =
Higher enhanced muscle area

Total muscle area
. (1)

In addition, the MER based on average signal value
(MERSignal) over corresponding muscle areas was also cal-
culated as follows:

MERSignal

=
Average signal over higher enhanced muscle area

Average signal over whole muscle area
.

(2)

FIGURE 1. The flowchart of the segmentation steps used in the CBFCM.

Finally, averaged MER between three slices was used as a
final MER value and compared between normal group and
abnormal group with ischemia.

All statistical analyses were performed using the Statis-
tical Package for Social Sciences, version 19.0 (SPPS Inc.,
Chicago, IL, USA). For calculated MER parameters, Student
t-tests were performed to examwhether there were significant
differences between the normal and abnormal group with
ischemia.

The Pearson correlation coefficients were calculated
between runoff scores andMER parameters. Receiver operat-
ing characteristics (ROC) analysis was performed to evaluate
whether MER parameters could be used for classification
of normal lower leg vs. abnormal lower leg with muscle
ischemia. A p-value less than 0.05was considered significant.

III. RESULTS
For all 35 patients (Fontaine stage I, n=5; Fontaine stage II,
n=21; Fontaine stage III, n=3; Fontaine stage IV, n=5, one
for suspicious arterial aneurysm), the mean body mass index
was 22.9 ± 3.0 kg/m2 (range, 15.8 - 30.5 kg/m2). Lower
extremities were diagnosed as a normal group (n = 22) with
each vessel segment score ≤ 1 and runoff score ≤ 7, and
otherwise as an ischemia group (n= 48). The mean CTDIvol
and DLP were 1.6±0.3 mGy and 204.7±45.2 mGy×cm for
the s-CTA, and 9.1±0.0 mGy and 396.9±0.1 mGy×cm for
dyn-CTA. The effective radiation dose of the combination
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FIGURE 2. An axial slice of lower legs dyn-CTA image for 37 year old male
patient with known normal (at right) and ischemia (at left). Top gray
image is the 30th slice of the dyn-CTA at the last time point. Bottom is the
corresponding segmentation results obtained from the CBFCM
superimposed over gray image. The red and green colors represent higher
and lower muscle enhancement region, respectively. The two curve lines
at the bottom are the patient bed.

protocol with dyn-CTA and s-CTA was 2.0±0.2 mSv and
1.0±0.2 mSv, respectively.

Figure 2 shows (top) the 30th axial slice of dyn-CTA gray
image at the last time point for a patient with asymmet-
ric lower leg arterial stenosis, and (bottom) corresponding
automated segmentation results obtained from the CBFCM:
three classes for bone (represented by yellow, orange, and
blue), two classes for muscle (higher (red) and lower
(green) enhancement) and one class for fat and the back-
ground (black).

Figure 3 (a) shows a scatterplot betweenmanual segmented
muscle areas and the CBFCM automated segmented muscle
area obtained from the 30th slice for all 70 legs. There was
a strong correlation (r = 0.99) between manually and auto-
matically segmented muscle areas. The reasons selected the
30th slice as an example because it was the largest section in
the calf so that manually traced muscle area had less error.
The corresponding Bland-Altman plot shows good agree-
ment between the two area measurements (Figure 3 (b))
with bias of 0.04 cm2 and limits of agreement between
−2.11 to 2.19 cm2.

FIGURE 3. (a) The scatter plot of muscle area calculated between manual
segmented muscle area and the CBFCM automated segmented muscle
area. The red line is linear correlation that fits the data. (b) The
corresponding Bland-Altman plot for the manual and automated
segmented muscle area. The solid red line represents the mean
difference and the dashed lines represent the lower and upper limits of
agreement, defined by a range of ±1.96∗SD (95% confidence interval)
around the mean.

FIGURE 4. (a) The boxplot of the MERarea for normal (black) and
ischemia (red) lower legs. (b) The scatter plots between runoff scores and
the MERarea. (c) The boxplot of the MERsignal for normal (black) and
ischemia (red) lower legs. (d) The scatter plots between runoff scores and
the MERsignal. The square (�) indicates mean of the data. The red line is
linear correlation.

Figure 4 (a) shows boxplot of the MERarea for both nor-
mal and ischemia groups. On average, the MERarea for the
ischemia group was significantly lower (p < 0.05) than
the normal group. There was a weak negative correlation
(r=−0.47, p< 0.05) between runoff scores and theMERarea
(Fig. 4 (b)). Figure 4 (c) shows boxplot of MERsignal for both
normal and ischemia groups. On average, the MERsignal for
the ischemia group was significantly higher (p < 0.05) than
the normal group. There was a weak positive correlations
(r= 0.47, p < 0.05) between runoff scores and the MERsignal
(Fig. 4 (d)).

Finally, Fig. 5 shows receiver operating characteristics
(ROC) analysis results for the parameters MERarea and
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FIGURE 5. The receiver operating characteristics (ROC) analysis results
between normal and ischemia lower legs for the parameters MERarea and
MERsignal.

MERsignal with the area under the curve (AUC) of 0.71 (blue
line) and 0.73 (red line), respectively. It was demonstrated
that there is fair diagnostic accuracy for the MER based on
runoff scores as the reference standard. Moreover, combining
parameters MERarea and MERsignal using logistic regression
analysis could increase AUC to 0.75.

IV. DISCUSSION
The lower leg muscle enhancement measured by the dyn-
CTA was quantitatively evaluated using the CBFCM algo-
rithm for muscle segmentation. Our study demonstrated the
feasibility of evaluating lower leg muscle ischemia based on
automated muscle segmentation. TheMERarea andMERsignal
calculated from enhanced muscle area could be used as quan-
titative assessment for assisting the diagnosis of PAOD.

Newer CT scanners provide dynamic imaging range up to
60 cm in length, which is favorable for the dynamic multipha-
sic lower legs angiography [12]. The low tube voltage (70 kV)
was proven to be feasible in CTA to reduce the radiation
dose, as well as lower the CM volume to more than half
[28], [29], [32]. Our study further demonstrated the feasibility
of the protocol with low radiation dose (ED= 2.0±0.2 mSv),
low iodinated contrast media (30 mL for dyn-CTA and 50 mL
for s-CTA) as well as low tube voltage (70 kV) could be used
in clinic for diagnosis of PAOD.

Previous studies of dyn-CTA were mainly on vascular
morphology for better illustrate lumen stenosis of arteries.
There was a lack of quantitative assessment for lower leg
muscle ischemia. The vascular stenosis status may be not
equal to the severity of lower leg muscle ischemia for sev-
eral reasons [33]. First, the judgment of vascular stenosis
relies on subjective evaluation, which is easily influenced by

human factors. Second, the vascular diameter (2 - 3 mm)
is very thin for lower legs, which makes hard to determine
stenosis from mild to severe, especially for severe stenosis
and occlusion. Third, there were some side branches of blood
vessels that developed for some patients, making it even hard
to diagnosis stenosis accurately [34]. Therefore, our study
could assist diagnosis in the clinic to provide quantitative
measurement of muscle ischemia to some extent.

There are several limitations to this study. First, total iodi-
nated contrast media (80 mL) used in this study is even less
than normal s-CTA alone (90 mL). Therefore, the amount
of contrast media could be slightly increased to get better
muscle enhancement in the future study. Second, the dyn-
CTA did not follow contrast media long enough to clearly
shown contrast media uptake and washout in muscle. Third,
our quantitative measurement was only compared with the
runoff score, but did not compare with the gold standard dig-
ital subtraction angiography (DSA). This is because patients
with mild muscle ischemia did not require an invasive exam-
ination. Fourth, the number of clusters used in the CBFCM
was setup to six, whichmay not be proper for the other section
of the leg. A more flexible number of clusters should be
used in the future with artificial intelligent to better segment
muscle enhancement.

In conclusion, the CBFCM could be used for automated
muscle segmentation to quantitative evaluate tissue enhance-
ment measured by the dyn-CTA. More studies are needed
with a larger number of patients to establish reliable param-
eters to predict muscle ischemia in order to assist clinical
diagnosis.
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