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ABSTRACT Details of small anatomical landmarks and pathologies, such as small changes of the microvas-
culature and soft exudates, are critical to accurate disease analysis. However, actual medical images always
suffer from limited spatial resolution, due to imaging equipment and imaging parameters (e.g. scanning time
of CT images). Recently, machine learning, especially deep learning techniques, have brought revolution
to image super resolution reconstruction. Motivated by these achievements, in this paper, we propose a
novel super resolution method for medical images based on an improved generative adversarial networks.
To obtain useful image details as much as possible while avoiding the fake information in high frequency,
the original squeeze and excitation block is improved by strengthening important features while weakening
non-important ones. Then, by embedding the improved squeeze and excitation block in a simplified EDSR
model, we build a new image super resolution network. Finally, a new fusion loss that can further strengthen
the constraints on low-level features is designed for training our model. The proposed image super resolution
model has been validated on the public medical images, and the results show that visual effects of the
reconstructed images by our method, especially in the case of high upscaling factors, outperform state-of-
the-art deep learning-based methods such as SRGAN, EDSR, VDSR and D-DBPN.

INDEX TERMS Generative adversarial network, medical image reconstruction, squeeze and excitation
block, super resolution.

I. INTRODUCTION
Details of small anatomical landmarks and pathologies are
critical to accurate disease analysis. For example, small
changes of the microvasculature around a tumor are an
important biomarker for cancer diagnosis [1], and unapparent
soft exudates are important pathologies for retinal condition
diagnosis [2]. However, many actual medical images suffer
from the limited spatial resolution, due to imaging equipment
and imaging parameters (e.g. scanning time of CT images).
Such low resolution of medical images impedes the accurate
detection or segmentation of small anatomical landmarks and
pathologies, and impedes the accurate diagnosis of some
serious diseases at its early stage.

In the past 30 years, a large amount of work has been
reported for improving the resolution of actual medical
images. Early resolution enhancement methods, such as
basic cubic interpolations and its variants, usually suffer
from the great loss of sharp-edged details and high local

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

contrast [3] Super Resolution (SR) reconstruction techniques
then came to be popular in the community of medical
images resolution enhancement. Based on sparse represen-
tation, Yang et al proposed a regularized single image SR
method for medical images [4]; Rueda et al reconstructed
a high-resolution version of a low-resolution brain MR
image [5]; Wei et al proposed a medical image SR algo-
rithm [6] with good Peak Signal to Noise Ratio (PSNR) and
visual effect. Recently, based on the random forest model
selection strategy, Dou et al proposed an SR method for
obtaining more information from a low resolution medical
image [7]. Based on multi-kernel support vector regression,
Jebadurai and Peter proposed an SR algorithm for retinal
images [8]. Though thesemethods aremore effective than tra-
ditional interpolation-based techniques, they are still unable
to restore high quality images in the case of high upscaling
factor.

Motived by the tremendous achievements of deep learn-
ing in computer vision, some new SR techniques have
been reported, too. Based on the VGG-net, Kim et al. pre-
sented a highly accurate SR method with Very Deep CNN
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FIGURE 1. The original SE block(a) and the improved SE block(b).

(VDSR) [9]. Dong et al. first introduced Convolutional
Neural Networks (CNNs) to single image SR, and proposed
SRCNN model [10]. Based on the basic structure of CNNs,
an SR method for grayscale medical images is proposed
in [11]. He et al. proposed Residual neural Network (ResNet)
to make the training procedure of SR model more easier [12].
Tai et al. proposed a 52-layer recursive network to further
improve the SR performance of the ResNet [13], and Lim
et al. removed unnecessary modules in the ResNet while
expanding the model size [14], and achieved significant
improvement. Zhang et al. [15] adopted effective residual
dense block in SRmodel. They then further explored a deeper
network with channel attention [16], and achieved the state-
of-the-art PSNR performance.

Recently, due to the good performance of generative
adversarial networks (GANs) in producing very realis-
tic images, GAN-based image SR models are emerging
and still growing. For example, SRGAN [17], Neural
Enhance [18]and ESRGAN [19] are all GAN-based SR
models. Specifically, Mahapatra et al. proposed a medical
image SR algorithm using progressive generative adversarial
networks (P-GANs) [2]

Though, as mentioned above, there are so many meth-
ods have been reported, medical image SR is still an open
problem, and the reconstruction results are still unsatisfied
for high upscaling factors. Therefore, in this paper, we pro-
pose a new medical image SR method based on the GAN
framework. We first improve the original Squeeze and Exci-
tation (SE) block [20] by strengthening important features
while weakening non-important ones. Then, after simplifying
the original EDSR [14], we embed the improved SE block
in the simplified EDSR model. Finally, we design a new
fusion loss that can further strengthen the constraints on low-
level features to train the proposed image SR model. Our
experimental results on twomedical image datasets show that
the strategies of embedding the improved SE block and using
the fusion loss benefit the proposed GAN-based SR model
with better visual effect than several state-of-the-art models,
such as EDSR, VDSR, SRGAN, and D-DBPN, especially for
high upscaling factors.

The remainder of the paper is organized as follow.
Section II describes the method for improving SE block.
Section III gives the details of the proposed GAN-based SR
model. Section IV presents performance assessments fol-
lowed by some concluding remarks in Section V.

II. IMPROVED SE BLOCK
The SE building block shown in Fig. 1(a) is proposed by
Hu et al. [20]. The basic function of the SE block is to adap-
tively recalibrate channel-wise feature responses by explic-
itly modelling interdependencies between channels. First,
by using the global pooling (1), the SE block squeezes each
feature map.

yc =
1
HW

H∑
i=1

W∑
j=1

xc(i, j) (1)

where yc represents the squeezed feature corresponding to the
c-th feature map xc. H and W are the height and the width of
xc, respectively. Then, the squeezed features are fed to a fully
connected 3-layer neural network, whose input layer has the
same dimension as that of the output layer.

The activation function of the original SE block is the
following Sigmoid function:

s = Eorg(y) = σ (W2δ(W1y)) (2)

where s = [s1, s2 . . . sc] is the scale vector of original feature
maps, and Eorg(·) means the original activation function.
y = [y1, y2 . . . yc] is an input feature vector. σ and δ are
respectively the Sigmoid function and the ReLU functionW1
and W2 are weights of the input layer and the output layer,
respectively.

The final output of an SE block is obtained with (3).

x̃c = xc · sc (3)

where ‘‘·’’ means elementwise product.
On one hand, the activation function in (2) doesn’t thor-

oughly utilize the response of the hidden layer. On the other
hand, Eorg in (2) ranges from 0 to 1. In the case that multiple
SE blocks are embedded in a network, such Eorg of (0,1) will
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FIGURE 2. The proposed SR model. ILR : Low Resolution(LR) images, IHR : High Resolution(HR) images.

FIGURE 3. The generator of our SR model. ISE: Improved SE block.

make the responses of middle layers very small, and thus will
greatly degrade the performance of the network. Therefore,
as shown in Fig. 1(b), we substitute the activation function in
(2) with (4) in this paper, and get an improved SE block.

s=Eimp(y)={k1 × [σ (W2δ(W1y))]+k2 × σ (y)} × 2 (4)

where k1 and k2 are positive numbers and k1 + k2 = 1, and
they control the contribution of the input layer and the output
layer of the SE block, respectively.

Such improvement on an SE block is beneficial from the
following aspects:

i) The residual manner in (4) utilizes both the inputs and
the outputs of the 3-layer network, and only fine-tuning on
weights is required. Thus, the difficulties in the training pro-
cess is alleviated.

ii) Eimp(·) in (4) ranges from 0 to 2 rather than (0,1).
Therefore, the problem of feature weakening caused by per-
forming many multiplications with a scale less than 1 can be
effectively alleviated.

III. SUPER RESOLUTION METHOD WITH
GAN AND IMPROVED SE
As shown in Fig. 2, our image SR model is built based on the
GAN framework and the improved SE blocks. Specifically,
the improved SE blocks are respectively embedded in the gen-
erator and the discriminator, and a fusion layer is appended
to the discriminator.

TABLE 1. Average PSNR on test dataset with different wMSE .

A. THE GENERATOR AND THE DISCRIMINATOR
As shown in Fig. 3, the EDSR model proposed by
Lim et al. [14] are simplified to serve as the generator of our
GAN-based image SR model. After simplification, the new
EDSR has 16 Resblocks and 64 kernels, and other parameters
are the same as those in the original EDSR. We then embed
the improved SE blocks in the convolutional layers of the
simplified EDSR.

The discriminator of our SR model is shown in Fig. 4.
It consists of 8 main convolutional layers with the increasing
kernels from 64 to 512 as those in VGG [21]. We then
embed the improved SE block in each convolutional layer
to improve the accuracy of the discriminator. Next, a fusion
layer that fuses the features of the last three convolutional
layers together is added to the discriminator. By doing so,
the discriminator can pay more attention to the low frequency
features, and the freedom of our SR model can be reduced,
too. Finally, the classification is completed by sequentially
performing global pooling, convolution structure and Sig-
moid activation function. Here, the convolution structure con-
sists of two layers with 1× 1 kernels.
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FIGURE 4. The discriminator of our SR model. ISE: Improved SE block.

FIGURE 5. Example SR results for a test image in DRIVE database.

B. LOSS FUNCTION
In this paper, we propose a new loss function for training
our GAN-based SR model shown in Figs. 2–4. As given
in (5), the new proposed loss function combines L1
loss (L1), relativistic adversarial loss(LRG) [22], percep-
tual loss(LVGG) [19], and Mean Square Error loss (LMSE )
[10], [23] together.

LFusion = LVGG + w1L1 + wRGLRG + wMSELMSE (5)

where w1, wRG and wMSE are positive real numbers. They
are hyper-parameters that control the contribution of each
individual loss.

In (5), LVGG contributes to higher-level semantic contents
rather than pixel-level structures in the feature space and it is
closely related to the perceptual similarity. The second term
L1 encourages the network to get information from ground
truth images. Although both LVGG and L1 lead high PSNR
of the reconstructed image, a lot of high-frequency details
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TABLE 2. Training configuration for training the proposed model.

FIGURE 6. Some details of Fig. 5.

are probably lost by adopting these two losses. Therefore,
the third term LRG is adopted to enforce the network to
produce sharp and clear images. The last term LMSE is used
to minimize the MSE between the generated images and the
corresponding ground truth.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed GAN-based medical image SR model has
been implemented in PyTorch 0.4.1 on Ubuntu 16.04 with
CUDA8, CUDNN5.1, andNVIDIA 1080Ti. All experiments
were performed on two retina image datasets, DRIVE [24]
and STARE [25]. DRIVE consists of 20 training images and

20 test images, while STARE consists of 397 images. The
images in STARE are randomly divided into two parts, part
A and part B. Part A includes 20 images, and part B includes
the other 377 images.

The training dataset consists of 397 retina images, 20 of
which come from the training images in DRIVE and others
come from part B images in STARE. The test dataset consists
of 40 retina images that are independent from the training
images. 20 of them come from the test images in DRIVE
and others come from part A in Stare. All images are first
resized to 1024 × 1024 pixels that serve as reference High
Resolution (HR) images.
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FIGURE 7. Example super resolution results for a test image in STARE database.

TABLE 3. PSNR and SSIM of different models (the best results are
in bold).

A. TRAINING DETAILS
To further augment the training dataset, we randomly choose
one of the following operations on the HR images during
the training: rotated by 90◦, 180◦, or 270◦, flip horizon-
tally, or zero-mean. The corresponding Low Resolution (LR)
images are obtained by down-sampling each high resolution
image with scaling factors 4, 8 and 16.

Under the constraint that the output of improved SE
block should contribute more than the input layer, param-
eters k1 and k2 in (4) are experimentally determined as

TABLE 4. The PSNR of original SE and improved SE.

0.8 and 0.2, respectively.The proposed SR model is trained
with the fusion loss in (5). Here, according to previous
work [19], we fix the value of w1 and wRG in (5) while vary
wMSE from 0 to 10. The average corresponding PSNR of the
proposed model on all test images with scaling factor of 4 are
listed in Table 1.

From Table 1, one can notice that the proposed SR model
cannot be successfully trained with wMSE = 0.01. In our
experiments, we find that the model is unstable with small
wMSE (e.g. 0–0.01). From this point of view, wMSE should not
be too small. In this paper, according to Table 1, we choose
wMSE = 0.5.
In terms of dimension reduction ratio in the improved SE

block, we set it to 16 that is the same with the original
SE block [20]. The ADAM optimizer [26] is adopted for
training our SRmodel, and the training configuration is listed
in Table 2. Our models has been trained with 106 updates and
batch size of 16.
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FIGURE 8. Some details of Fig. 7.

B. EVALUATION ON MEDICAL IMAGES
In this section, we evaluate our image SR model on 40 test
images. The traditional model Bicubic and the state-of-
the-art SR models including EDSR [14], D-DBPN [27],
VDSR [9], and SRGAN [17] have been chosen for com-
parison. The parameter settings accompanied to each com-
pared model are the same as those in their original
paper.

Similar to [14], the last 10 images of the training dataset
have been selected as training validation set on which the
evaluation is conducted. The objective metrics PSNR and
structural similarity index (SSIM) for above mentioned mod-
els are listed in Table 3, and some visual results are shown
in Figs. 5–9. Here the sample images in Fig. 5 and Fig. 7 are
from DRIVE database and STARE database, respectively.
To showmore details, the zoomed in small areas in the recon-
structed images in Fig. 5 and Fig. 7 are respectively shown

in Fig. 6 and Fig. 8. Since our model is more competitive on
high upscaling factors, Fig. 9 is presented to showmore visual
results of scaling factor of 16.

FromTable 3, one can see that in terms of PSNR and SSIM,
our model outperforms the traditional SR method Bicubic,
the state-of-the-art models VDSR and SRGAN. Moreover,
though our model is a light weight network and has much less
layers than EDSR and D-DBPN (e.g. the number of layers of
EDSR is almost twice as large as ours), it performs just lightly
worse than EDSR and D-DBPN for scaling factors 4 and
8, and is superior to them for high scaling factors (e.g. 16).
Specifically, our model significantly superiors to the state-
of-the-art EDSR on scaling factor 16 with the improvement
margin of 8.09dB(PSNR) and 0.0301(SSIM). The major rea-
son is that improved SE blocks embedded in our model can
effectively strengthen important features while weaken non-
important ones.
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FIGURE 9. More results on scaling factor 16.

Table 4 listed the PSNR of the model with original SE
blocks and improved SE blocks. Here, the same network
structure as that shown in Figs. 2–4 is adopted, except that
the improved SE blocks in the generator and the discriminator
are substituted to the original SE blocks. We can see that
our improvement strategy on SE blocks benefits the model
with higher PSNR and higher SSIM, especially in the case
of medium and high upscaling factors (e.g. 8 and 16). From
the results in Table 4, we can see that it is the improved SE
blocks make our model have higher PSNR and SSIM for high
upscaling factors.

Figs. 5–9 illustrate that our model can reconstruct SR
imageswithmore visual details than othermethods especially

for high upscaling factors (e.g. 16). For example, all com-
pared SRmodels except ours cannot clearly reconstructed the
thin blood vessels pointed out with a green arrow in Fig. 5 and
Fig. 7 in the case of upscaling factor of 16. Similar results
can be seen in Fig. 6 and Fig. 8. Specifically, Fig. 8 and
Fig. 9 show that for scaling factor of 16 the small blood
vessel is lost from the image reconstructed byBicubic, EDSR,
VDSR, D-DBPN, or SRGAN. Our model can still reconstruct
such small blood vessel, though very blurry. Figs. 5–9 further
illustrate that though the PSNR and SSIM of our model are
lower than the models without adding adversarial loss, such
reduction of PSNR or SSIM doesn’t degrade the visual effects
of reconstructed images. The major reason is that the new
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fusion loss in (5) can effectively drive the model to produce
images more similar to the ground truth ones.

V. CONCLUSION
In this paper, by embedding improved SE blocks in the gen-
erator and the discriminator of the GAN, and by using new
fusion loss, we have presented an effective light weight med-
ical image SR model. The experimental results on two retina
image datasets have shown that our model outperforms state-
of-the-art SR methods including EDSR, SRGAN, VDSR and
D-DBPN in terms of visual effects and is comparative to
existing image SR models in terms of PSNR and SSIM.
Moreover, our method can reconstruct images with more
detail structures for higher scaling factors.
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