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ABSTRACT Gastrointestinal (GI) disease is one of the most common diseases and primarily examined
by GI endoscopy. Recently, deep learning (DL), in particular convolutional neural networks (CNNs) have
made achievements in GI endoscopy image analysis. This review focuses on the applications of DL methods
in the analysis of GI images. We summarized and compared the latest published literature related to the
common clinical GI diseases and covers the key applications of DL in GI image detection, classification,
segmentation, recognition, location, and other tasks. At the end, we give a discussion on the challenges and
the research directions of GI image analysis based on DL in the future.

INDEX TERMS Gastrointestinal disease, gastrointestinal endoscopy image, deep learning, analysis,
comparison.

I. INTRODUCTION
GI disease is one of the most common diseases and com-
monly occurs in humans, resulting in one of the most impor-
tant healthcare problems. According to the extent of the
lesion, it can be roughly divided into benign GI diseases,
precancerous lesion, early GI cancer and advanced GI cancer.
Benign GI diseases such as ulcers, gastritis and bleedings
will not deteriorate into cancers in short term. Precancerous
GI lesions may deteriorate into early GI cancer or even
advanced GI cancer, if not diagnosed and treated in time.
The 2018 world cancer statistics [1] indicate that colorectal
cancer, gastric (stomach) cancer (GC) and esophageal cancer
are three main GI cancers. The highest incidence rates of
colon cancer are found in western regions/countries such
as Europe, Australia/New Zealand, and Northern America.
Incidence rates of GC are markedly elevated in Eastern Asia,
while the rates in the western countries are generally low.
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Esophageal cancer is common in several countries in Eastern
Asia, Eastern and Southern Africa, with the highest rates in
Eastern Asia. Clinical data suggest that the 5-year survival
rate of GC remains low (between 23% and 27%) [2], while
the 5-year survival rate of advanced gastric cancer (AGC),
especially TNM stage IV cancer, is only 4% [3]. However,
the 5-year survival rate of early gastric cancer (EGC) can
be as high as 95% [4]. Therefore, the earlier the detection
and active intervention of GC, the higher the survival rate
of patients, with even the potential of fully recovery. The
accurate detection and diagnosis of precancerous lesions and
early cancer of GI are crucial to prevent GI diseases from
developing into advanced cancer.

Currently, the examination and diagnosis of GI diseases
mainly rely on endoscopy [4], [5]. This technique is ameth-od
to noninvasively deliver a pathological diagnosis of living
tissue. GI endoscopy includes gastroscopy, colonoscopy and
wireless capsule endoscopy (WCE), where images captured
by these three endoscopies are shown in Fig. 1. Usually,
gastroscopy is used to examine abnormalities of the upper
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FIGURE 1. Examples of GI endoscopic images. (a) Gastroscopic image of
normal esophagus, (b) colonscopic image of normal colorectal, (c) WCE
image of normal small intestinal, (d) gastroscopic image of stomach with
ulcer, (e) colonscopic image of colorectal with polyp, (f) WCE image of
small intestinal with hemorrhage.

GI, colonoscopy is used to check the lower GI and WCE is
main-ly used to detect lesions in the small intestine between
the upper and lower GI. WCE, a new type of micro-digestive
endoscopy, involves a small device that is swallowed by
patients, passes through the overall GI and is then discharged
from the anus, examining the entire GI along the way within
the battery life time of about 8 hours. The number of GI
images produced by each endoscopic examination is very
large, especially in WCE, which can produce 50,000 to
120,000 images during one examination. The reading of a
large amount of endoscopic image data has exceeded the lim-
itation of human concentration, thus easily resulting in mis-
diagnosis and a decrease of diagnostic accuracy. In addition,
the diagnostic results may be controversial, due to different
experiences of doctors. In fact, only a small number of GI
images would contain GI lesions. Selecting a small number
of crucial lesion images from a large number of endoscopic
images is a time-consuming and laboriously inefficient task
for doctors. To improve the efficiency and diagnosis accuracy,
some computer aided diagnosis (CAD) systems have been
developed, which automatically select, identify and classify
lesion images, and provide an objective reference to doctors.
These CAD systems could not only reduce the burden of
doctors, but also improve the diagnostic efficiency and brings
a great help to doctor.

The traditional framework of a CAD system consists of a
feature extraction and a classifier based on machine learn-
ing (ML) methods. First, an artificially designed algorithm
is used to extract image features such as color and texture;
then, these extracted features are sent to a classifier such
as a Support Vector Machine (SVM) [6]–[9]. For instance,
Liu et al. [7] designed a joint diagonalisation principal com-
ponent analysis algorithm to extract features of endoscopic
images; then, these features were sent into a SVM to be
classified into two categories: abnormal and normal images.
A comparison between hand-craft feature based SVM and
CNNs-based DL for colon polyp detection was performed

by Shin and Balasingham [10]; the results indicated that the
CNNs-based DL method performed better. The Endoscopic
Vision Challenge results of 2015 Medical Image Comput-
ing and Computer Assisted Intervention (MICCAI) demon-
strated that a method based on DL is the state-of-the-art [11].
Besides, in two papers which studied the detection of intesti-
nal hookworms, the accuracy of the DL method [12] was
found to be approximately 10.3% higher than that of the
artificial feature extraction method from [13] using the same
database.

Recently, DL has achieved a great success in the field
of computer vision. In certain cases, its object recognition
accuracy can even surpass that of human beings. In particular,
CNNs have achieved very good results in different image
processing tasks [14]. CNNs first appeared in1980 [15], and
Lo et al. [16] first applied CNNs to lung nodule detec-
tion in 1995. The first successful application of CNNs was
LeNet which was used for digital handwriting recognition
in 1998 [17]. Although these studies highlighted the initially
great successes of the application of CNNs, the usefulness of
this kind of network seemed to be halted because of the lim-
ited computational power at that time. Alternatively, scholars
preferred to choose other methods, such as artificial feature
extraction methods and so on. CNN was gradually forgotten
over the next decade. It is not until 2012 that AlexNet [14]
was proposed and won the ImageNet Large-Scale Visual
Recognition Challenge (ILSVR-C), with the top-5 error rate
around 10% higher than the second place. Since then, CNNs
have become increasingly popular. Subsequently, DL tech-
nique was quickly applied in various fields, and an increasing
number of scholars have begun to explore the applications of
DL methods in medical image analysis [18]–[20] and have
obtained quite well results. For instance, in [18], the clas-
sification accuracy of skin cancer was found to be close to
that obtained by dermatologist. In recent years, DL technique
has gradually been applied to the image processing of GI,
and several papers have been published as pioneering works
in this field [21]–[25]. In the latest published literature [21],
Shin et al. presented the first successful case of applying the
DL technique GI polyp detection, while the authors of [22]
realized a real-time detection of colorectal polyps. Mean-
while, a 3D-FCN (fully convolutional network) was first used
to identify polyps in a colonoscopic video by Yu et al. [25],
and Jia and Meng [23] were the first to explore the automatic
detection of intestinal bleeding, and the authors of [24] tried
to classify EGC using some DL methods.

To the best of our knowledge, this is the first review on
the applications of DL methods in the analysis of GI images,
and we believe that it can provide an important reference for
researchers in this field. Other reviews about the applic-ations
of DL methods in medical image analysis such as [26]–[29]
only involve few works related to GI image analysis. The rest
of the paper is organized as follows: Part II will provide an
overview of DL methods. Part III will intro-duce the applica-
tion of DL in GI endoscopic image analysis. Part IV provides
a comprehensive overview of the literature cited in this review
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and discuss several issues encountered in the application of
DL methods in GI image analysis. Part V, briefly summarizes
some significant research directions for the future works.

II. OVERVIEW OF DEEP LEARNING METHODS
This section provides an introduction of DL methods [30],
which are a branch of ML. Both of DL and ML belong to
artificial intelligence (AI). DL architectures refer to neural
networks with large amounts of hidden layers. Recently,
DL methods have been regarded as the most advanced AI
techniques by virtue of their state-of-the-art performances,
especially deep convolutional neural networks (DCNNs)
have brought breakthroughs in image processing.

The training of DL methods is usually divided into two
categories: supervised learning and unsupervised learning.
The commonly used DL architectures in GI image analysis
are trained in a supervised manner with labeled data. As pre-
sented in Table 1 that almost all the literature related to deep
networks used in GI image analysis are based on CNN (super-
vised learning), while only 2 papers apply other networks
such as artificial neural network (ANN) and deep neural
network (DNN). Next, we will give a detailed introduction
of CNN, and a brief introduction of other DL architectures
used in GI image analysis.

TABLE 1. Sumarry of deep architectures used in gastrointestinal image
analysis.

A. CONVOLUTIONAL NEURAL NETWORK
Theworking principle of CNN can be illustrated by two steps.
Firstly, the network is trained over a given labeled dataset and
the multiscale features are extracted. Secondly, based on the
features extracted by the first step, classification is performed.
CNN consists of several important components, including
convolutional layers, activation functions, pooling layers and
fully connected layers. A simple CNN usually consists of
several of these layers, while some very deep CNN models
could include hundreds of layers. For instance, one version
of the current popular ResNet consists of 152 layers.

The convolutional layer is a crucial component of CNN,
and the neurons in the convolutional layer are sensitive to
every small piece of the input images. In the terminology of
CNN, the first parameter of the convolution is usually called
input, the second parameter is called the kernel function, and
the output sometimes is called feature map, as shown in equa-
tion (1), where x is the input,ω is kernel function, s(t) denotes
the output feature map. The definition of two dimension (2D)
convolution operation is shown as equation (2), where I is the

input, K denotes a 2D kernel function.

s(t) = (x ∗ ω)(t) =
∞∑

a=−∞

x(a)ω(t − a) (1)

S(i, j) = (I ∗ K )(i, j) =
∑
m

∑
n

I (m, n)K (i− m, j− n) (2)

The selection of the activation function for a CNN is very
important. Currently, a rectified linear unit (ReLU) is the
preferred activation function, which is defined as follows:

f (x) = max(0, x) (3)

The pooling layer could reduce computational costs by
computing the overall statistical characteristic of the adjacent
rectangular region of a location to replace the output of
the convolutional layer at that region. For example, a max-
pooling layer, the most commonly used kind of pooling layer,
computes the maximum value of the adjacent rectangular
area. Except for max-pooling, there are many other pooling
layers, such as average-pooling and L2-norm pooling.

The last layers of CNN are the fully connected layers,
in which each neuron in the layer is connected to each neuron
in the next layer. The output of the previous layers could
be sent to fully connected layer as an input, and a probabil-
ity score for each class to which the input image could be
assigned is computed. The class with the highest score is the
final classification result of the input image. In short, the fully
connected layer combines the most prominent features of the
image to infer the category of an image.

An example of classifying GI image by CNN is shown
in Fig. 2. First, the features of the input image are extracted
by convolutional layers, activate functions and pooling layers.
Then, the output feature map is sent to the fully connected
layers, and the prediction probability scores (between 0-1)
for Lesion 1, Lesion 2, Lesion 3 and Normal category are
computed out. In this example, the prediction probability
scores of Lesion 1, Lesion 2 and Lesion 3 are very small,
while the probability score of Normal class is 0.96. Thus,
the input image is classified as normal category.

B. SUPERVISED DEEP LEARNING ARCHITIECTURES
In this section we give an overview of the commonly used
DL architectures based on the supervised manner in GI
image analysis.

1) CLASSIFICAITON ARCHITECYURES
The most popular deep models used in GI image classifi-
cation are LeNet, AlexNet, VGGNet, GoogleNet, ResNet
and so on.

LeNet [17] and AlexNet [14] are relatively shallow, they
explore kernels with large receptive fields in layers close to
the input and smaller kernels close to the output. One differ-
ence between these two architectures is that AlexNet us es
ReLU unit instead of the hyperbolic tangent as the activation
function, which is the mostly used nowadays. VGGNet (also
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FIGURE 2. A simple example of GI image classification using CNNs. The features were extracted by convolution layers, and then sent to fully
connected layers. The predicted classification results were given out by fully connected layers.

called OxfordNet) [31] was proposed by Simonyan et al.,
which is also relatively shallow and consists 16-19 layers.

Nowadays, there is a preference for deeper models
and smaller kernels instead of a single layer and ker-
nels with large receptive field, because a smaller function
means fewer parameters, such as GoogleNet and ResNet.
Szegedy et al. [32] proposed GoogLeNet (also called Incep-
tion), which introduced inception block that has been shown
to be able to achieve very good performance at low compu-
tational cost [33]. ResNet [34] consists of the ResNet-blocks
which only learns the residual function with reference to the
layer inputs, rather than learning function without reference.
The experiment evidences showed that these residual net-
works are easier to be optimized and can gain accuracy from
increased depth. In other words, even deeper architectures can
also be trained effectively.

Since 2012, the performance of ILSVRC became a bench-
mark. Squeeze-and-Excitation Networks [35] won the last
ILSVRC of 2017, which has not yet been used in GI image
analysis. The performances of these popular classification
architectures on ImageNet database are shown in Fig. 3,
where, the Top-5 error rate is that the fraction of test images
for which the correct label is not among the five labels
considered most probable by the model. We can see from
Fig. 3 that the Top-5 error rate of deep models on ILSVRC
keeps to be smaller year by year, but the accuracy seems to get
saturated. It is not sure that the small increases in performance
could be attributed to more sophisticated architectures of
a deep network. Additionally, GI image is different from
nature images. Therefore, the respective shallow and simple
networks such asAlexNet, VGG are still popular for GI image
analysis.

2) DETECTION ARCHITECYURES
Currently, detection by DL methods is a common task in
GI image analysis. There are three object dection methods
based on CNNs: single shot multibox detection (SSD) [36],
fast region-based convolutional neural network (Fast
R-CNN) [37], and Faster R-CNN [38], which are popularly
used in the GI image analysis. The SSD method transforms
object detection into an end-to-end target detection for regres-
sion problems. Fast R-CNN and Faster R-CNN combined
region proposal algorithm and CNN classification together.

FIGURE 3. The top-5 error rates of classification of the current popular
deep networks on ImageNet. It can be seen that the performances of
these latest deep architectures has been improved little.

3) SEGMENTATION ARCHITECTURES
The segmentation of a GI image generally refer to semantic
segmentation. FCN [39], DeepLab [40] and SegNet [41] are
semantic image segmentation (also called pixel-wise classifi-
cation) architectures, and are trained in an end-to-endmanner.

Since all layers in FCN are convolutional layers, it is
named as fully convolutional networks. Compared with
the traditional segmentation method based on CNNs, there
are two distinct advantages in FCN: (1) it is more flex-
ible since the input images of FCN can be of any size,
(2) it is more effective since it uses pixel blocks and
avoids the problems of repeated storage and convolution
calculation.

The major contributions of DeepLab are as follows: (1)
Speed: it accepts atrous convolution algorithm. (2) Accu-
racy: they obtain the state-of-the-art result. (3) Simplicity:
their system is composed of DCNNs and conditional random
fields (CRFs). (4) Atrous spatial pyramid pooling (ASPP) is
introduced in DeepLab_V2 and the later versions.

SegNet shares the same property with U-Net [42], which
has a pair of encoder and corresponding decoder networks.
The highlight of SegNet is that the max-pooling indices are
transferred to the decoder, which improves the segmentation
resolution. Both of them are effective semantic image seg-
mentation architectures.
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C. UNSUPERVISED DEEP LEARNING ARCHITIECTURE
Generative adversarial network (GAN) [43] is an unsuper-
vised architectures, which holds promise for the GI image
analysis task. GAN is composed of two simultaneously
trained and competing models: a generative model G that
captures the data distribution, and a discriminative model D
that estimates the probability that a sample come from the
training data rather than G. During the training procedure,
G tries tomaximize the probability of Dmakingmistake. This
model is also described as aminimax two-player game. At the
end, there is a unique solution, where G recovers the training
data distribution and D equals to 1/2 everywhere. Both G and
D can be trained with back propagation, and without unrolled
approximate inference and Markov chains.

D. OTHER NETWORKS
In addition to the DL networks used in GI image analysis,
there are many other efficient networks such as recurrent neu-
ral networks (RNNs), graph neural networks (GNNs) [44],
principle component analysis network (PCANet) [45] and
canonical correlation analysis network (CCANet) [46] that
have not yet been used in GI image analysis at present.

RNNswere developed for discrete sequence analysis. They
have been used in other medical images analysis tasks such as
Tissue segmentation [47]. GNNs were first proposed in 2009,
which apply the existing neural network methods for process-
ing data represented in a graph domain. GNNs have been
widely applied to natural or other images processing tasks,
but there are no related papers applying this method to GI
images and other medical images.

RNNs couldmap input sequences to output sequences [48],
and are more capable in serialized data processing. For exam-
ple, the work in [49] combines RNNs and CNNs together,
which allows the processing of all contextual information
regardless of image size. As GNNs endows the DL model
with some causal reasoning ability, makes them could deal
with rich relation information among elements which could
be useful in diseases classification [50].

PCANet andCCANet are effective networks and have been
used in nature image classification. One difference between
them is that PCANet can only handle data represented as
one-view features and CCANet could classify images repre-
sented by two-view features.

In a world, RNNs, GNNs, PCANet and CCANet are all
promising in the GI image analysis task in the future.

E. TRANSFER LEARNING METHODS
Training a deep network from scratch needs a large number
of labeled data, and the training and optimizing process of
the network is usually very time consuming. Collecting a
large number of GI image and annotating the corresponding
labels by experts are also tough and error prone tasks. Hence,
most of GI image analysis tasks based on DL methods adopt
transfer learning approach, which can reduce the need of
a deep network for training data. In the transfer learning

FIGURE 4. The illustrations of three main GI image analysis tasks:
(a) Detection, (b) classification, (c) segmentation.

terminology, the deep model trained on large image dataset
(such as ImageNet) is called pre-trained model.

One transfer learning method is the feature extractor. The
CNN layers of pre-trainedmodel are used as feature extractor,
and the fully connected layers of the pre-trained model are
replaced by traditional classifier, such as linear classifier
SVM. The GI image analysis tasks with a small number of
samples usually choose this transfer learning method.

Another transfer learning method is the so-called fine-
tuning. The input layer of pre-trained model is replaced and
trained by new data. One can choose to fine-tune several
layers or all layers of the pre-trained deep model. Typically,
the previous layers of a deep network extract the generic
features of the images (such as edge, color), which are useful
for many tasks. The latter layers extract features related to a
particular task, so fine-tuning method often only fine-tune the
latter layers.

In addition, the other transfer learning method is parameter
sharing. The parameters of a pre-trained deep network are
loaded as the initialization parameters and trained with new
data again, which can speed up the training process. The new
trained model shares the same network and parameters with
the pre-trained model. This transfer learning method usually
requires a large training dataset.

III. APPLICATION OF DEEP LEARNING IN THE ANALYSIS
OF COMMON GASTROINTESTINAL DISEASES
The applications of the DL methods in GI image analysis
tasks include image detection, classification, segmentation,
recognition, location, and a few other application tasks.
The first three tasks are illustrated in Fig. 4. At present,
the involved GI diseases mainly included polyps, hemor-
rhages, cancers, with some forays into the detection of gas-
tritis and hookworms.

A. POLYPS
Polyps, one of the most common symptoms of GI, can be
divided into hyperplastic polyps and adenomatous polyps
according to their probability of progression into cancer. The
former can be considered as benign polyps [51], the can-
cerous rate of which is relatively low, whereas the latter
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has a higher cancerous rate, according to the clinical expe-
riences [52]. Accurate identification and classification of
hyper-plastic and adenomatous polyps can provide an objec-
tive reference to doctors, significantly improve the doctor’s
diagnosis efficiency, and effectively prevent the occurrence
of early cancer.

1) DETECTION AND CLASSIFICATION
The detection and classification of colorectal polyps by DL
methods have been explored in several works. The authors
of [21] were the first to use a Faster R-CNN combined
with a CNN model (Inception ResNet) to detect colonic
polyps in images and videos. The novelty of this research
is the proposed post learning that could effectively reduce the
number of false positives (FPs) samples. After trying several
data augmentation methods, their detection precision reaches
91.4%, but the mean detection time is about 0.39 second per
frame and need to be further improved. Similarly, the clas-
sification of colonic polyps by several different CNNs was
explored by the authors of [53]. Each of the polyp images was
divided into a number of sub-images, which could increase
the number of training datasets and reduce the computa-
tional complexity of the network. To improve the stability of
DCNN model identifying polyps in complex environments,
Karnes et al. [54] used a database of both white light and
narrow-band imaging (NBI) colonoscopic images to train
a CNN for classifying the image samples into polyps and
normal tissues. It is very difficult to evaluate the performance
of the model in different environments. Bernal et al. [11]
conducted a unified evaluation experiment on the eight polyp
detection methods of the MICCAI 2015 Endoscopic Vision
Challenge (one method based on artificial feature extraction,
four based on CNNs, and three hybrid methods. The results
showed that the DL methods present the state-of-the-art, and
hybrid methods can improve overall performance.

The research works aforementioned can only detect
whether the images contain polyps or not. If the detected
polyps could further be classified according to the rate
at which they could develop into tumors, the procedure
would be even more beneficial to both doctors and patients.
The automatic detection and detailed classification of col-
orectal polyps based on the DL methods was explored by
Zhang et al. [52]. They studied the transfer learning of dif-
ferent DCNNs and automatically classified colonoscopic
images into hyperplasic polyps, adenomatous polyps, and
normal images. The precision of their method was 87.3%,
which is similar to the 86.4% precision from a physician.
In the mean time, the recall rate and accuracy from the DL
method were 87.6% and 85.9%, respectively, which were
much higher than 77.0% and 74.3% achieved by physician.
A similar study can be found in [55], which explored 6 differ-
ent pre-trained deep networks by transfer leaning and training
from scratchmethods to classify colorectal polyps into hyper-
plastic polyps, adenomatous polyps and malignant polyps.
A CAD system based on the transfer learning of the DNN
was designed by Chen et al. [56], which classified diminutive

colorectal polyps into three sub-types: hyperplastic polys,
adenomatous polyps, and normal tissues.

Byrne [22] designed a system for the real-time assess-
ment of polyp subtypes in colonoscopic videos based on DL
methods. The data used in this research only included the
colonoscopic videos of NBI with a period of only 50 ms
between the two frames, which is a difficult task as a high
request for the speed of the image recognition.

Except for the real-time video polyp detection system
based on 2D-CNNs, some scholars have also explored a
real-time video polyp detection system based on 3D-CNNs.
The 3D-CNNs can better encode the video spatial informa-
tion and learnmore spatial features. Yu et al. [25] are pioneers
in exploring a novel online and offline DL frameworks based
on 3D-FCNs to automatically detect polyps in colonoscopic
videos which can reduce the number of FPs. In a video subtest
where each frame contains polyps, the method reached 0 FPs
and 100% precision. However, the test video data where each
frame contains polyps is unlikely to occur in actual clinical
practice. Therefore, there is still some room for improve-
ment of this method. Similarly, Tajbakhsh et al. [57] used
a 3-way image representation and CNNs to detect polyps
automatically in a colonoscopic video. In this study, the three
characteristics: color and texture clues, shape in context, and
temporal features of the polyp image, were extracted and
then sent into the three CNNs for training, respectively. This
method could provide more precise locations of the polyps,
with only 0.002 FPs per frame at a sensitivity of 50%. There
are differences between the two studies above. One uses a
3D DL frameworks and can learn more spatial features with
encoded 3D information [25], while the other applies a 3-way
images [57] to simultaneously train three CNNs, and learn
three characteristics from lesion, respectively.

2) SEGMENTATION
Most of the researchers focus on polyp detection and classifi-
cation, few of them have tried segmentation. Xiao et al. [58]
attempted to use a DNN called DeepLab_v3 to detect
polyps in colonscopic images. As the large structure of
DeepLab_v3, the location of polyps may not be saved and
transmitted effectively. To avoid this problem, the authors
combined long short-term memory (LSTM) network with
DeepLab_v3 in parallel to augment the location signal of
polyps. They found a quite satisfactory results: mean intersec-
tion over union (mIOU) of 93.21% and the average comput-
ing time of 0.023 second per image. In summary, CNNs have
been applied in the detection, classification, segmentation
of colorectal polyps and have achieved quite well results.
An overview of papers related to application of DL tech-
niques on polyps is listed in Table 2. As depicted in Table 2,
most papers focus on the polyps classification and detection
tasks. In other words, more papers on other tasks should be
encouraged. Fig. 5 shows the comparisons of detection and
classification accuracies of several papers related to polyp
detection. We can get an overview of the performances of
these approaches in different references from Fig. 5 directly.
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TABLE 2. Overview of papers using DL techniques for polyp image analysis.

FIGURE 5. Comparison of the accuracies in part of polyp detection and
classification references.

The results suggest that the DL architectures perform well on
their data, as data scale and model vary from one paper to
another.

It is worth mentioning that some scholars have tried to
perform real-time detection, identification and classification
of polyps in videos based on 2D-CNNs and 3D-CNNs. Com-
pared to the image-based detection, video-based real- time
detection is more helpful for doctors’ aided diagnoses and
endoscopic surgeries.

B. HEMORRHAGES
1) DETECTION AND CLASSIFICATION
Intestinal chronic hemorrhage is associated with GI diseases
caused by unknown reasons [61]. Detection of GI hemor-
rhage (Fig. 4 (b)) is important for preventing their further
deterioration and potential conversion into cancers.

A CNN containing 8 layers was designed by Jia and
Meng [23] and trained on a dataset containing 10,000 WCE
images, to detect GI bleeding (also called hemorrhage).
Compared with traditional methods based on manual fea-
ture extraction, their methods performed better on all eval-
uation indicators. Another method for the detection of
intestinal hemorrhage was explored by Li et al. [59]. This
method is based on the transfer learning of several DL
models, which involve the traditional LeNet and several

TABLE 3. Summary of the performacne of hemorrhage detection.

state-of-the-art networks such as AlexNet, GoogleNet, and
VGGNet. The authors also explored the effect of data aug-
mentation on detecting accuracy. Jia and Meng [60] pro-
posed a method that integrates manually extracted features
and CNN layers extracted features, and sent them into
the fully connected layer of CNN for classification. The
results showed that although the training dataset was limited,
the method achieved a precision of 94.79%, which was higher
than that of other methods.

These research works all focused on WCE bleeding detec-
tion (classification) and the performances were summarized
in Table 3. The performances of [23] and [59] are almost
the same. It is difficult to distinguish which one is better.
But the positive sample in [23] contains both active and
inactive bleeding regions, maybe it is more challenging.
In contrast, the results of [60] are slightly inferior because of
the small scale of dataset. Considering the unbalance dataset
(Table 3 last column) problem, these results are all quite
satisfactory.

2) SEGMENTATION
Segmentation of hemorrhage lesions in WCE images was
recently studied by three researchers. Jia and Meng [62] pre-
sented a method for automatic segmentation of hemorrhage
region in WCE images. First, an SVM classifier was used
to roughly divide the images into active bleeding group and
inactive bleeding group according to the color features. Then,
FCNs was applied to mark the two kinds of hemorrhage
regions and achieved segmentation.

GI angiectasia is with inherent risk for bleeding.
Leenhardt et al. [63] tried to perform a CNN-based semantic
segmentation for deep feature extraction and classification of
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TABLE 4. Comparisons of papers using dl method for hemorrhage segmentation.

small intestine static frames to detect angiectasia. The authors
of [64] explored a segmentation method based on GANs,
which is able to mark the angiectasia in a given WCE video
frame with pixel-wise accuracy. Ghosh et al. [65] developed
a semantic segmentation approach based on SegNet for bleed-
ing region detection in WCE images. The authors further
tested the approach on different color planes and the best per-
formance is achieved by using the hue saturation value (HSV)
of color space. In [66], the authors investigated the problem
of simplification of neural networks for automatic bleeding
region segmentation inWCE images. The results showed that
the simplification method on neural network and CNN struc-
ture could significantly reduce the burden of computational
operation, which will reduce the detection time, especially
for large number of WCE images. It has a great advantage
for images retrieval in large dataset and endoscopic video
abstract.

In general, the main problem of DL method in the hem-
orrhage analysis is the unbalanced data of abnormal and
normal samples (as shown in Table 3, last column), which
is also the case in other GI image analysis tasks. The problem
of unbalanced sample is easy to cause poor generalization
ability and over-fitting of the model. This is a stumbling
block for the application of DL methods in the GI analysis.
The comparisons of hemorrhage segmentation tasks between
different references are listed in Table 4. Besides, the classi-
fication of hemorrhage’s subtypes has still not been investi-
gated in the existing researches. In short, further studies on GI
hemorrhage detection, classification and segmentation based
on DL methods are still needed.

C. GASTROINTESTINAL CANCER
The 5-year survival rate of EGC is up to 95%, which is
much higher than that of AGC, especially the TNM stage‘IV.
However, early cancer may deteriorate into advanced cancer
if it could not be timely treated. Hence, the detection and
localization of early cancer can help doctors to improve the
diagnosis accuracy and reduce misdiagnosis rate, which sig-
nificantly improves the survival and cure rate of patients.

For some EGC and gastric ulcers, doctors with many
years of experience still may not be able to distinguish these

lesions [67]. As it is difficult to further improve the accuracy
of conventional detection methods [10]–[13], [24], the appli-
cation of DL methods in GI early cancer detection has been
recently explored by some scholars. The authors of [24]
pioneered the application of three efficient DCNN models,
VGG16, InceptionV3 and InceptionResNetV2. They classi-
fied magnification endoscopy with narrow-band imaging (M-
NBI) images into EGC and normal gastric images. Among
their experimental results, the InceptionV3 network with
fine-tuning transfer learningmanner produced the best results
with the values of evaluation parameters: accuracy, sensitivity
and specificity were 0.985, 0.981 and 0.989, respectively.
In addition, the authors also explored the effects of four
different factors (training dataset, basic CNN architectures,
fine-turned layers number and input image size) on transfer
learning and compared the results of their method with those
using traditional manual features, which provides a valuable
reference for us.

Hirasawa et al. [68] performed more researches on the
application of DL approach to detect EGC. They utilized a
CNN framework called SSD to detect and locate EGC lesions
in endoscopic images. The lesions in the output image were
marked by rectangular windows with an annotation of the
disease name and the probability that the lesion belongs to
this disease (Fig. 4 (a)). Although the overall sensitivity of the
method reached 92.2%, the missed lesions were all superfi-
cially depressed or belonged to intra-mucosal cancers (these
kinds of lesions are more likely to be misdiagnosed even by
experienced clinicians), which suggests that the method did
not solve the clinical problem of diagnosing of these lesions
completely. Additionally, nearly half of the FPs were gatritis
lesions with irregular mucosal surfaces or color tone changes.
Hence, the performance of thismethod is still with some room
for improvement. The authors of [69] also designed a system
based on SSD for the diagnosis of superficial (early cancer)
and advanced esophageal cancer. The diagnostic accuracy
and sensitivity of their method were both 98%, and this
method even detected 2 more lesion regions missed by a
previous examination. Riel et al. [70] designed a transfer
learning method to automatically detect early esophageal
cancer. They applied four pre-trained CNN models as feature
extractors and then used traditional classifier, such as linear
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SVM or softmax, to replace the fully connected layers. At the
end of this study, the authors designed a method based on a
sliding window to obtain a coarse-grained annotation of any
possible cancerous lesions. The area under receiver operating
characteristic (ROC) curve (AUC) of this approach was 0.92.
Also, it allows for both near real-time prediction and annota-
tion at 2 fps (4 frames /second).

For many kinds of cancers, a pathological diagnosis
remains the gold standard. At present, the pathological diag-
nosis of tissue biopsies mainly relies on the experience of
clinicians and is susceptible to subjective facts. Sometimes,
it is difficult for human eyes to distinguish the subtle dif-
ferences between benign and malignant tumors. However,
DL networks are competent in solving this problem. There-
fore, some scholars have started utilizing the DL methods to
analyze these tissue biopsy images of EGCs. A new ResNet
containing 50 layers was proposed by Liu et al. [71] to
identify gastric pathology images (slices), and the F-score of
this method was 96%. Similar to Liu’s work, the authors of
[72] proposed a network called GastricNet to detect gastric
slices, and the classification accuracy of this method reached
100%. For the same goal, Qu et al. [73] utilized low cost
medium-level datasets and a transfer learning method based
on a stepwise fine-tuning scheme was used to train a deep
network, which allows the network to understand a pathologic
image from a pathologist’s perspective.

The invasion depth of EGC is vital important as it deter-
mines whether an endoscopic resection could be performed or
not for patients. The authors of [74] constructed a CNN based
CAD system to determine the invasion depth of GC based on
GI image and screened patients for endoscopic resection. The
CNN based CAD system was trained in a transfer learning
manner and the ResNet50 was chosen as a pre-trained archi-
tectures. The CNN based CAD system could distinguished
EGC from deeper sub-mucosal invasion and minimized over-
estimation of invasion depth, which could reduce unnecessary
gastrectomy and relieve the pain of patients. This system
could provide an objective reference to doctors when they
make decision on the treatment strategy of the GC patients.

Precancerous lesions may deteriorate into early GI cancer
or even advanced cancer, if not diagnosed and treated in time.
Liu et al. [75] investigated the classification of gastricM-NBI
images by fine-turning pre-trained CNNs, which classified
them into three classes: chronic gastritis, low grade neopla-
sia, and EGC. They investigated the performance of four
networks: VGG16, InceptionV3, Inception-ResNetV2 and
ResNet50, in which ResNet50 got the best result with an
accuracy of 0.96.

Esophageal squamous cell carcinoma (ESCC) is one of
esophageal cancers. Generally, the basis for the diagnosis of
ESCC is histological biopsy. which is a labor intensive task
that relies on manual examination and is susceptible to sub-
jective human factors. However, the CAD system based on
CNN could provide an objective reference to doctors. Kuma-
gai et al. [76] proposed a DL system based on GoogLeNet
to identify ESCC from endocytoscopic system (ECS) images

of the esophagus to aid confirming histological diagnosis in
vivo; the classification accuracy, sensitivity and specificity
of this method were 90.9%, 92.6% and 89.3%, respectively.
The advantage of this approach is that it can provide objec-
tive suggestions for preserving or resecting lesions during
examination procedures. There are two limitations of this
method. One is that test dataset is too small which may cause
low median percentage of the pictures showing malignancy
(40.9%) in per-patient analysis. Other limitation is that the
images were collected by ESCs with two different optical
magnification powers, which may affect the performance.
Although these disadvantages, thismethod still deserves great
attention. The invasion depth of ESCC is vital important to
the treatment strategy of patients. Nakagawa et al. [77] pro-
posed a SSD based system to assess superficial ESCC. This
system could classify pathologic mucosal and sub-mucosal
micro-invasive (SM1) cancers from submucosal deep inva-
sive (SM2/3) cancers, which is significant for the doctor’s
choice of patients’ treatment strategy.

In all, the applications of DL on the analysis of GI
cancer include classification, detection, and recognition
tasks, as shown in Table 5, and other tasks such as seg-
mentation are not involved. In other words, more applica-
tions of DL on other tasks are encouraged. What’s more,
the classification of EGC is challenging because some
kinds of lesions are difficult to distinguish even for expe-
rienced doctors. Even if doctors could identify these can-
cer lesions, it is still difficult for them to recognize the
subtypes. The classification accuracy of EGC is still not
satisfactory at present [24], further improvements are still
required.

D. MULTIGASTROINTESTINAL DISEASE ANALYSIS
Lesions in GI are diverse, so it is not enough to analysis only a
single kind of GI. Recently, some scholars have tried to detect
and locate multiple kinds of lesions from GI images.

Since WCE passes through the whole GI, the images col-
lected byWCE are often very large and may contain a variety
of lesions. Several scholars have carried out detection of
multilesions in WCE images. In [78], Lan et al. proposed
CNNs based on region proposal algorithm and transfer learn-
ing method for the detection of abnormal regions (such as
active and inactive bleeding, undigested residue, bubbles,
tumor et al) in WCE images. The authors also tried sev-
eral methods and different CNNs. It was indicated that this
method was effective for WCE abnormal detection and local-
ization. The advantage of this method is that it could detect
and locate multipatterns and multilesions (that is multiobject
detection) on a single GI image, which is very different from
general single lesion detection or classification focusing on
only one disease.

Sekuboyina et al. [79] applied CNN models to detect
eight different lesions in WCE images, such as bleeding,
polyps, ulcers and so on. The authors used a patch-based
method. Firstly, the image was divided into several patches;
secondly, a CNN was applied to extract features pertaining to
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TABLE 5. Overview of papers using dl techniques for gastrointestinal cancer analysis.

each patch. This pixel-patch-based framework increased the
generality of their method and also overcame the drawbacks
caused by artificial features. Similarly, Zhang et al. [80] pro-
posed a CNN-based model GPDNet for the classification of
three GI diseases: polyps, ulcers, and erosions. The authors
introduced an algorithm called iterative reinforced learn-
ing (IRL). In this algorithm, the GPDNet was first trained
from scratch. Then, a ‘‘fine-tune’’ operation through IRL was
performed on the model, and the fine-tuned model was used
as pre-trained model for further training. The final classifi-
cation accuracy of this method was 88.9%, which was 8.9%
higher than that of the training from scratch. The work of
lesion detection and location in aWCE videowas also studied
by Iakovidis et al. [20]. First, using a weakly supervised
CNN (WCNN), the authors classified GI endoscopic images
into normal and abnormal; second, a deep saliency detec-
tion (DSD) algorithm was applied to detect the salient points
relevant to these anomalies in endoscopic video frames; third,
an iterative cluster unification (ICU) algorithmwas applied to
locate these anomalies; last, the coordinates of these points
were transformed (linearly scaled up) to match the spatial
resolution of the input endoscopic image, on which they
are superimposed to indicate the possible locations of the
anomalies. The detection AUC of this method was 96% and
the location AUC was 88%.

Generally, the number of images generated by the WCE
is often very large after a WCE examined, and the massive
image data analysis may easily result in a misdiagnosis.
The GI environment is complex and may be affected by
various digestive juices, chyme, bubbles and reflections; as
a result, there are a large number of redundant images that
could negatively affect diagnosis. It is crucial to filter out
these redundant images accurately before classification of the
diversity kinds of lesions. However, the deletion of redundant
images was not mentioned in the aforementioned literature
of this part. In short, the deletion of redundant images need
further study attention.

E. OTHER GASTROINTESTINAL DISEASES
Besides these commonly studied GI diseases above, there
are some GI diseases with few investigated works, such as
gastric ulcer, hookworm infection, Helicobacter pylori (HP)
infection, Barrett’s esophagus and so on.

Gastric ulcer is one of the common gastric diseases, gener-
ally classified as benign and malignant ulcer. Sun et al. [67]
selected five different CNN models based on VGGNet and
IRNV2 (Inception-ResNet) to classify benign and malignant
gastric ulcers. The training dataset used in this work contains
854 images with biopsy labels; and the outputted images
were marked by a rectangular box with an annotation of
the type and a probability score that the lesion belonged to
this type (as shown in Fig. 4 (a)). The authors performed
several experiments with five models and three data forms,
and finally obtained a best classification accuracy rate of
0.866. However, the limited dataset used in this work may
have restricted the performance of the method.

Hookworm infection could cause intestinal inflammation
and progressive ferritin deficiency anemia, and it can also
bring malnutrition and may seriously endanger the health of
pregnant women and children. Hookworm detection based on
DL was studied by He et al. [12]; they designed a method
combining two CNNs, one was used in edge extraction, and
the other was used in classification. Compared with wu’s pre-
vious method based on artificial features [13], the accuracy of
this method reached 88.5%, which is 10.3% higher than their
previous method.

One kind of typical gastritis is caused by HP infection of
the gastric mucosa which increases the risk of GC. There
are two papers which studied the application of DL in the
analysis of HP infection. In [81], the authors carried out
transfer learning on a 22-layer pre-trained CNN model to
detect HP infected gastritis. Itoh et al. [82] also developed
a CNN network based on GoogLeNet DCNN pretuned for
generic object recognition to analyze HP infection in upper
GI. The performances of the two works are shown in Fig. 6.
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TABLE 6. Overview of papers using DL techniques for other gastrointestinal diseases analysis.

FIGURE 6. Comparison of HP infection detection performances between
reference [81] and [82].

We can see that both of them preformed well. However, there
is still improvement room for sensitivity and specificity in
both of the works.

Barrett’s esophagus is a disease that manifests abnormal
changes in the cells of esophagus. This disease contains
two subtypes, intestinal metaplasia (IM) and gastric metapla-
sia (GM), in which the IM type could cause neoplasia (NPL)
and deteriorate into esophageal cancer. Therefore, it is mean-
ingful to develop DL methods to improve the classification
accuracy for IM and GM in the clinic. To solve this problem,
the authors of [83] proposed amethod based onDL to classify
IM, GM and NPL; the classification accuracy of this method
reached 80.77% after a data augmentation. However, there is
still much improvement room for the accracy.

Detection of erosion and ulcerations in large amount
of WCE images is a challenging work. Aoki et al. [84]
developed a CNN system based on SSD. It was trained by
5560 WCE images of erosion and ulcerations, and validated
on a dataset including 10440 WCE images (where only
440 images are abnormal). The processing time of this system
only required 233 seconds. The proposed detection system
could detect erosion and ulcerations from a large number of
WCE images quickly, which could significantly reduce the
burden of doctor.

Celiac disease is one of the most common diseases in
the world, while few related works are published until now.
Zhou et al. [85] developed a CAD system based on GoogLe-
Net model to quantitatively analyze the existence and degree
of pathology of the small intestine. This work may improve

CAD techniques to access mucosal atrophy and other etiolo-
gies in real-time in WCE video.

In summary, there are a few of researches related to these
above mentioned diseases, however these diseases pose a
great threat to human health. For instance, the HP infection of
the gastric mucosa will cause mucosal atrophy and intestinal
metaplasia, both of which increase the risk of gastric can-
cer [82]. Therefore, more researches on these GI diseases are
encouraged in the future. Overview of these works is listed
in Table 6.

F. OTHER RELATED APPLICATIONS
1) CLASSIFICATION
The classification of WCE images from organ-wise were
studied in two papers [86] and [87], which could save the
review time of doctors. The authors of [86] proposed a general
video understanding approach based on a cascaded spatial-
temporal deep framework. The framework mainly consist
two CNNs: N-CNN and O-CNN. In the first step, WCE
images were classified into informative images and noisy
content by the N-CNN model. Then the redundant noisy
images were removed. In the second step, the O-CNN was
applied to roughly classify the remaining clear images into
four digestive organs: entrance, stomach, small intestine and
colon. Finally, a hidden Markov model (HMM) coupled with
temporal coding observation is applied to further improve
the detection accuracy. The system in [87]was designed by
combining CNN with extreme learning machine (ELM). The
CNN part was used as a data-driven feature extractor and
the cascaded ELM as a strong classifier instead of full con-
nected layer. The authors classified the WCE images into
three categories: stomach, small intestine and colon. Those
approaches could provide organ-wise location information of
WCE images to doctors and improve diagnosis efficiency.

Most CAD systems with deep network architectures can
only detected very few GI diseases on WCE images. It sug-
gests that the original DL network has to be re-trained when
analyzing other GI. For this reason, the authors of [88]
introduced a analysis system based on DL methods which
learned the generic features of small intestine motion. The
advantage of this approach is that it could detect and clas-
sify 6 intestinal motility events by one CNN network, and
overcoming the problem of re-training network for every new
clinical problem.
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2) SEGMENTATION
In [89], used an adapted version of SegNet [41] network
for reflection region segmentation and color correction. This
method may be useful for the preprocessing of GI image
before other GI image analysis tasks, such as classification,
detection and so on. However, some improvements are still
needed to make the reflection correction region smoother.

In all, these applications related to organ-wise classifi-
cation and reflective elimination which are not analysis GI
diseases directly. However, those applications can be used
as preprocessing steps for other GI image analysis tasks. For
example, the organ-wise classification could provide a organ-
wise location for other GI analysis task.

IV. DISCUSSION
In recent years, many efficient deep DLmodels have emerged
with the development of DL theory; they have achieved great
success in the field of computer vision and have also been
applied to various other fields. Among these DL models,
CNNs have performed verywell in the field of image process-
ing and has also been applied to analyze various of medical
images. Since 2015, DL technique has been gradually utilized
to GI image analysis. However, most of the existing research
works are still limited to the detection, classification and
segmentation of polyps, hemorrhages, GI cancer, and a few
works have involved the detection of other diseases, such as
esophageal cancer, gastritis and hookworm detection. How-
ever, GI diseases are diverse. Some other kind of GI diseases,
such as intraepithelial neoplasia and invasive mucosal lesions
which are considered to be important stages of early cancer,
are also worth to be studied by DL technique, but they have
not been mentioned in the existing related literature yet.

The application of the DL technique in computer-aided GI
diagnosis is a new research field. In this review, several key
words, such as gastrointestinal, deep learning, CNN, diges-
tive tract and lesion detection, were used to retrieve the latest
relevant literature. In all, 45 papers were found, most of which
were published during 2017-2019; these papers consisted
of 11 papers related to polyp, 8 papers related to intestinal
hemorrhage, 11 papers related to GI cancer, 4 papers about
multi-GI diseases, 7 papers related other GI diseases that
are not commonly studied such as HP infection, hookworm
detection, and 4 papers are related to other applications. The
statistic of these papers are shown in Fig. 7. We can see from
Fig. 7 (a) that more than half of these published researches
focus on the detection and classification tasks. Other analysis
tasks such as segmentation and recognition are only studied
by few papers, so in the future these tasks deserved further
study. Fig. 7 (b) presents the proportion of each GI disease
that was included in the related literature. The polyp is the
most popular studied GI disease, and papers proportion about
GI cancer are the second most popular studied. The rest GI
diseases are not commonly studied such as HP infection and
hookworm detection, which keep promising researches in the
future. Fig. 7 (c) shows the proportion of papers counted
according to three endoscopies. We can see that WCE is the

most popular. Fig. 7 (d), provides a statistical data of the num-
ber of related published papers vs year. The earliest research
on the application of DL methods in GI image appeared
around 2015 and the literature number keeps increasing with
year. Up to now, there have been published 11 papers related
to GI diseases this year, and according to this trend more
papers will be published in 2019. Studies [21], [23], [25],
[52], and [67] are ground-breaking works on the application
of DL techniques in GI diseases.

DLmethod requires a large number of labeled training data
sets. For example, the training dataset of AlexNet contains
1.2 million samples. Due to the high cost of manual labeling
by medical experts and the consideration of patient privacy
issues, it is difficult to obtain a large amount of labeled med-
ical image data. Unlike to skin images, eye images, MR and
CT images which are collected from the body surface, the col-
lection of GI image requires performing an endoscopy, which
involves entering a camera probe into the patient’s body.
Therefore, the data acquisition of GI image is more difficult,
and the application of DL in computer-aided GI diagnosis
is severely limited, challenging and nonproductive. Great
success has been achieved in the application of DL in other
diseases, such as eye [19] and skin diseases [18], owing to the
sufficient training data sets that contain more than 100,000
labeled images.

Moreover, detected objects in natural images are often
colorful with clear boundaries, while lesions found in med-
ical images lack a standardized, consistent shape, and do
not always have clear edges. Considering these differences
between the natural and medical images, models trained on
natural images may not be useful to assess medical images
well. Moreover, if the training data set is insufficient during
the transfer learning process, the resulting analysis may be
unremarkable. The differences among several common types
of medical images are smaller than those of natural images; if
transfer learning is performed on a foundation of the models
that are pre-trained with medical images, the results may be
better than those of directly using natural image pre-trained
models.

Insufficient image data and unbalanced samples are com-
mon problems faced by the application of DL in all kinds
of medical image analysis. Data augmentation [90] could
overcome this problem effectively and help reducing over-
fitting, and could also improve the stability and classification
accuracy at the same time [21]. Conventional data augmen-
tation methods generally include rotation, flipping, shading,
scaling, and affine transformation. Until now, there has been
no DL model that is completely trained on huge medical
image data (the data scale as ImageNet) from scratch. In all,
the application of DL in the field of medical image processing
remains immature but still has great potential. Whether a net-
work model is good or not is affected by many factors, such
as image quality, sharpness, and label accuracy that can affect
training results. The lack of a common validation frame-
work is a major problem in medical and endoscopic image
analysis [91], which limits the effectiveness of comparisons
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FIGURE 7. The statistic data of papers related to GI diseases cited in this review. (a) The paper number of different analysis tasks; (b) the
percentage of published papers relevant to different GI diseases; (c) the proportion of papers on three different endoscopic image; (d) The
number of paper published each year.

between existing methods and makes it difficult to conclude
which one contributes more to the practical and clinical appli-
cation. We hope that a large public image database (similar
to ImageNet) containing all kinds of medical images with
considerable amount of data can be built in the future, which
could provide enough data to researchers and further promote
the application of DL techniques in medical image analysis.
Thus, a new revolution in AI-based medical diagnosis could
be achieved.

DL methods can be divided into supervised learning and
unsupervised learning methods. Currently, almost all of the
deep models used in GI image processing are CNN-based
supervised learning networks, only one was based on GANs
segmentation [64]. Supervised learning requires labeled
training data, but the production of labels is subjective and
costly. There may be great visual differences among some
images of the same disease, and there may also be slight
differences among images of different diseases. As a result,
different endoscopic experts may give different labels to the
same image [92]. These controversial and incorrectly labeled
data may mislead the network and slow down the training
process. However, in unsupervised learning, which only uses
unlabeled data for training, the above problem does not exist.

An unsupervised deep network can detect subtle features that
can barely be detected by human eyes, so this kind of DL
methods is competent enough to classify these controversial
images into the correct categories. Deep networks that are
trained in an unsupervised manner may be more adaptive to a
dataset with poor labeling accuracy. In short, unsupervised
DL deserves further exploration in the field of GI image
processing.

V. CONCLUSION
GI image analysis is a new application field of DL methods.
It has not been widely applied in GI images analysis until the
last few years that a small group of scholars have tried to study
in this field.

Although some results have been achieved, the researches
related to the application of DL in this field is still rare,
and the potential of this technique is far from being fully
explored. Several aspects of DL-based GI image analysis
deserve further study: (1) Development of a 3D-CNN based
DL diagnostic system. 3D-CNN can learn more spatial fea-
tures and better encode the spatial information; (2) Devel-
opment of a real-time detection system. Many GI surgeries
are endoscopic surgeries. If real-time endoscopic diagnosis
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TABLE 7. Summary of acronyms or abbreviations and the corresponding
full names.

system can be used with high-precision and efficiency, surg-
eries could be directly performed during the examination, and
the histopathological biopsy step would no longer be indis-
pensable. Thus, the suffering of patients could be reduced;
(3) Improvement of the detection accuracy of early cancer.
As the five-year survival rate of EGC is as high as 95%,
increasing the detection accuracy and reducing the false neg-
atives rate of cancer in the early stage are critical for making
early treatment available to every early cancer patient; (4)
Development of a diagnostic system based on an unsuper-
vised learning method. Unsupervised DL diagnostic systems
can alleviate the problem brought by ‘‘no label’’ or ‘‘contro-
versial labels’’. (5) Assessment of the invasion depth of can-
cers, which is utmost important for the treat strategy of cancer

patients. (6) Development of other DLmethods such as RNNs
and GNNs, which hold promising in GI image analysis.
In short, DL is with great potential and may play an important
role in the clinical aided-diagnosis of GI in the future.

APPENDIX
Because there are so many acronyms or abbreviations in this
paper, here we summarize them with the corresponding full
name in Table 7.
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