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ABSTRACT In recent years, the haze has caused serious troubles to people’s lives, with the continuous
increase of PM2.5 emissions. The accurate prediction of PM2.5 is very crucial for policy makers to make
predictive measures. Due to the nonlinearity of the PM2.5 time series, it is difficult to predict accurately.
Despite some studies about PM2.5 being proposed, the problem of the LSTM (long short-term memory)
gradient disappearance and random selection of wavelet orders and layers isn’t still solved. In this study,
a novel model based on WT (wavelet transform)-SAE (stacked autoencoder)-LSTM is proposed. Firstly, six
study sites from China are taken as examples and WT is used to decompose PM2.5 time series into several
low-and high- frequency components based on different samples. Secondly, the decomposed components are
predicted based on SAE-LSTM. Finally, the predicted results are reconstructed in view of all low-and high-
frequency components and the predicted results are obtained. The results imply that: (1) the forecasting
performance of SAE-LSTM is better than that of other models (e.g., BP (back propagation)) used for
comparison; (2) for six different PM 2.5 samples, four orders five layers, five orders six layers, five orders
seven layers, three orders six layers, five orders seven layers, and five orders six layers are the most
appropriate. The conclusion that such a novel model may help to enhance the accuracy of PM 2.5 prediction
can be drawn.

INDEX TERMS PM 2.5 time series, wavelet transform, stacked autoencoder, long short-term memory,
prediction.

I. INTRODUCTION
With the frequent occurrence of the smog in recent years,
FPM (fine particulate matter) has attracted wide widespread
attention [1]–[4]. PM 2.5 whose equivalent diameter is less
than or equal to 2.5 µm can be suspended in the air for a long
time [5]. The higher the concentration of PM 2.5 in the air,
the more serious the air pollution is. And, compared with the
coarser ambient air particulate matter, PM 2.5 has a smaller
particle size, stronger activity, which is easy to be accom-
panied by toxic and harmful substances (e.g., heavy metals,
microorganisms) [6], [7]. Furthermore, PM 2.5 has a long
residence time in the atmosphere, which has a great impact
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on human health and the quality of the atmospheric environ-
ment [8]. Therefore, accurate prediction of PM 2.5 concentra-
tion is of great significance for the protection of public health
and the formulation of preventive measures.

However, the accurate prediction of PM 2.5 has become
a challenging task, because of the volatility characteristics
of PM 2.5. Last several years, some scholars have estab-
lished some models to try to predict PM 2.5. In addition,
these results can be roughly divided into two categories:
(1) conventional prediction models; (2) artificial intelligence
prediction models. What is more, some research results on
the conventional forecasting models are listed in Table 1.

It can be seen from Table 1 some conventional prediction
models have been used to forecast the PM2.5. However,
due to the volatility characteristics of PM2.5 in view of the
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TABLE 1. Forecasting of the PM 2.5 based on the conventional models in recent years.

TABLE 2. Forecasting of the PM 2.5 based on some artificial intelligence models in recent years.

different samples, conventional prediction models have some
limitations. In recent years, artificial intelligence forecasting
models have been applied to the forecasting of PM2.5, in view
of its strong fitting ability. These study results on artificial
intelligence prediction models are shown in Table 2.

By means of summarizing Table 2, artificial intelligence
forecasting models are widely used for PM2.5 forecasting
(e.g., NN (neural network)), but NN has the disadvantage
of local extremum. So, some scholars have tried to com-
bine wavelet transform with artificial intelligence predic-
tion model to obtain more information about the original
PM2.5 and improve the prediction accuracy of PM2.5. These
studies are shown in Table 3.

To make a long story short, the combination of the arti-
ficial intelligence forecasting models and wavelet transform
are applied to the forecasting of PM2.5. However, when
the wavelet transform is adopted to decompose PM2.5 time
series, wavelet orders and layers are randomly determined.
In addition, LSTM solves the gradient disappearance prob-
lem of RNN (recurrent neural network) to some extent. So,

to solve these two scientific problems, some novel research
work is carried out in this paper:

(1) To improve the problem of LSTM gradient disap-
pearance, the combination of SAE and LSTM is proposed.
Furthermore, to test the effectiveness based on the pro-
posed model, some advanced forecasting models are adopted
for comparisons, e.g. SAE-BP (SAE-back propagation),
SAE-ELM (SAE -extreme learning machine), SAE-BiLSTM
(SAE - bi-directional), LSTM, BP, and ELM;

(2) Coiflets is adopted to decompose the PM2.5, into
several high- and low-frequency components. In addition,
SAE-LSTM is used to predict the decomposed components.
Lastly, the forecast results obtained by SAE-LSTM are recon-
structed. Thereby, the optimal wavelet layers and orders are
determined by comparing the evaluating indicators for differ-
ent samples.

II. METHODS
In this part, some methods are used in this paper, including
WT [28], SAE [34], LSTM [27], the combination process of
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TABLE 3. Combination of wavelet and neural network to forecast PM2.5 in recent years.

SAE and LSTM, and BiLSTM [35]. Furthermore, statistical
evaluation indexes and forecasting framework are given in
detail.

A. WAVELET TRANSFORM
WT inherits and develops the idea of short-time Fourier trans-
form localization, and overcomes the shortcomings of win-
dow size not changing with frequency. Furthermore, WT is
an ideal tool for signal analysis and processing, because it
can provide a ‘‘time-frequency’’ window that varies with
frequency.

In practical applications, because most of the computer
processing is a discrete equation, the continuous wavelet
transform is often discretized. The Mallat algorithm is
adopted, which can be expressed as:

aj = aj+1h1; dj = dj+1l1, (j = 0,1, · · · , n− 1) (1)

where h1 and l1 are low-pass filters and high-pass filters
respectively.

Mallat algorithm is used for wavelet decomposition. After
each decomposition, the low- and high-frequency component
are twice as much as the signal points before decomposition.
The reduction of points is disadvantageous to prediction.
In order to overcome this disadvantage, the decomposed com-
ponents can be reconstructed by the reconstruction algorithm.
The reconstruction algorithm is described as follows:

aj = aj+1h2 + dj+1l2, (j = n− 1, · · · ,1,0) (2)

where h2 and l2 are dual operators of h1 and l1, respectively.
The process of WT is shown in FIGURE 1.

B. MACHINE LEARNING ALGORITHM
1) STACKEN AUTOENCODER
Autoencoder is a kind of unsupervised one hidden layer
neural network, in which the output layer is set to be equal
to the input layer. FIGURE 2 shows the basic structure of an
AE model.

AE is composed of an encoder and decoder, and their
mapping functions are defined as follows.

h = f1 (x1) = sf 1 (W1x1 + b1) (3)

x2 = f2 (h) = sf 2 (W2h+ b2) (4)

FIGURE 1. Diagrammatic sketch of wavelet transform: (a) decomposition
process; (b) reconstruction process.

FIGURE 2. Model structure of AE.

where x1 = [x11, x12, · · · , x1dl]T ∈ R1dl is the inputs of the
AE; h = [h1, h2, · · · , hdh]T ∈ Rdh is the join vector between
x1 and x2; x2 = [x21, x22, · · · , x2dr ]T ∈ R2dr is the inputs of
the AE; 1dl is the dimension of the inputs; dh is the dimension
of the hidden variable vector; 2dr is the dimension of the
outputs; b1 ∈ R1dl is the bias vector; b2 ∈ R2dr is the bias
vector; the nonlinear activation function of sf 1 can be chosen
as the sigmoid function, or others like the tanh function the
rectified linear unit function; the activation function sf 2 of the
decoder can be either the sigmoid function or other functions.
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Stacked autoencoder, deep belief network, and deep convo-
lutional neural networks are three typical deep learning algo-
rithms, which is a hierarchical deep neural network structure
composed of multilayer AEs. The model structure of SAE
based on multiple AEs is shown in FIGURE 3.

FIGURE 3. Structure of AE.

2) LONG SHORT-TERM MEMORY
The structure of the basic neural network includes input layer,
hidden layer, and output layer. The output is controlled by
the activation function, and the weights are used to connect
the layers. Recently, on the basis of the basic neural network,
a new type of neural network has been developed, which
is called RNN. The biggest difference between RNN and
basic neural network is that RNN also establishes weighted
connections between neurons. However, RNN has the prob-
lem of gradient disappearance. Therefore, in order to solve
this problem, some RNN variants such as LSTM have been
proposed. LSTM adds three gates based on RNN to control
information transmission and final result calculation. The
three gates are forgetting gate, input gate, and output gate. The
structure of the LSTM processor unit is shown in FIGURE 4.

FIGURE 4. LSTM processor unit.

And the forgotten gate can be computed as:

f t = σ
(
W f · [ht−1, xt ]+ bf

)
(5)

where ft is the vector of the input gate; Wf and bf is the
weight and bias vector of forgotten gate; [ht−1, xt ] means
connecting two vectors into a longer vector; σ which is the
sigmoid function used in this study is activation function. The
expansion ofWf · [ht−1, xt ] is as follows:

W f · [ht−1, xt ] =
[
W f

]
·

[
ht−1
xt

]
=
[
W fh W fx

] [ ht−1
xt

]
= W fhht−1 +W fxxt (6)

The input and output gate can be computed as:

it = σ (W i · [ht−1, xt ]+ bi) (7)

ct = f t · ct−1 + it · tanh (W c · [ht−1, xt ]+ bc) (8)

ot = σ (W0 · [ht−1, xt ]+ b0) (9)

ht = ot · tanh (ct) (10)

where it , ot and ct are the vectors for input gate, output gate,
and cell activations, respectively; ht is the output vector;Wi,
Wc, andWo are the weight of the corresponding gate; bi, bc,
and bo are the bias vectors of the corresponding gate.

3) BI-DIRECTIONAL LONG SHORT-TERM MEMORY
In timing processing, standard RNN and LSTM often ignore
future information, while BiLSTM can take advantage of
future information. The basic structural idea of BiLSTM is
that the front and back layers of each training sequence are
two LSTM networks, respectively, and the LSTM networks
are both connected to one input layer and one output layer.
The output layer can obtain past information of each point
in the input sequence, and can also get future information
of each point through this structure. FIGURE 5 shows a
BiLSTM that expands along time. Increased neural network
update equation can be computed as:

htr = H
(
W1xt +W2h(t−1)r + br

)
(11)

htl = H
(
W1xt +W2h(t−1)l + bl

)
(12)

yt = W4htr +W6htl + by (13)

where htr, htl , yt are respectively the vectors forward propa-
gation, backward propagation and output layer;W1,W2,W3,
W4, W5, and W6 are respectively the corresponding weight
coefficients; br , bl , by are the corresponding bias vectors.

FIGURE 5. Expansion structure of BiLSTM.

4) THE COMBINATION PROCESS OF SAE AND LSTM
The combination of SAE and LSTM is actually a process of
data transfer. The specific calculation process is as follows:

Step 1: The PM2.5 time series is divided into training
samples, testing samples, and prediction samples.

Step 2: Set the parameters of SAE and LSTM;
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FIGURE 6. Forecasting framework using novel WT-SAE-LSTM for
PM 2.5 time series in this paper.

Step 3: Train SAE network;
Step 4: The trained SAE network is used to predict the

training samples, and the prediction results are used as the
input of LSTM;

Step 5: Based on the output results of SAE, LSTM network
is trained;

Step 6: The training samples, test samples, and prediction
samples are predicted by the trained LSTM network. Also,
if the set error precision is satisfied, the output result is
exported or returned to Step 3.

C. STATISTICAL EVALUATION
In order to comprehensively assess the characteristics of dif-
ferent prediction models, seven commonly used and mean
absolute error (MAE) [36]–[39] is applied in this subsection.
The definition of this index is shown in EQUATION (14).

MAE =
(
1
/
n
)∑n

t=1
|At − Ft | (14)

where n represents the number of training or test set; At and
Ft represent the raw and forecasting value.

D. PREDICTIVE FRAMEWORK
The predictive framework in this study is given in FIGURE 6.
Furthermore, the detailed prediction process is as follows:

To eliminate the effect of the PM 2.5 magnitude on the
forecasting results, the PM 2.5 is normalized based on the
normalization method whose interval is from - 1 to 1.

Furthermore, to get more information about PM 2.5 time
series, it is broken down into several low- and high-frequency
components by wavelet decomposition algorithm. In addi-
tion, the low- and high-frequency components are forecasted
by SAE-LSTM, and the forecasting results are gotten. After

reconstructing the forecasting results, the final prediction
results are denormalized.

III. RESULTS ANALYSIS AND DISCUSSION
A. SAMPLE COLLECTION AND PREPROCESSING
In order to verify the generality of the forecasting model
proposed in this paper, six groups of PM2.5 time series are
selected from Jiayuguan, Datong, Fushun, Qiqihar, Weinan,
and Xuchang. They are located in China, as shown in
FIGURE 7(A). These data are from China air quality online
monitoring and analysis platform (https://www.aqistudy.cn/),
which are shown in FIGURE 7(B). In addition, in order
to understand the data differences of different PM2.5 time
series, some statistical indicators (e.g., Mean, S.D., min, and
max) are calculated, as shown in Table 4.

The normalization method is adopted to normalize PM
2.5 time series, as depicted in FIGURE 7(C). Here, one-step-
ahead forecasting is adopted in all experiments.

TABLE 4. Statistical results of PM 2.5 based on the different study sites.

B. EXPERIMENTAL DESIGN AND PARAMETER SETTINGS
In this paper, to ensure the fairness of the comparison of
the experimental results, all experiments are calculated on
the same computer. And the detailed configuration of the
computer is shown in Table 5.

TABLE 5. The specific configuration of the computer.

The goal of this study is to improve the gradient disap-
pearance of LSTM and to determine the optimal wavelet
layers and orders for different PM2.5 samples. According
to these two goals, two experiments are designed, which
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FIGURE 7. Research site and sample data.

are Experiment I: comparison of forecasting efficiency and
accuracy based on the proposed model and four models con-
sidered for comparison and Experiment II: determination of
the optimal wavelet layers and orders based on six different
samples.

In Experiment I: the proportion of the test sample and
the training sample is 0.2 and 0.8, respectively. In addition,
the length of the sliding timewindow is 20 and the experiment
is repeated 10 times. The parameters of the Experiment II
are the same as those of the Experiment I. Furthermore, the
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TABLE 6. The specific parameter settings in two experiments.

detailed parameter settings of the two experiments are listed
in Table 6.

C. EXPERIMENT I: COMPARISON OF FORECASTING
EFFICIENCY AND ACCURACY BASED ON THE PROPOSED
MODEL AND FOUR MODELS CONSIDERED FOR
COMPARISON
To know the forecasting efficiency and accuracy of the pro-
posed model, six models including SAE-BP, SAE- ELM,
SAE-BiLSTM, LSTM, BP, ELM are considered for compar-
ison.

The parameters in this experiment are shown in
Section II. B. In addition, the results are described in
FIGURE 8 and Table 7.

The following crucial findings are listed by analyzing
FIGURE 8 and Table 7.

(1) It can be seen that the results gained by SAE-LSTM
and the raw value are the closest based on the six test sam-
ples, comparing with other forecasting models considered for
comparison from FIGURE 8.

(2) From Table 7, theMAE value of SAE-LSTM is 0.3094,
0.4291, 0.0527, 0.0325, 0.1304, 0.0665, 0.3733, 0.3059,
0.1511, 0.2514, 0.2125, 0.1073, 0.7248, 0.4030, 0.0604,
0.1222, 0.1113, 0.1446, 0.9039, 3.8966, 0.0757, 0.0752,
1.1352, 0.7127, 0.7040, 1.1887, 0.0724, 0.4541, 0.4476,
0.4418, and 0.8935, 1.4574, 0.1723, 0.6040, 0.6549. 0.6378
lower than the that of SAE-BP, SAE-ELM, SAE-BiLSTM,
LSTM, BP, ELM for Jiayuguan, Datong, Fushun, Qiqihar,
Weinan, and Xuchang.

D. EXPERIMENT II: DETERMINATION OF THE OPTIMAL
WAVELET LAYERS AND ORDERS BASED ON SIX
DIFFERENT SAMPLES
In this experiment, six cases are used to verify the perfor-
mance of SAE-LSTM. Furthermore, the parameters of all the

cases in this experiment are set to be the same, which are
listed in Section II. B in detail.

1) CASE ONE: JIAYUGUAN
The results, in this case, are shown in Table 8. By analyzing
Table 8, the following comparisons can be given:

In view of Table 8 and MAE, the MAE of the one order
five layers, second orders six layers, three orders eight lay-
ers, four orders five layers and five orders seven layers is
smaller than that of the other orders and layers. And, com-
pared with one order five layers, second orders six layers,
three orders eight layers, and five orders seven layers, four
orders five layers is the smallest. Furthermore, the MAE
based on SAE-LSTM is 3.0655. And the MAE of four orders
five layers is 1.1730 higher than that of SAE-LSTM used
individually.

2) CASE TWO: DATONG
The results, in this case, are shown in Table 9. By analyzing
Table 9, the following comparisons can be given:

In view of Table 9, the MAE of the one order six layers,
second orders four layers, three orders six layers, four orders
four layers and five orders six layers is smaller than that of the
other orders and layers. And, compared with o one order six
layers, second orders four layers, three orders six layers, and
four orders four layers, five orders six layers is the smallest.
Furthermore, the MAE based on SAE-LSTM is 3.6543. And
the MAE of five orders six layers is 1.5427 higher than that
of SAE-LSTM applicated individually.

3) CASE THREE: FUSHUN
The results, in this case, are shown in Table 10. By analyzing
Table 10, the following comparisons can be given:

In view of Table 11 and MAE, the MAE of the one order
six layers, second orders eight layers, three orders six layers,
four orders seven layers and five orders seven layers is smaller
than that of the other orders and layers. And, compared
with one order six layers, second orders eight layers, three
orders six layers and four orders seven layers, five orders
seven layers is the smallest. Furthermore, the MAE based on
SAE-LSTM is 3.8562. And the MAE of five orders seven
layers is 1.5559 higher than that of SAE-LSTM applicated
individually.

4) CASE FOUR: QIQIHAR
The results, in this case, are shown in Table 11. By analyzing
Table 11, the following comparisons can be given:

In view of Table 11 and MAE, the MAE of the one order
seven layers, second orders seven layers, three orders six
layers, four orders four layers and five orders seven layers
is smaller than that of the other orders and layers. And,
compared with one order seven layers, second orders seven
layers, four orders four layers and five orders seven layers,
three orders six layers is the smallest. Furthermore, the MAE
based on SAE-LSTM is 3.6819. And theMAE of three orders

142820 VOLUME 7, 2019



W. Qiao et al.: Forecasting of PM2.5 Using a Hybrid Model Based on WT and an Improved Deep Learning Algorithm

FIGURE 8. Comparison for the proposed forecasting model and other models considered for comparison using the six different samples based on the
test set: (a) Jiayuguan; (b) Datong; (c) Fushun; (d) Qiqihar; (e) Weinan; (f) Xuchang.

TABLE 7. Evaluating indicator comparison of the proposed forecasting model and other models considered for comparison using the six different
samples based on the test set. The smallest MAE is marked in bold.

six layers is 0.9210 higher than that of SAE-LSTM applicated
individually.

5) CASE FIVE: WEINAN
The results, in this case, are shown in Table 12. By analyzing
Table 12, the following comparisons can be given:

In view of Table 12 and MAE, the MAE of the one order
four layers, second orders four layers, three orders six layers,
four orders six layers and five orders seven layers is smaller
than that of the other orders and layers. And, compared
with one order four layers, second orders four layers, three

orders six layers, and four orders six layers, five orders
seven layers is the smallest. Furthermore, the MAE based on
SAE-LSTM is 4.5091. And the MAE of five orders seven
layers is 1.7131 higher than that of SAE-LSTM applicated
individually.

6) CASE SIX: XUCHANG
The results, in this case, are shown in Table 13. By analyzing
Table 13, the following comparisons can be given:

In view of Table 13 and MAE, the MAE of the one order
four layers, second orders five layers, three orders six layers,
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TABLE 8. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Jiayuguan PM2.5. The minimum
MAE are marked in bold.

TABLE 9. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Datong PM2.5. The minimum
MAE are marked in bold.

TABLE 10. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Fushun PM2.5. The minimum
MAE are marked in bold.

four orders six layers and five orders six layers is smaller
than that of the other orders and layers. And, compared
with one order four layers, second orders five layers, three
orders six layers, and four orders six layers, five orders
six layers is the smallest. Furthermore, the MAE based on
SAE-LSTM is 4.5574. And the MAE of five orders six

layers is 1.6492 higher than that of SAE-LSTM applicated
individually.

E. DISCUSSIONS
Precise prediction of PM 2.5 is very crucial for policy-
makers to draw up preventive measures. Besides, the goal
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TABLE 11. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Qiqihar PM2.5. The minimum
MAE are marked in bold.

TABLE 12. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Weinan PM2.5. The minimum
MAE are marked in bold.

TABLE 13. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Xuchang PM2.5. The minimum
MAE are marked in bold.

of this paper is to modify the problem of LSTM gradient
disappearance and to fix the optimal wavelet layers and
orders and layers for PM 2.5 from the different study sites.
The following study results may be gained, in view of the
Experiments I and II.

(1) In view of the Experiment I, the forecasting perfor-
mance of SAE-LSTM is much more outstanding than that of
other forecasting algorithms considered for comparison.

(2) In Experiment II, for the different samples from the
study sites, four orders five layers, five orders six layers, five
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orders seven layers, three orders six layers, five orders seven
layers, and five orders six layers are very rightness.

Although this study fixes the optimal wavelet layers and
orders of the different samples and improves the problem
of LSTM gradient disappearance, there are still some weak
points that need to be addressed in future research:

(1) For the different PM2.5 time series, the optimal wavelet
layers and orders are fixed, but for other time series, whether
these fixed optimal wavelet layers and orders are appropriate
or not?

(2) The parameters are set up in this study, which are fixed.
In future studies, the optimization algorithms will be adopted
to optimize the hyper-parameters in SAE-LSTM, e.g. meta-
heuristic algorithms [40].

(3) The algorithm built in this paper has very good perfor-
mance for PM2.5 prediction. Can this algorithm be applied to
other fields, such as [41]–[45]?

IV. CONCLUSION
In this study, for different PM2.5 time series, Coiflets wavelet
is adopted to decompose them into 160 high- and low-
frequency components, the different neural network models
(e.g. ELM) are adopted for comparison. Besides, the compre-
hensive evaluation indexes are applied to test the performance
of SAE-LSTM. At last, some interesting conclusions are
drawn:

(1) Comparing with other forecasting models considered
for comparison in Experiment I, the forecasting performance
of SAE-LSTM is improved. This experimental result implies
that SAE-LSTMmodifies the problem of the LSTM gradient
disappearance to some extent.

(2) The optimal wavelet layers and orders are determined
for six kinds of samples based on the SAE-LSTM.

REFERENCES
[1] W. Sun and J. Sun, ‘‘Daily PM2.5 concentration prediction based on

principal component analysis and LSSVM optimized by cuckoo search
algorithm,’’ J. Environ. Manage., vol. 188, pp. 144–152, Mar. 2017.

[2] M. Niu, K. Gan, S. Sun, and F. Li, ‘‘Application of decomposition-
ensemble learning paradigm with phase space reconstruction for day-
ahead PM2.5 concentration forecasting,’’ J. Environ. Manage., vol. 196,
pp. 110–118, Jul. 2017.

[3] K. Gan, S. Sun, S. Wang, and Y. Wei, ‘‘A secondary-decomposition-
ensemble learning paradigm for forecasting PM2.5 concentration,’’ Atmos.
Pollut. Res., vol. 9, no. 6, pp. 989–999, 2018.

[4] J. Du, F. Qiao, and L. Yu, ‘‘Temporal characteristics and forecasting of
PM2.5 concentration based on historical data in Houston, USA,’’ Resour.,
Conservation Recycling, vol. 147, pp. 145–156, Aug. 2019.

[5] Y. Qi, Q. Li, H. Karimian, and D. Liu, ‘‘A hybrid model for spatiotemporal
forecasting of PM2.5 based on graph convolutional neural network and long
short-term memory,’’ Sci. Total Environ., vol. 664, pp. 1–10, May 2019.

[6] F. Zhao and W. Li, ‘‘A combined model based on feature selection and
WOA for PM2.5 concentration forecasting,’’ Atmosphere, vol. 10, no. 4,
p. 223, 2019.

[7] Z. Shang, T. Deng, J. He, and X. Duan, ‘‘A novel model for hourly PM2.5
concentration prediction based on CART and EELM,’’ Sci. Total Environ.,
vol. 651, pp. 3043–3052, Feb. 2019.

[8] D.-J. Liu and L. Li, ‘‘Application study of comprehensive forecasting
model based on entropy weighting method on trend of PM2.5 concentration
in Guangzhou, China,’’ Int. J. Environ. Res. Public Health, vol. 12, no. 6,
pp. 7085–7099, 2015.

[9] B. Lv, W. G. Cobourn, and Y. Bai, ‘‘Development of nonlinear empirical
models to forecast daily PM2.5 and ozone levels in three large Chinese
cities,’’ Atmos. Environ., vol. 147, pp. 209–223, Dec. 2016.

[10] S. Ausati and J. Amanollahi, ‘‘Assessing the accuracy of ANFIS, EEMD-
GRNN, PCR, and MLR models in predicting PM2.5,’’ Atmos. Environ.,
vol. 142, pp. 465–474, Oct. 2016.

[11] B. Lyu, Y. Zhang, and Y. Hu, ‘‘Improving PM2.5 air quality model forecasts
in China using a bias-correction framework,’’ Atmosphere, vol. 8, no. 8,
p. 147, 2017.

[12] X. Y. Ni, H. Huang, and W. P. Du, ‘‘Relevance analysis and short-term
prediction of PM2.5 concentrations in Beijing based on multi-source data,’’
Atmos. Environ., vol. 150, pp. 146–161, Feb. 2017.

[13] P. Wang, H. Zhang, Z. Qin, and G. Zhang, ‘‘A novel hybrid-Garch model
based on ARIMA and SVM for PM2.5 concentrations forecasting,’’ Atmos.
Pollut. Res., vol. 8, no. 5, pp. 850–860, 2017.

[14] L. Zhang, J. Lin, R. Qiu, X. Hu, H. Zhang, Q. Chen, H. Tan, D. Lin, and
J. Wan, ‘‘Trend analysis and forecast of PM2.5 in Fuzhou, China using the
ARIMA model,’’ Ecological Indicators, vol. 95, pp. 702–710, Dec. 2018.

[15] S. Mahajan, L.-J. Chen, and T.-C. Tsai, ‘‘Short-term PM2.5 forecasting
using exponential smoothing method: A comparative analysis,’’ Sensors,
vol. 18, no. 10, p. 3223, 2018.

[16] A. B. Chelani, ‘‘Estimating PM2.5 concentration from satellite derived
aerosol optical depth and meteorological variables using a combination
model,’’ Atmos. Pollut. Res., vol. 10, no. 3, pp. 847–857, 2019.

[17] M. Niu, Y. Wang, S. Sun, and Y. Li, ‘‘A novel hybrid decomposition-and-
ensemble model based on CEEMD and GWO for short-term PM2.5 con-
centration forecasting,’’ Atmos. Environ., vol. 134, pp. 168–180, Jun. 2016.

[18] W. Li, D. Kong, and J. Wu, ‘‘A new hybrid model FPA-SVM consider-
ing cointegration for particular matter concentration forecasting: A case
study of kunming and yuxi, China,’’ Comput. Intell. Neurosci., vol. 2017,
Aug. 2017, Art. no. 2843651.

[19] Y. Chen, F. Li, Z. Deng, X. Chen, and J. He, ‘‘PM2.5 forecasting with
hybrid LSE model-based approach,’’ Softw., Pract. Exper., vol. 47, no. 3,
pp. 379–390, 2017.

[20] F. Biancofiore, M. Busilacchio, M. Verdecchia, B. Tomassetti, E. Aruffo,
S. Bianco, S. Di Tommaso, C. Colangeli, G. Rosatelli, and P. Di Carlo,
‘‘Recursive neural network model for analysis and forecast of PM10 and
PM2.5,’’ Atmos. Pollut. Res., vol. 8, no. 4, pp. 652–659, 2017.

[21] J. Qiao, J. Cai, H. Han, and J. Cai, ‘‘Predicting PM2.5 concentrations at
a regional background station using second order self-organizing fuzzy
neural network,’’ Atmosphere, vol. 8, no. 1, p. 10, 2017.

[22] P. Jiang, Q. Dong, and P. Li, ‘‘A novel hybrid strategy for PM2.5 concentra-
tion analysis and prediction,’’ J. Environ. Manage., vol. 196, pp. 443–457,
Jul. 2017.

[23] J.-H. Chang and C.-Y. Tseng, ‘‘Analysis of correlation between secondary
PM2.5 and factory pollution sources by using ANN and the correlation
coefficient,’’ IEEE Access, vol. 5, pp. 22812–22822, 2017.

[24] C.-J. Huang and P.-H. Kuo, ‘‘A deep CNN-LSTM model for particulate
matter (PM2.5) forecasting in smart cities,’’ Sensors, vol. 18, no. 7, p. 2220,
2018.

[25] Y. Chen, ‘‘Prediction algorithm of PM2.5 mass concentration based on
adaptive BP neural network,’’ Computing, vol. 100, no. 8, pp. 825–838,
2018.

[26] Y. Bai, B. Zeng, C. Li, and J. Zhang, ‘‘An ensemble long short-term
memory neural network for hourly PM2.5 concentration forecasting,’’
Chemosphere, vol. 222, pp. 286–294, May 2019.

[27] J. Zhao, F. Deng, Y. Cai, and J. Chen, ‘‘Long short-termmemory-Fully con-
nected (LSTM-FC) neural network for PM2.5 concentration prediction,’’
Chemosphere, vol. 220, pp. 486–492, Apr. 2019.

[28] X. Feng, Q. Li, and Y. Zhu, J. Hou, L. Jin, and J. Wang, ‘‘Artificial neural
networks forecasting of PM2.5 pollution using air mass trajectory based
geographic model and wavelet transformation,’’ Atmos. Environ., vol. 107,
pp. 118–128, Apr. 2015.

[29] D. Wang, Y. Liu, H. Luo, C. Yue, and S. Cheng, ‘‘Day-ahead PM2.5
concentration forecasting using WT-VMD based decomposition method
and back propagation neural network improved by differential evolution,’’
Int. J. Environ. Res. Public Health, vol. 14, no. 7, p. 764, 2017.

[30] H. Zhang, S. Zhang, P. Wang, Y. Qin, and H. Wang, ‘‘Forecasting
of particulate matter time series using wavelet analysis and wavelet-
ARMA/ARIMA model in Taiyuan, China,’’ J. Air Waste Manage. Assoc.,
vol. 67, no. 7, pp. 776–788, 2017.

[31] H. Liu, Z. Duan, and C. Chen, ‘‘A hybrid framework for forecasting PM2.5
concentrations using multi-step deterministic and probabilistic strategy,’’
Air Qual., Atmos. Health, vol. 12, no. 7, pp. 785–795, 2019.

142824 VOLUME 7, 2019



W. Qiao et al.: Forecasting of PM2.5 Using a Hybrid Model Based on WT and an Improved Deep Learning Algorithm

[32] H. Liu, K. Jin, and Z. Duan, ‘‘Air PM2.5 concentration multi-step forecast-
ing using a new hybrid modeling method: Comparing cases for four cities
in China,’’ Atmos. Pollut. Res., vol. 10, no. 5, pp. 1588–1600, 2019.

[33] H. Liu, Y. Xu, and C. Chen, ‘‘Improved pollution forecasting hybrid
algorithms based on the ensemble method,’’ Appl. Math. Model., vol. 73,
pp. 473–486, Sep. 2019.

[34] Z. Chen and W. Li, ‘‘Multisensor feature fusion for bearing fault diagnosis
using sparse autoencoder and deep belief network,’’ IEEE Trans. Instrum.
Meas., vol. 66, no. 7, pp. 1693–1702, Jul. 2017.

[35] U. Lešnik, D. Mongus, and D. Jesenko, ‘‘Predictive analytics of PM10
concentration levels using detailed traffic data,’’ Transp. Res. D, Transp.
Environ., vol. 67, pp. 131–141, Feb. 2019.

[36] W. Qiao, K. Huang, M. Azimi, and S. Han, ‘‘A novel hybrid prediction
model for hourly gas consumption in supply side based on improved whale
optimization algorithm and relevance vector machine,’’ IEEE Access,
vol. 7, pp. 88218–88230, 2019. doi: 10.1109/ACCESS.2019.2918156.

[37] H. Lu, K. Huang, M. Azimi, and L. Guo, ‘‘Blockchain technology in the
oil and gas industry: A review of applications, opportunities, challenges,
and risks,’’ IEEE Access, vol. 7, pp. 41426–41444, 2019. doi: 10.1109/
ACCESS.2019.2907695.

[38] Q. Weibiao, L. Bingfan, and K. Zhangyang, ‘‘Differential scanning
calorimetry and electrochemical tests for the analysis of delamination
of 3PE coatings,’’ Int. J. Electrochem. Sci., vol. 14, pp. 7389–7400,
Aug. 2019.

[39] W. Qiao and Y. Zhe, ‘‘Modified dolphin swarm algorithm based on
chaotic maps for solving high-dimensional function optimization prob-
lems,’’ IEEE Access, vol. 7, pp. 110472–110486, 2019. doi: 10.1109/
ACCESS.2019.2931910.

[40] W. Qiao and Z. Yang, ‘‘Solving large-scale function optimization prob-
lem by using a new metaheuristic algorithm based on quantum dol-
phin swarm algorithm,’’ IEEE Access, to be published. doi: 10.1109/
ACCESS.2019.2942169.

[41] W. Liu, Z. Zhang, J. Chen, J. Fan, D. Jiang, Y. Li, and D. Jjk, ‘‘Physical
simulation of construction and control of two butted-well horizontal cavern
energy storage using large molded rock salt Specimens,’’ Energy, vol. 185,
pp. 682–694, Oct. 2019.

[42] E. Liu, W. Li, H. Cai, and S. Peng, ‘‘Formation mechanism of trailing oil
in product oil pipeline,’’ Processes, vol. 7, no. 1, p. 7, 2019.

[43] Z. Su, E. Liu, Y. Xu, P. Xie, C. Shang, and Q. Zhu, ‘‘Flow field and noise
characteristics of manifold in natural gas transportation station,’’ Oil Gas
Sci. Technol., vol. 74, p. 70, Jul. 2019. doi: 10.2516/ogst/2019038.

[44] W. Qiao and H. Wang, ‘‘Analysis of the wellhead growth in HPHT gas
wells considering the multiple annuli pressure during production,’’ J. Nat-
ural Gas Sci. Eng., vol. 50, pp. 43–54, Feb. 2018.

[45] W. Qiao, H. Lu, G. Zhou, M. Azimi, Q. Yang, and W. Tian, ‘‘A hybrid
algorithm for carbon dioxide emissions forecasting based on improved lion
swarm optimizer,’’ J. Cleaner Prod., 2019, Art. no. 118612. doi: 10.1016/j.
jclepro.2019.118612.

WEIBIAO QIAO received the B.S. degree in infor-
mation and computing science from Northeast
Agricultural University, Harbin, in 2009, the M.S.
degree in oil and gas storage and transporta-
tion engineering from Liaoning Shihua University,
Fushun, in 2012, and the Ph.D. degree in oil and
gas storage and transportation engineering from
China Petroleum University, Qingdao, in 2017.

Since 2017, he has been a Lecturer with the
North China University of Water Resources and

Electric Power, Zhengzhou. His research interests include the gas consump-
tion forecasting, gas pipeline robot detection, and intelligent scheduling of
gas storage group.

WENCAI TIAN was born in Anyang, Henan,
in 1998.

He is currently pursuing the bachelor’s degree
with the North China University of Water
Resources and Electric Power. He is involved
in swarm intelligence algorithm and machine
learning.

He received the National Encouragement Schol-
arship, in 2017 and 2018. He received the Excel-
lent Award from the Huacai Cup Competition. The

title of the award-winning project is the Multifunctional Window Purifier
Project.

YU TIAN was born in Puyang, Henan, in 1997.
He is currently pursuing the bachelor’s degree

with the North China University of Water
Resources and Electric Power. He is involved
in swarm intelligence algorithm and machine
learning.

In the school year 2017 to 2018, he received the
three good students award from the school.

QUAN YANG was born in Zhoukou, Henan,
in 1999.

He is currently pursuing the bachelor’s degree
with the North China University of Water
Resources and Electric Power. He is involved
in swarm intelligence algorithm and machine
learning.

He received the third prize of the Green Source
Cup from the North China University of Water
Resources and Hydropower.

YINING WANG was born in Gongyi, Henan,
in 1997.

He is currently pursuing the bachelor’s degree
with the North China University of Water
Resources and Electric Power. He is involved in
swarm intelligence algorithm and machine learn-
ing.

He received the second prize in the 22nd
China Daily 21st century Coca-Cola Cup National
English Speech Contest campus selection com-

petition from the North China University of Water Resources and Electric
Power.

JIANZHUANG ZHANG was born in Anyang,
Henan, in 1996.

He is currently pursuing the bachelor’s degree
with the North China University of Water
Resources and Electric Power. He is involved
in swarm intelligence algorithm and machine
learning.

In 2018, he received the third prize of the Dahe
Seiko Cup Fire Design Competition based on
artificial intelligence technology.

VOLUME 7, 2019 142825

http://dx.doi.org/10.1109/ACCESS.2019.2918156
http://dx.doi.org/10.1109/ACCESS.2019.2907695
http://dx.doi.org/10.1109/ACCESS.2019.2907695
http://dx.doi.org/10.1109/ACCESS.2019.2931910
http://dx.doi.org/10.1109/ACCESS.2019.2931910
http://dx.doi.org/10.1109/ACCESS.2019.2942169
http://dx.doi.org/10.1109/ACCESS.2019.2942169
http://dx.doi.org/10.2516/ogst/2019038
http://dx.doi.org/10.1016/j.jclepro.2019.118612
http://dx.doi.org/10.1016/j.jclepro.2019.118612

