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ABSTRACT Wrapper methods are a type of feature selection method that finds a subset of variables to
improve the performance of a classifier by removing redundant and irrelevant variables. The use of a wrapper
implies that each time a candidate solution is explored, the classifier is evaluated on the quality measures
selected (e.g. accuracy or precision). Though robust, this iteration across several candidate solutions can
become computationally intensive and time-consuming. In this paper we propose a wrapper, that is based
on binary Covering Arrays (CAs), and binary Incremental Covering Arrays (ICAs), that have been widely
used for experimental design and fault detection in software and hardware testing. The new wrapper was
evaluated with six classifiers on seven data sets. The results show that the CAs and ICAs with strength
6 significantly improve the performance and reduces the number of variables required by the classifier.
A comparative analysis of the proposed method against wrappers based on other search approaches such
as genetic algorithms (GA) and particle swarm optimization (PSO), shows that the proposed method yields
results similar to GA, but not to PSO, with differences to PSO, in accuracy, which in the majority of cases is
below 0.04. This lack of accuracy, by which the new wrapper fails to match PSO, is offset by the fact that the
user does not need to fine tune algorithm parameters, such as velocity ranges, timing, cognitive coefficient,
and social coefficient, while it is also much easier to program in parallel.

INDEX TERMS Classification algorithms, covering arrays, random forest, support vector machines, genetic

algorithms, particle swarm optimization.

I. INTRODUCTION

At a time when information technology revolution is making
it possible to collect vast amounts of data through devices,
sensors, images or sound at high spatial and temporal fre-
quencies, there is a resulting increased focus on data-driven
decision-making and innovation, specifically in the fields of
science, business, and marketing [1], [2]. Machine learn-
ing models (algorithms) for classification (classifiers) that
enable identification of complex relationships in this high
dimensional data have therefore become popular, mainly due
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to the flexibility they offer in terms of less prior knowl-
edge required on the variables and their interactions, non-
linearity, and response times [3], [4]. A peculiar feature
of high dimensional datasets, in comparison to tradi-
tional datasets (i.e. collected using manual data collec-
tion processes), is that they also capture several redundant
and even irrelevant variables, thereby affecting the perfor-
mance of the classifier in terms of prediction accuracy,
and increased computational time and cost. As a conse-
quence, a prior process of feature selection is always nec-
essary in order to remove these redundant and irrelevant
variables, which contribute little in terms of insight and
information.

148297


https://orcid.org/0000-0002-0103-7505
https://orcid.org/0000-0002-6263-1911
https://orcid.org/0000-0002-5029-5340
https://orcid.org/0000-0002-2638-3420
https://orcid.org/0000-0003-4033-2934
https://orcid.org/0000-0003-4218-4306
https://orcid.org/0000-0001-6724-1421

IEEE Access

H. Dorado et al.: Wrapper for Building Classification Models Using CAs

Feature selection enables determination of an “optimal”
subset of variables, such that the variables responsible for
noise, which reduce downstream classifier performance and
render the training process computationally cumbersome, are
discarded. This, therefore, becomes an indispensable step in
the building of classifiers [5], [6]. Feature selection methods
can be classified mainly into three groups:

« Filter methods carry out feature selection as a phase
prior to training and classification. For this, a criterion is
used to establish a ranking of features. The variables are
then sorted starting with the most relevant and a subset
below a certain threshold is discarded [5], [7], [8].

« Wrappers are methods that use the classifier as part
of the feature selection process. In this case, the aim
is to find the best subset of variables according to a
search strategy. Each candidate solution is evaluated
by running the classifier and obtaining a performance
measure [8]-[10].

« Embedded methods carry out feature selection within
the same learning process, i.e. as the classifier is being
trained. This involves a function to evaluate the influ-
ence of the variables (features) as part of the algorithm.
Unlike the wrapper, variables are selected with a single
run or weighted using regularization methods [11], [12].

With respect to the advantages of each method, filters and
embedded methods are faster at finding a solution without
having to run the classification algorithm more than once.
There is a risk, however, that the solution found is not always
the most suitable in terms of classifier performance. Wrap-
pers, on the other hand, are generally able to find better
solutions than filters, but are disadvantaged as they are much
more computationally expensive (computational cost grows
exponentially with the number of input variables), since the
classifier needs to iterate several times. This problem per-
sists, despite the implementation of search strategies such
as meta-heuristics. Such strategies in most cases require the
optimization of several parameters and require a large number
of experiments with some limitation of being parallelized.
Covering arrays, given their characteristics, offer the potential
for solving some of these problems, but unfortunately have
not been unexplored for use in wrapper design.

Covering Arrays (CA) are expressed as integer matrices
with N rows and k columns, and a parameter ¢ that denotes
the strength or degree of interaction.

Each row is a sample or test, each column represents a
variable or parameter, and the parameter ¢ indicates that, all
the interactions between each ¢ columns are covered at least
once.

This way, CA does a sampling of all possible values of the
k columns, with two important features: minimal cardinality
(i.e. the number of rows is minimum), and maximal coverage
(i.e. all the possible values for each ¢ parameter is sampled
in at least one row). They are often used in the design and
testing of software solutions, hardware testing, etc. CAs are
particularly useful in applications that require combinations
of different parameters to be tested, in which case it is often
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not practical to perform exhaustive tests owing to high costs
in time and effort. Each row of a CA represents a test that
indicates a combination of k parameter values. Coverage or
strength (represented by ¢) is a measure of the coverage of
interactions between the different parameters. The greater
the coverage, the higher the number of tests required, and
when coverage equals the number of k parameters, the array
is equivalent to an exhaustive test. CA use can effectively
reduce the number of tests needed, while still maintaining the
effectiveness (coverage) of the task being undertaken [13].
Incremental Covering Arrays (ICA) are a variation of CAs.
They work in the following manner: Within a matrix of
strength ¢ are sub-matrices of CAs with strengths less than 7,
and if a new matrix is desired with strength ¢ + 1 or greater,
all that is required is to add a certain number of rows, without
having to completely regenerate the array [14].

Although these unique characteristics of CAs have been
exploited in several other fields, we have not found evidence
of their use in designing feature selection approaches. The
main contributions of this article are therefore summarized
as: i) to present a wrapper that makes it possible to inte-
grate the qualities of covering arrays in carrying out feature
selection across various classifiers traditionally used in data
mining processes; ii) to compare the results of the wrapper
using covering arrays and incremental covering arrays with
several classifiers such as K nearest neighbors (KNN), C4.5,
Naive Bayes (NB), Multi-Layer Perceptron (MLP), Random
Forest (RF) and Support Vector Machines (SVM) at different
degrees of strength; and iii) to compare the results with
Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), which have been employed in the state of the art for
wrappers.

The rest of the article is organized as follows: Section II
shows previous work related to filters and wrappers, and
introduces the concept of covering arrays; Section III presents
the methodology used to construct a wrapper using CA with
different classifiers; Section IV presents the results from the
evaluation and testing of the wrapper, and the final section
contains conclusions and opportunities for future work.

Il. RELATED WORK

A. WRAPPERS FOR FEATURE SELECTION

The main characteristic of feature selection via wrappers is
that it uses the classification algorithm within the evaluation
process on each subset of variables — hence making the pro-
cess computationally intensive. The search for the best subset
of variables is an NP problem that becomes computationally
prohibitive as the number of input variables grows. Defining a
search strategy is a pre-requisite, which directs the algorithm
to evaluate the most promising solutions [6]. An evaluation
criterion is also necessary. This defines the performance of
the classifier that is obtained from a subset of variables. The
general diagram of a wrapper is presented in Fig. 1, where the
feature selection of the classifier works like a “black box”
that allows the best subset of variables to be identified.
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FIGURE 1. The wrapper approach to feature selection (Adapted from [15]).

Several variations have been adapted for the implementa-
tion of wrappers. The main feature that differentiates them is
the search strategy used to define the subsets of variables that
need to be evaluated [11]. Methods of exponential complexity
involve computing a large number of tests. Among these is the
exhaustive search. Although it guarantees a high probability
of finding the best solution, it is impractical given the high
computational costs, making it difficult to run even on small
datasets [6], [9].

Another classic search strategy is the sequential approach,
part of the family of greedy algorithms that use iterative
functions. Among these algorithms, is the forward method,
which starts from a null subset of variables, and in every sub-
sequent step a new variable is added such that it enriches the
performance of the classifier; this process is performed until
no improvements are found, even after addition of another
variable. Although forward returns reasonable results in a
short time, its performance is poor in a number of cases due to
its limitation of not being able to exclude variables that have
been entered in previous iterations. The backward method,
in contrast, starts with a solution that consists of the entire set
of variables, and in an iterative way, variables are removed
such that the performance of the classifier increases. The
process is stopped when the exclusion of a variable no longer
produces better results. The backward method becomes com-
putationally expensive when processing classifiers with many
variables [16].

Elsewhere, metaheuristics have also been widely used in
the task of feature selection, beginning with evolution-based
methods, the approach inspired by the process of evolution
of species over time, with emphasis on the fact that recent
species are better adapted to the changes generated in the
environment compared to the older ones. Abd-Alsabour per-
formed a review of evolutionary methods that have been
implemented for feature selection [16]. This strategy starts
with a set of solutions known as an initial population. These
are optimized in subsequent iterations by means of operators
that simulate processes of evolution or interactions observed
in nature. The evaluation of each candidate solution is defined
using a fitness function (accuracy, precision, recall, ' mea-
sure, among others), and the search for the solution is stopped
when a stop criterion is met. In general, population-based
methods have several parameters that impact the quality of
the results generated by the algorithm.

Among the most widely used population-based methods
for feature selection with wrappers are: genetic algorithms
(GA), for which solutions put forward are expressed in
sequences of binary numbers indicating 0 for the absence
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of a variable and 1 for its presence. Each candidate solution
represents a subset of variables and is called a chromosome;
in an iteration of the evolution process, a set of operations
(selection, crossover, mutation, and replacement) is applied
to the population with the aim of improving the quality of
the solutions in terms of their fitness function [17]-[20].
Analogous to GA, an approach based on Genetic Program-
ming (GP) has been proposed as a wrapper. The operators for
both algorithms are similar, however that used in GP has been
customized in order to work with a tree-based structure [21].
For both GA and GP, although the search for better solutions
ensures an improvement in quality and computational effi-
ciency, there is a risk that the final solution will be biased
towards a local optimum.

Another prominent metaheuristic approach is called par-
ticle swarm optimization (PSO). In this case the candidate
solutions, known as particles, have the same characteristics as
those of GA, with respect to the binary sequence representing
the presence or absence of variables. A position and a velocity
are then assigned to each solution, in order to define the
magnitude of the change produced in the candidate solution in
one iteration. Each solution moves through the search space,
according to its current position and its velocity, but is also
influenced by the information of the best position visited in
previous iterations, the position of the best nearest neighbor
or related particle, and the position of the best solution in
the whole swarm [22], [23]. PSO-based algorithms have
achieved satisfactory results in the realm of feature selec-
tion. They have therefore been the subject of much research,
and some authors have proposed further variants that enable
improved reproducibility of results relative to the original
version [24]-[27].

Among other population-based methods used as search
criteria in wrappers are Ant Colony Optimization (ACO)
[28], [29], Bee Colony Optimization (BCO) [30], and Grey
Wolf Optimization (GWO) [31], [32]. All of them perform the
search for optimal solutions through operations that simulate
collective integration and communication between individ-
uals. However, as with GA, despite finding good solutions
there is arisk of being trapped in local optimal [33]. Strategies
based on metaheuristics usually involve a large number of
parameters [34], such as the number of candidate solutions
evaluated in each iteration, the probabilities of mutation or
crossover in GA [35], and the maximum permitted velocity
and acceleration constants in PSO. These parameters can
influence the quality of the solution obtained [36], and for
this reason implementations require parameter optimization,
demanding computation time prior to performing definitive
feature selection.

Hybrid approaches have been popular in the field of wrap-
pers as well. For instance, a hybrid that uses the capability to
exploit from PSO with the ability to explore from the GWO
was proposed in [37]. Here, the authors modified the original
version of the algorithm and used it in the context of a binary
space, to make it suitable for feature selection. The respective
tests were carried out using KNN. Another study proposed
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in [38] for the diagnosis of diseases using SVM hybridized
a dynamic ant colony system with wavelets transform and
singular value decomposition in order to implement a feature
selection approach and reduce the high-dimension of the data.
The results of both hybrid-based wrappers were seen to be
competitive, in terms of accuracy and number of features,
with the state of the art of wrappers. However, for each
research, wrapper performances were evaluated in each case
with only one classifier.

In summary, wrappers are generally a good strategy for
selecting an appropriate subset of variables in a dataset. How-
ever, the selection can be biased by the algorithm used in the
modeling (SVM, KNN, Naive Bayes, C4.5, among others)
and is computationally expensive. The search strategies used
in wrapper design can be classified into three main groups:
1) exponential, whose use is feasible only with few variables,
2) sequential strategies that are mostly based on greedy meth-
ods (forward and backward) that deliver low-quality results
and where the high dimensionality of the datasets affects
the performance of the proposals (especially for Backward
methods), and 3) metaheuristic approaches that include GA,
PSO, ACO, BCO, GWO, Harmony Search [39], among oth-
ers [40], which to date are the ones that have obtained the
most promising results, although their use demands massive
computation [11], [15].

Application in bioinformatics [41], content based image
retrieval [42], and text mining [43] among other datasets
that are high dimensional in nature pose challenges for
metaheuristic-based wrappers. However, it is possible that
clever hybrid proposals could be successful, due to the com-
plex internal structure of these datasets [11], [15]. In addition,
parallel metaheuristic proposals for feature selection should
be considered, looking to use all computational resources,
i.e. different kind of processors (CPU, GRP, and TPU), and
all available memory, and to reduce the execution time to a
minimum. Therefore, global (when only the fitness evalua-
tion of the solution is parallelized), fine grained (when groups
of solutions of the entire population evolve in parallel) and
coarse grained (when the population is separated into islands
and each of them runs independently) parallelization models
should be analyzed in future proposals of metaheuristic wrap-
pers [15].

Although CA has been extensively used in software testing,
some authors have indeed used CAs as a sample strategy,
to support the bagging process for embedded models, but not
as a wrapper. Villegas et al. [44] employed CAs as a strategy
for building bootstrap samples that are used in decision trees,
for sentiment analysis. The tests with tweets showed the
potential of the proposed method to reduce the indexes used
in polarity detection. Vivas et al. [45] based on a strategy
that uses CAs, modified the process of selecting features for
training trees in Random Forest (RF). They proposed using
the rows of CAs as a feature selector instead of the random
selector used by the random forest algorithm by default. The
combination of CA and RF produced promising results in
terms of accuracy. Meanwhile, Dorado et al. [46] developed a
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FIGURE 2. Example of a binary CA of strength 2.

variable importance measure that uses the subsets of features
explored in any wrapper, for each variable. The importance
measure was computed by obtaining the difference between
the performance of the subsets that contain the variable
versus the performance of the subsets that do not contain
this variable. This difference is an estimation of the relative
contribution to predicting the output in the classifier. How-
ever, in this work, CAs were used as an alternative approach
without being formally presented. In addition, this work did
not consider the use of ICAs or formal assessment for the
feature selection algorithm, as the focus of the study was to
develop a variable importance measure, and not the use of
CAs/ICAs in wrappers.

IIl. COVERING ARRAYS

CAs are mathematical objects in which several parameters
or variables of interest are evaluated and each parameter
contains a certain number of possibilities or values. Their
applications have been limited to the fields of experimental
design, biology, and engineering fault analysis, and the test-
ing of software and hardware quality, all aimed at providing
quality products without incurring exaggerated costs [47].
Compared to exhaustive tests, in which all possible combi-
nations of parameters are evaluated, CAs make it possible
to reduce the number of runs or tests based on a parameter
called strength (¢), which controls the minimum number of
interactions between the parameters to be evaluated.

CAs may be expressed using the notation CA(N : ¢, k, v),
which represents a two-dimensional array (matrix) of size
N x k, where N refers to the number of tests, k the number of
parameters, variables, or columns, v is the alphabet indicating
the possible number of values that each parameter can take
(for example, an array whose values are 0 and 1 is said to
have an alphabet of 2, or is binary), and ¢ is the strength or
degree of interaction between parameters. The special feature
of CAs is that any set ¢ of columns that are extracted from the
array contains all the possible combinations of v/ tuples in at
least one of the rows [13]. Fig. 2 shows a CA of strength 2
(t=2) in which for any set of 2 columns the combination of
values (0, 0), (0, 1), (1, 0) and (1, 1) always appears.

CAs can have different row sizes and the same strength.
If one contains the least number of rows it is said to be
an optimal CA and its notation is N = CAN(z, k, v). The
construction of CAs is a complex problem, for which exact,
algebraic, greedy and metaheuristics methods have been pro-
posed [48]. Since CAs can normally be downloaded from
open access repositories, the creation of these algorithms is
not the aim of this work, but rather it is to use these CAs in
building a new wrapper for feature selection purposes.

VOLUME 7, 2019



H. Dorado et al.: Wrapper for Building Classification Models Using CAs

IEEE Access

0 0 0O Null

01 1 1 T2, T3,T4
1 0 1 1| — Subset — |x1,x3,24
1 1 0 1 T1,X2,T4
1 1 10 T1,%2,T3

FIGURE 3. Extraction of a subset of variables using CA.

The underlying assumption with CAs and feature selection
used in this study, is that O represents the absence of a variable
and 1 represents its presence. Through such a formation, each
row of a binary CA can be used as a reference to build a
subset of candidate variables, which then can be used as input
variables in the classifier. Later, all the rows can be evaluated,
by implementing a classification model for each input vari-
able subset and a fitness function (criterion), to select the best
subset of variables. In this manner a new wrapper algorithm
based on the CA approach can be developed and used as a
search criterion.

The success of finding a good subset depends on the
number of possible interactions that the array has considered,
which can be controlled using the strength parameter ().
An example of a dataset with 4 variables is shown in Fig. 3,
the subsets of variables formed by a CA of strength 2 (r = 2)
and 4 parameters (k = 4), which correspond with the number
of variables from the dataset.

IV. INCREMENTAL COVERING ARRAYS

An incremental covering array (ICA) [14] of strength ¢ is
denoted by: ICA(Ny, N2, ..., Ny t, k,v) subject to Ni <
Ny, < < N, and satisfies that the first N; rows
is a CA(N;; i, k,v). As an example, an ICA of strength 4
ICA(2,7, 13,24, 4,10, 2) can be seen in Fig. 4, where in
the first two rows contain the CA(2; 1, 10, 2), additionally
the first seven rows contain the CA(7;2, 10, 2), further-
more the first thirteen rows contain the CA(13; 3, 10, 2), and
lastly, all its twenty four rows contain the CA(24; 4, 10, 2).
An ICA differs from a classical CA, in that it is built on
the CAs of lowest strength, whereas the classical CA is
constructed independently of the previous ones [14]. This
characteristic of the ICA is useful when performing the exper-
iments to analyze the influence of the strength on the results
of feature selection, specifically in cases where it is desired
to increase the strength, wherein to test at a greater strength
(coverage), implies adding some rows (or tests) extra, ulti-
mately resulting in a highly efficient process, unlike classic
CAs, wherein increasing the strength, involves evaluating an
array with many new rows and therefore a greater number of
tests for the wrapper.

V. THE PROPOSED WRAPPER FOR FEATURE SELECTION
BASED ON COVERING ARRAYS

In implementing the wrapper, the CAs used were of binary
alphabet v = 2. This means that each component of the array
has only values {0, 1}. In the construction of the wrapper,
subsets of variables were constructed using the rows of the
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FIGURE 4. ICA(2,7,13,
andv = 2.

4; 4,10, 2) with a maximum ¢t of 4, k = 10

CA, which defines the base of the search strategy. The number
of parameters k, corresponds with the total number of input
variables in the dataset, which is further explained at the end
of Section IIl. A zero value (0) indicates the variable will
not be considered, a one (1) means presence or inclusion
(see Fig. 3).

Formalizing, where X of dimensions n X p is a set of data
stored in an array, whose rows represent observations and
columns represent input variables. Each row of the above
array is related to a value of the output variable Y, which
is a vector of dimensions n x [ and contains the class or
category to which each observation belongs. f represents a
function of a classifier that predicts Y based on the values
of X, such that the difference between actual and estimated
values is minimal (f(X) ~ Y), and the quality of that
estimate is evaluated from a quality indicator (e.g. classifi-
cation accuracy), represented by «. Next, C;, of dimensions
| x p, is the i-th row of a CA of strength ¢ with parameters
(N :t =1tk = p,v =2)(N and n are different. N is
the number of rows of the CA and n is the number of rows

of X).
On expressing X as a set of vectors [X] X3...Xj... Xp],
where X; (j = 1,2,...,p) represents the j-th input vari-

able and C; a row of a CA that can be represented by
a set of scalars [Cj, Cp,..., Cjp] where C; € {0, 1},
both expressions are used as arguments to define a func-
tion proposed in this paper called SelectInputSubset, so that
Zi = SelectinputSubset(X, C;), in such a way that it
receives the data matrix X, and the binary vector C;
to generate a new sub-matrix Z with a reduced num-
ber of columns of X, following the procedure described
below:

For each column X; that represents the j-th variable of the
matrix, X and Cj; the j-th scalar of the vector C;, (both in the
same column position), the Z matrix is constructed according
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to the following rule: If C;; = 0 then X; ¢ Z;, Otherwise
X; € Z;.

Note that the number of columns of the new matrix Z;
corresponds to the number of components of the vec-
tor C; whose value is 1. For example: SelectinputSubset
X = X1 XX3X], G =[1101]) = [Xi X2 X4] = Z.

After using the SelectInputSubset function to obtain the
sub-matrix Z;, this is used to predict ¥ by means of the
classifier f, i.e. f(Z;)) ~ Y. In this step, a classifier
is trained using a cross-validation process, in addition to
a parameter optimization process (the process is explained
in Section VI.B). Finally, once the classification model is
generated, an accuracy value «; is calculated, which measures
the performance of the subset of variables that make up the
sub-matrix Z;.

The wrapper consists of executing the previous process
in which f(SelectinputSubset (X, C;)) = f(Z) (i = 1,
2,...,N) is evaluated using N experiments, i.e. for all the
rows of the CA or ICA, a set of values of quality of clas-
sification ¢« = {oy, a2, ..., «, ..., ay} is obtained
in the end, which is the product of evaluating each of the
classifiers. If oy is the maximum value found in the vec-
tor « and it is located in position s, then the columns of
the matrix Z; correspond to the best subset of variables
found by the wrapper. Algorithm 1 summarizes the proposed
wrapper.

Algorithm 1 The Proposed Wrapper Based on Covering
Arrays

Inputs : Data matrix X,
Variable of categorical response Y,
Covering Array or Tower of Covering Arrays C
with N rows,
A classifier f, and
A quality indicator metric

Output: A matrix Z with equal or fewer columns than X
which represent a subset of variables

1 begin
2 Evaluate Y = f(X) optimizing the classifier
3 parameters, calculate the metric and store result in o
4 Best=X
5 foreach row C; in C do
6 Z = SelectInputSubset(X, C;) //define the
7 subset of variables based on SelectInputSubset
8 function
9 Evaluate Y = f(Z) optimizing the classifier
parameters, calculate the metric and stored in «;
forY
10 ifo; >athenBest=Z7,a = q;
11 end if
12 end foreach
13 return Best

14 end
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TABLE 1. General description of datasets.

Dataset Variables or | Number of | Records or
Features Class Values Instances
Glass 9 6 214
Wine 13 3 178
700 16 7 101
Vehicle 18 4 846
WDBC 30 2 569
Ionosphere 34 2 351
Sonar 60 2 208

In short, the wrapper can be expressed according to (1).

WrapperCAX, f, C) = argmaxz,(a;)
Where a; = metric(f(z;)) and
z; = selectInputSubset(X, C;)
WrapperCA(X, f, C) = argmaxz,(o; = metric(f(z;))) (1)

VI. EXPERIMENTAL RESULTS

Implementation of the wrapper was performed in the statisti-
cal program R version 3.2.1 [49]. The main libraries used in
the analysis were snowfall [50] to implement processes in par-
allel, ggplot2 [51] as a graphical tool, and caret [52] for train-
ing and validation of the classifiers. The following section
describes the test datasets, the classifiers implemented, and
the results obtained by the wrapper.

A. DATASETS FOR VALIDATION

Evaluation of the wrapper with CAs and ICAs was performed
using the data sets shown in Table. 1. These were selected
because they are the most commonly used for evaluating
feature selection procedures, as well as being different in the
number of variables and number of classes in the response
variable. Access to this data is free and is available in the
repository of the University of California at Irvine (UCI) [53].

B. CLASSIFICATION MODELS AND PARAMETER TUNING

Table. 2 shows the six classifiers with which the proposed
wrapper performance was evaluated. These were selected
because they were widely used for classification tasks. Each
model has its specific parameters, which were optimized
using Cross Validation in a configuration of 10 folds with
5 replicates. The optimal parameters can change depending
on the number of variables, and the information that these
variables contain, so for each subset of candidate variables to
be the solution of the wrapper, a parameter optimization was
performed prior to obtaining a definitive classification model,
with which the accuracy (the quality indicator selected for
experiments) was evaluated. The optimization was carried out
using the greedy algorithm presented in [54]. The algorithm
divides the parameter grid into six regions of equal distance,
and then evaluates the values corresponding to the limits of
each region, to determine the most favorable configuration
for the classifier. In case the classifier requires more than
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TABLE 2. Classifiers and their corresponding parameters.

Acronym| Classifier| Parameter Range
C4.5 J48 (De- | Confidence Factor 0.01-0.5
cision
Tree C
4.5)
KNN K Number of neighbors | 5-17
nearest
neigh-
bors
NB Naive Estimation density Kernel,
Bayes Normal
MLP Multi- Number of units in | 1-13
layer the hidden layer.
percep-
tron
RF Random | Number of variables | 1-p
Forest randomly  sampled
as candidates at each
split
SVM Support | Cost of constraints | 0.25-16
Vector violation and Gamma
Machine

one parameter, such as Multi-layer Perceptron (Number of
units in the hidden layer and decay rate) or SVM (Cost and
Gamma); those most important is selected for the optimiza-
tion and, the remaining are maintained with default value
configuration of the software. The column “Range” in table 2
shows the minimum and maximum values for the grid of each
parameter. For NB, two possibilities in the density estimation
were tested (Kernel or Normal). The Caret library in R facil-
itates this process [55].

C. CAS AND ICAS USED

The CAs and ICAs used for the experimentation and
analysis were derived from the repository located in
http://www.tamps.cinvestav.mx/~oc. The CAs and ICAs
were evaluated from strength 2 to strength 6, all with binary
alphabet. Evaluation was carried out with different strengths
to identify the one that achieves the best results in terms
of performance for the wrapper. Each subset of data that
was evaluated required a specific CA or ICA, since these
are defined based on the number of variables in the data set
(k value of the CA or ICA).

One special feature of ICA is that higher strength ICA’s
contains CAs of smaller strengths. This feature guarantees
that as the strength of an ICA increases, the quality of the
best solution found can only be maintained or improved. With
classical CAs, the same does not happen, because a CA with
higher strength does not necessarily have the same rows (test
cases) as CAs of lower strengths, so performance does not
necessarily increase as strength increases. To obtain an incre-
mental accuracy using classical CAs, cumulative CAs (CCA)
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FIGURE 5. Number of tests required per strength level in each dataset.

were constructed and used, for which each time strength
is increased, it is compared with the best solution found
in the CA of lower strength, and if the performance found
with the new CA does not improve, the best solution is still
maintained. This implies that to evaluate a CCA of strength 4,
CAs of strength 2 and 3 must be previously executed.

The number of tests required to evaluate the proposed
wrapper depends on the number of variables in the dataset and
on the strength of the CA or ICA to be used. Fig. 5 shows the
strength of the CA or ICA on the horizontal axis (x-axis) and
the number of CA or ICA test cases on the vertical axis. It can
be seen that the number of test cases grows as the strength
grows. In addition, for 6 of the 7 datasets it can be observed
that at strengths of less than or equal to 5, the number of
tests that are done with CCA is below the ICA. At strength 6,
however, the reverse happens where the number of tests for
CCA is higher than ICA.

D. RESULTS AND DISCUSSION

To analyze the results obtained by the wrapper with the two
types of CAs, for each case (dataset-classifier), the accuracy
obtained by the wrapper at each of the strengths (2-6) was
compared against the accuracy obtained by the classifier
(without the wrapper) with all variables (baseline, BL). Sub-
sequently, the number of cases that exceeded that baseline
at each of the strengths was calculated. The results obtained
can be observed in Fig. 6, which show that for ICA there is
a logarithmic growth whereas the CCAs show a more linear
growth. Up to strength five, the results of the ICA are equal
to or greater than the CCA, managing to exceed the BL 95%
of the time. However, at strength 6, the CCAs outperform
the ICAs with a difference of 2.3%, by managing always to
exceed the baseline.
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For both types of CA, meanwhile, the results of the wrap-
per suggest that the best strength is 6, wherein the highest
number of cases that exceed the BL is achieved; however,
even from strength two, both already surpass the BL 60% of
the time. A similar finding was found in the field of software
engineering: in [56], where it was demonstrated that software
system failures can be detected with a high level of accuracy
through the use of CAs even with small strengths, however,
as this parameter increases, the results improve but require
a greater number of tests. In [57], from experiments carried
out with software for medical devices, servers, browsers and
others, it was concluded that with strength 6, virtually 100%
detection of faults are achieved without having to resort to
exhaustive tests, which is consistent with the results found
in Fig. 6.

Fig. 7 shows the increase in accuracy with respect to the
BL in each case (Dataset-classifier) for the different wrappers
evaluated, where it is observed that the accuracy after feature
selection increased to 23.7% in the case of Wine with the
KNN. However, for some data sets such as Vehicle, most
classifiers reach a maximum of 1.44% increase, and therefore
the wrapper does not produce a significant improvement.
We observed that the data set and the classifier influence both
the performance of the solution found, and the magnitude
of increase observed, as CA strength increases. Although in
some cases results lower than the BL are obtained, most of
these occur at strength levels between 2 and 5, but this does
not happen with strength 6.

Fig. 8 shows the increase in accuracy with respect to the
BL across all datasets by a classifier. The atypical points can
be seen in KNN that correspond to the improvement made
on Wine, which exceeds 20%. It is also observed that the
greatest benefit in feature selection (regardless of whether the
wrapper uses accumulated CAs or ICAs) is KNN, followed
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by C4.5 and NB, which show an increase in accuracy greater
than that obtained by the rest of classifiers. These results
are expected, because both KNN and the first tree-based
classifiers (C4.5 in this case) are quite sensitive to variables
with noise [58]-[61]. Secondly, we found that for MLP and
SVM classifiers, there is a slower growth in accuracy as
strength increases, in relation to the above-mentioned clas-
sifiers. However, feature selection does benefit them, though
to a lesser extent. This is due to the strong assumptions that
these classifiers have about the independence of the variables
and the presence of redundant variables [62]-[65]. Finally,
the smallest increase comes from the RF classifier, which
performs a feature selection process internally, controlled
by the mtry parameter, which defines a number of vari-
ables that are randomly selected for the construction of each
tree [66]-[68].

The results obtained by the proposed wrappers were also
compared with two of the most successful algorithms used
for optimizing search space in wrappers reported in the
literature: Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA). Regarding the configuration of parameters
for both, this was the same as that used in [2] (For GA,
population size = 20, selection probability = 0.8, crossover
probability = 0.9, and mutation probability = 0.01 was used.
For PSO, swarm size = 20 and acceleration constants cy
and ¢ = 2), and the number of evaluations of the objective
function (objective fitness evaluations, OFEs) was adjusted
to match the same number of cases evaluated by CCA in
strength 6, thus ensuring a fair comparison, CCA being the
one that requires a greater quantity of tests.

To carry out the execution, GA and PSO were programmed
in R, and the fitness function was evaluated based on the
accuracy obtained by the classifier and a subset of candidate
variables chosen from a binary array. To ensure that the results
are comparable, and to eliminate the effect produced by the
partitions obtained in the cross-validation, the classifiers in all
the wrappers were adjusted, so that the folds and training were
with the same seed (initial random number), which enabled
the same candidate solution to achieve the same result in PSO,
GA, ICA or CCA.

The accuracy and number of variables achieved by the
wrappers evaluated through the six classifiers and over the
seven datasets can be observed in Table. 3. The compari-
son is performed similarly to that suggested in [69], [70],
where the Friedman Aligned Ranks test is used to analyze
the significance of difference between the results of the four
wrappers plus the baseline, independently for each classifier.
The significance level used was 0.05, and when significant
differences were found in the results, a post hoc based on
Friedman’s Aligned Ranks test was performed, which indi-
cates which of the wrappers are significantly different.

In Table. 3, capital letters are used for the results obtained
for accuracy and lowercase for the comparison of the number
of variables. Also, to facilitate the comparison of the perfor-
mance of the approaches evaluated, an average of the rank
of the Friedman test is used, where low values of accuracy
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close to one can be observed. These indicate the best perfor-
mance, whereas, for counting of variables, values close to one
indicate a large number of variables. On obtaining the results
of the tests performed both for differences in accuracy and
for variables, Friedman’s Aligned Ranks showed statistical
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significance, and a comparison was therefore made using the
post hoc tests in all the tests.

In comparisons of accuracy, Table. 3 shows that the base-
line differs significantly with respect to most wrappers except
for the results found for the RF classifier, where there is
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no evidence of differences between the baseline with ICA
and CCA. With regards to the mean rank value, PSO always
obtained a higher accuracy than other wrappers, through all
the models. In addition, in four of the six classifiers, this
approach is the one that selects the least variables, making
it the best-ranked wrapper.

In the NB, RF, MLP and SVM classifiers, the ICA and
CCA wrapper have poorer performances and are statistically
different from PSO. Based on the contrasts that involve GA
versus CCA or ICA, only two significant differences were
observed - one in MLP for ICA and another in RF for CCA.
For the remaining models, the results of the comparison
between GA, CCA and ICA did not reveal significant dif-
ferences.

The advantage of PSO in regards to other wrappers eval-
uated is attributed to the fact that the swarm optimizes
locally around each optimum found, and then if the optimum
changes, the algorithm adapts and optimizes locally the new
zone. In contrast, both CA-based wrappers do not implement
local optimization, but only do a better distributed exploration
using the interaction of the variables, which would explain
the similarity of the results between them and the one based
on GA.

Meanwhile, in the KNN classifier, the only difference
presented was with respect to the baseline, whereas with the
rest of the wrappers of the same classifier, there were none.
In terms of the number of variables selected, it was observed
that for all classifiers, the only differences observed were
between the baseline and the wrappers. On contrasting the
four wrappers, none was found to be different.

Another aspect analyzed in comparing the wrappers
was the number of evaluations (OFEs) versus the accu-
racy achieved. These results can be observed in Fig. 9,
where it can be clearly seen that CCA and ICA have a
stepped growth, which in most cases does not match PSO
or GA, which have a logarithmic gcrowth. This behavior is
explained by the fact that CA-based wrappers do not use an
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exploitation approach, therefore upon finding a better solu-
tion, they continue to explore new solutions without priori-
tizing the findings, as opposed to population-based wrappers
that focus on solutions with high potential. Also, we observed
that the strength of CAs is dependent on the numbers of
OFE:s. Interestingly, the number of test cases performed at
strength four on CCA is often located at the point where
the GA curve stabilizes. In addition, the number of tests
at strength six for CCA tends to agree with the number of
tests where the PSO begins to stabilize. Hence it could be
interpreted that the number of rows for CAs could serve as
a guide to the number of OFEs needed to reach an accept-
able solution for a GA or PSO, wrapper regardless of the
classifier.

One of the limitations of the proposed algorithm is that
the CCAs and ICAs should be generated apriori. This means
for its implementation, a generator of CCAs or ICAs or
the extraction of those arrays from external sources such as
NIST [71] is required.

A property of CAs is that all rows tend to have the same
number of ones, which in the wrapper means that they have
the same number of features selected, which may be another
limitation of the proposed method. This can be solved by
making an iterative call off the proposed wrapper with the
objective of looking for smaller subsets of features, experi-
ments that the research group hopes to carry out in the near
future.

Another limitation of the algorithm, as named above, is due
to the lack of an exploitation approach. However, Fig. 10
shows the magnitude of the difference in accuracy between
the wrappers proposed in this paper and the best algorithm
(PSO). It can be observed, except for some maxima and
atypical values, that the majority of these differences are
below 0.02. Finally, although the results did not surpass this
algorithm, the proposed wrappers have the advantage that
they can be programmed in parallel more easily, and by
fixing the strength of CCA and ICA, minimum additional
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TABLE 3. Comparison of the accuracy (ACC) and number of variables (NF) obtained from the baseline, the proposed wrappers (CCA, ICA) and those based
on PSO and GA.

Classifier Dataset Baseline CCA ICA PSO GA
Acc NF Acc NF Acc NF Acc NF Acc NF
C4.5 Glass 0.6891 9 0.7424 6 0.7424 6 0.7406 6 0.74 5
Tonosphere 0.8935 34 0.9265 14 0.9301 12 0.9349 12 0.9319 14
Sonar 0.7508 60 0.814 27 0.7999 28 0.8673 17 0.8408 22
Vehicle 0.7194 18 0.7305 14 0.7338 10 0.7406 11 0.7399 11
WDBC 0.9406 30 0.9604 13 0.961 15 0.9669 11 0.963 12
Wine 0.9348 13 0.9594 7 0.9584 8 0.96 6 0.9592 6
Z00 0.9298 16 0.9783 9 0.9707 8 0.9779 8 0.974 8
Mean 0.84 25.71 0.87 12.86 0.87 12.43 0.88 10.14 0.88 11.19
Std Desv 0.11 17.59 0.11 7.06 0.11 7.48 0.1 4.24 0.1 5.68
Rank Mean 5 1 2.79 2.64 321 321 1.43 4.21 2.57 3.93
Frid AR posH A b BC a B a C a BC a
KNN Glass 0.6763 9 0.6991 5 0.7027 5 0.7006 6 0.6975 6
Tonosphere 0.8434 34 0.8857 14 0.8885 12 0.9183 8 0.9098 9
Sonar 0.8078 60 0.8635 32 0.8597 30 0.8945 28 0.8846 30
Vehicle 0.6534 18 0.7195 9 0.7237 10 0.7299 11 0.7288 11
WDBC 0.9354 30 0.9494 14 0.9511 15 0.9509 14 0.947 16
Wine 0.7162 13 0.9533 5 0.9477 7 0.9552 8 0.9531 8
Zoo 0.8498 16 0.9311 10 0.9258 12 0.935 10 0.9327 11
Mean 0.78 25.71 0.86 12.71 0.86 13 0.87 12.31 0.86 12.91
Std Desv 0.1 17.59 0.11 9.27 0.1 8.21 0.11 7.63 0.11 7.97
Rank Mean 5 1 3.14 3.93 2.86 343 1.29 3.79 2.71 2.86
Frid AR posH B b A a A a A a A a
NB Glass 0.5677 9 0.6795 5 0.6918 6 0.698 5 0.6965 5
Ionosphere 0.9105 34 0.9402 16 0.9345 18 0.9473 14 0.9447 15
Sonar 0.7451 60 0.8019 32 0.8132 32 0.8575 26 0.8497 27
Vehicle 0.6395 18 0.6529 11 0.6495 6 0.6592 9 0.6574 10
WDBC 0.9409 30 0.9613 14 0.9634 9 0.9746 12 0.9732 12
Wine 0.9763 13 0.9879 8 0.9922 8 0.9938 8 0.9935 8
Z00 0.8875 16 0.8979 10 0.9016 11 0.9149 9 0.9128 10
Mean 0.81 25.71 0.85 13.71 0.85 12.86 0.86 11.99 0.86 12.4
Std Desv 0.16 17.59 0.14 8.85 0.14 9.39 0.13 6.97 0.13 6.97
Rank Mean 5 1 3.71 2.93 3.29 3.14 1 4.29 2 3.64
Frid AR posH A b B a B a C a BC a
MLP Glass 0.6555 9 0.6954 6 0.6999 5 0.7114 5 0.7017 5
Tonosphere 0.8973 34 0.9328 17 0.9246 12 0.9392 15 0.94 15
Sonar 0.8148 60 0.8469 24 0.8471 22 0.8734 29 0.873 29
Vehicle 0.814 18 0.8177 11 0.8136 13 0.8243 14 0.8217 13
WDBC 0.96 30 0.974 16 0.974 15 0.9783 11 0.9776 12
Wine 0.9772 13 0.9874 9 0.9851 9 0.988 9 0.9875 9
Zoo 0.9529 16 0.9765 9 0.9781 8 0.9817 7 0.9795 7
Mean 0.87 25.71 0.89 13.14 0.89 12 0.90 1291 0.90 13.03
Std Desv 0.12 17.59 0.11 6.2 0.11 5.54 0.10 7.73 0.11 7.84
Rank Mean 4.86 1 3.5 2.93 3.64 3.86 1.14 3.57 1.86 3.64
Frid AR posH A b BC a B a D a CD a
RF Glass 0.8062 9 0.8107 6 0.818 7 0.8156 7 0.8157 8
Ionosphere 0.9321 34 0.9482 20 0.947 18 0.9548 15 0.9533 15
Sonar 0.8437 60 0.8703 32 0.8752 26 0.9197 27 0.9107 29
Vehicle 0.752 18 0.7586 10 0.7551 11 0.7708 10 0.7685 11
WDBC 0.9627 30 0.9729 13 0.9712 15 0.9777 13 0.9765 13
Wine 0.9864 13 0.9886 8 0.9886 12 0.9906 9 0.9901 9
Z00 0.9728 16 0.99 7 0.99 7 0.9921 8 0.9876 9
Mean 0.89 25.71 0.91 13.71 0.91 13.71 0.92 12.73 0.91 13.36
Std Desv 0.09 17.59 0.09 9.36 0.09 6.73 0.09 6.95 0.09 7.4
Rank Mean 5 1 3.29 3.86 3.14 3.21 1.29 3.86 2.29 3.07
Frid AR posH A b A a AB a C a BC a
SVM Glass 0.7166 9 0.7702 3 0.7702 3 0.7732 3 0.7667 4
Tonosphere 0.9515 34 0.9628 15 0.9658 18 0.9752 17 0.9721 18
Sonar 0.8824 60 09115 30 0.9181 31 0.9572 26 0.947 30
Vehicle 0.8308 18 0.8331 13 0.8343 13 0.8478 13 0.8452 13
WDBC 0.9789 30 0.9817 15 0.9817 15 0.984 16 0.9832 18
Wine 0.9853 13 0.9933 7 0.9932 8 0.9947 8 0.9943 9
Z00 0.9475 16 0.9821 11 0.9801 11 0.9832 9 0.9811 10
Mean 0.9 25.71 0.92 13.43 0.92 14.14 0.93 13.24 0.93 14.38
Std Desv 0.1 17.59 0.09 8.52 0.09 8.88 0.09 7.49 0.09 8.32
Rank Mean 5 1 3.29 4 3.29 321 1 4 2.43 2.79
Frid AR posH A b B a B a C a BC a
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FIGURE 9. Comparison between the accuracy and number of evaluations for the wrappers (ICA, CCA, PSO and GA), by datasets and classifiers. The

vertical lines represent the change in the strength of the covering array.

parametrization is required, in contrast to the classical version
of GA and PSO where parameters such as size of the popu-
lation or swarm, probabilities, velocities and various limiting
values are involved. Therefore, according to the context in
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which the classifier is being evaluated, a researcher could
take the option of minimally sacrificing accuracy for speed
and simplicity, which is essential for large datasets that are
becoming more common.

VOLUME 7, 2019



H. Dorado et al.: Wrapper for Building Classification Models Using CAs

IEEE Access

L]
0.06 1
L]
L]
L>>| L]
g L] L] °
8 0.044 .
©
£
Q
(s}
C L[]
o
£ 0.02-
D :- E-
0.001 &
c45 KNN MLP NB RF SVM

Clasificator B3 PSO-CCA B PSO-ICA

FIGURE 10. Difference between accuracy of PSO and the proposed
algorithms (CCA and ICA).

Computer with 80 or more processors
_

CCA/ICA —
(N=80, k, v, 1} | | E—

‘= | 80 oFes | ‘

PSOor GA
e —
——-
Population |  E————
size =20 e —

|
Y

Generation 1 Generation 2 Generation 3 Generation 4

|
P Y N PR
¢ € 3

FIGURE 11. Comparison of parallel execution of the wrapper using
CCAs/ICAs vs PSO/GA. t is the maximum time to evaluate an OFE, and ¢ is
the internal time processing used by PSO/GA for updating particles or
creating offspring in population/swarm.

E. PARALLEL EXECUTION

The parallel execution of the proposed wrapper using a CCA
(or ICA) with 80 rows (N = 80) on a computer with 80 or
more processors can be performed in time ¢. This time is
the maximum evaluation time of an OFE, as shown in the
upper left of Fig. 11. Moreover, when the wrapper is executed
using PSO or GA using the global parallelization model,
the execution time on the same computer is increased in
proportion to the number of generations (or iterations) set for
the algorithm. In the bottom part of Fig. 11, it can be seen that
the execution of a PSO wrapper with a population size of 20,
the particles are initialized randomly, and their evaluation
(generation 1) in parallel takes time ¢,and time ¢ is expended,
which is much smaller than ¢ to update the velocities and
positions of the particles (solutions) in the search space, to be
able to perform the evaluation of generation 2 also with time 7.
The process with PSO, in this case, takes 47 + 3¢ for the
same 80 OFEs, which is greater than the time ¢ used by the
CCA. It is important to take into account that the number
of generations in PSO and GA cannot be small, since with
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such iterations this metaheuristic approach will find better
solutions for the optimization problem.

In general, the execution of the wrapper using PSO or a GA
with a number g of generations and a population size ps, on a
computer with a number C of processors, takes time equal
to gt + (g — 1)¢e when C > ps and (ps/C)gt + (g — 1)e
when C < ps, leaving in the first case C — ps idle processors.
Taking into account that in practice it is not possible to use
fractions of processors, the ceiling function is used to give
more meaning to these expressions, and to unify them into the
following [ps/Clgt + (g — 1)e. In the case of execution with
a CCA of N rows, the execution time is ¢t when C > N and
(N/C)t when C < N, using in both cases more processors
available in parallel since N > ps. These two expressions can
be unified in [N /C1t.

F. APPLICATIONS

The wrapper proposed in this paper could readily be applied
in many fields of science, including engineering, especially
when the goal is to create predictive models and there are
measurements of many variables. Some areas with the poten-
tial use of the proposed methods are text mining, to detect
specific words that can be used to classify blogs, tweets,
press releases, among others, having as potential applica-
tions: opinion evaluation, generation of summaries or spam
detection. In this practice, the number of words could be
elevated and discarding terms that do not contribute to the
objective is a vital task before creating a definitive model.
In addition, another area of application is industry, specifi-
cally in fault detection, where classification models are used
in process monitoring and a number of variables are thus
recorded in the operation. This number of variables can be
more that the necessary and not all contribute for a correct
diagnosis of the process. In the area of agriculture, models
are developed to predict the yield based on variables related
to climate, soil and agronomic management. Recording some
variables from sensors, from soil analysis or direct monitor-
ing in the crop could be expensive, and not all variables are
relevant in terms of contributions for the predictive model,
consequently, it will be useful to give priority only to the
most important information. Finally, other fields of science,
such as climate prediction, trends in the value of the country’s
currency, or bioinformatics, depend on multiple factors and
often the relevance of these factors is unknown. Therefore,
a wrapper based on CA offers a solution for detecting impor-
tant variables that ought to be retained in the analysis.

VIi. CONCLUSION

In this paper, a new method for feature selection with a wrap-
per approach was proposed and evaluated. It contains a search
strategy based on binary Covering Arrays. The experiment
was performed using two types of Covering Arrays: Cumu-
lative Covering Arrays and Incremental Covering Arrays.
The wrapper proposed was found to exceed the accuracy
compared to the baseline, with increments in some cases
up to 25%, additionally, the highest accuracy is reached for
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both ICA and CCA at strength 6, and both wrappers show
similar results in terms of the number of variables selected
and accuracy. However, ICA requires less tests, which can
be a signficative difference in the presence of datasets that
have a very high number of variables. Models which are
sensible to irrelevant or redundant variables - such as K
nearest neighbor or C4.5 - have substantial improvements on
using the wrapper.

The wrappers proposed were also compared with two
population-based algorithms (GA and PSO). A nonparametric
statistical analysis was performed to compare the differences
between them, in which it was concluded that all wrappers
are comparable in terms of number of variables chosen.
In accuracy however, the proposed wrappers do not match
the results obtained by PSO, but are similar to GA. Finally,
the magnitude of the difference between the PSO-based
wrapper and the cumulative CA-based wrappers and ICA
was also analyzed, where it was found that more than 90%
of the cases have a difference in accuracy of less than 0.04,
which could be compensated in terms of the time involved
in optimizing parameters, and the possibility of computing a
greater number of executions in parallel, while reducing the
time to reach a better solution.

VIIl. FUTURE WORK

As a follow up, we propose mixing the capacity of CAs
with heuristics or metaheuristics such as hill climbing, sim-
ulated annealing, or Tabu Search, all of which exploit the
best solutions found with CAs and could improve the pro-
posed algorithm significantly. Also, we suggest evaluating
the iterative execution of the proposed wrapper to reduce
the subset of features selected from the dataset. Additionally,
the inclusion of other wrappers in the comparison, such as
random search, greedy algorithm, extensions of GA and PSO,
and testing with large datasets such as ALL/AML, Leukemia,
Colon, or Prostate. It should also now be possible, to construct
families of cumulative CAs by ensuring that all the CAs of the
same strength are isomorphic, and evaluate the impact of this
on the feature selection process.
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