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ABSTRACT With the rapid development of artificial neural networks, recent studies have shown that
dendrites play a vital role in neural computations. In this study, we propose a dendritic neuron model called
the approximate logic dendritic neuron model (ALDNM) to solve classification problems. The ALDNM
can be divided into four layers: the synaptic layer, the dendritic layer, the membrane layer, and the soma
body. Considering the limitation of the back-propagation (BP) algorithm, we employ a heuristic optimization
called the social learning particle swarm optimization algorithm (SL-PSO) to train the ALDNM. In order to
investigate the effectiveness of SL-PSO for training the ALDNM, we compare this training method with BP
and four other typical heuristic optimization methods. Moreover, the proposed ALDNM is also compared
with seven classifiers to verify its performance. The experimental results and statistical analysis on four
classification problems indicate that the proposed ALDNM trained by SL-PSO can provide a competitive
performance for solving the classification problems. It is worth emphasizing that the structure of the trained
ALDNM can be greatly simplified owing to the unique pruning operations. Furthermore, the simplified
ALDNM for a specific problem can be converted into a corresponding logic circuit classifier for a fast
classification.

INDEX TERMS dendritic neuron model, heuristic optimization, classification, pruning, logic circuit.

I. INTRODUCTION
The human cerebral cortex is surprisingly complex. It con-
sists of approximately 100 billion neurons and 1015 inter-
connections. A typical neuron structure is divided into three
parts: the cell body (soma), an axon, and many dendrites. The
neuron receives signals via specialized connections called
synapses and sends signals to its cell body. Then, signals cross
from the axon to another neuron. In 1943,WarrenMuCulloch
and Walter Pitts creatively proposed a computational neu-
ron model called the McCulloch-Pitts model (M-P model)
by mimicking the functionality of a biological neuron [1].
This model is considered to be the origin of artificial neural
networks (ANNs) and lays the foundation for neural network
models. However, this model contains only a nonlinear term
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on the cell body, and the nonlinear mechanisms on the den-
drites are completely ignored [2].

With the development of neurobiology, the important role
of dendritic structures in neural computation has aroused
the great interest of researchers [2]–[6]. To investigate the
interaction between synaptic signals (inhibitory and excita-
tory), Koch, Poggio, and Torre proposed a dendritic neuron
model called the δ cell model [7], [8]. Subsequent experi-
ments provided strong support for Kochs model. For exam-
ple, Taylor et al. [9] demonstrated a key role for postsynaptic
dendritic processing in neuronal computation by studying
direction-selective ganglion cells. Another example is that
Segev [10] investigated the sound grounds for computing
dendrites in the auditory brain stem. However, the δ cell
model is incapable of reducing the redundant branches of
the trees when solving all given tasks, which means that
the dendritic structure is fixed [11]. In [12], Legensen and
Maass exploited the competition between dendritic branches
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to enable a single neuron to obtain nonlinear computational
capabilities. However, this model still cannot solve nonlinear
separated problems, such as the simplest XOR problem.

The development of biological neurology in recent years
has revealed the importance of neuronal pruning, includ-
ing axon pruning [13] and dendritic pruning [14]. Neuronal
pruning is the process of removing redundant connections
between neurons in the brain. This process allows fewer
connections and changes to ensure that the brain is more
able to focus in-depth on complex tasks. In our previous
works, based on these biophysical phenomenon, a variety of
neuron models were proposed to deal with several real-world
problems, including credit-risk evaluation [15], breast cancer
diagnosis [16], financial time series prediction [17], and the
diagnosis of liver disorders [18].

For an artificial neuron model, the training process is an
extremely important aspect. The goal of training is to mini-
mize classification error by finding the optimal combination
of parameters [19]. The back-propagation (BP) algorithm is a
traditional gradient-based algorithm that utilizes the gradient
information of the error function to adjust the weight of
the neurons in the negative gradient direction. It has been
widely used in training neuron models [20], [21]. However,
the BP algorithm is extremely dependent on initial conditions,
which leads to some shortcomings such as high probability
of local minima entrapment [22]–[24] and a difficult learning
rate setting [25]. Although the BP algorithm has been well
applied in our previous research, the scale of these problems
is considered small, and larger-scale problems are not well
explored. As the complexity of the classification problems
increases, the shortcomings of the BP algorithm have severely
limited the ability of these dendritic neuron models. This
motivates us to find a more promising learning algorithm.

In recent years, heuristic optimization methods have
received great attention from researchers due to their
powerful performance for solving many practical pro-
blems [26]–[29]. Specifically, recent literature has shown
the advantages of using heuristic optimization methods
to train ANNs. For example, in [30], a particle swarm
optimization (PSO) algorithm is adopted to train ANNs
to predict water levels in a river in Hong Kong. Mir-
jalili et al. investigated the efficiency of a biogeography-
based optimization (BBO) algorithm in training a multilayer
perceptron (MLP) [31]. In [32], the authors conducted a
comprehensive study of randomized algorithms for training
ANNs. Additional research in [33] employed a states of mat-
ter search (SMS) for training a dendritic neuron model. These
successful applications motivate our attempts to investigate
the efficiencies of heuristic optimization methods in training
neuron models.

In this study, a novel neuron model, namely ALDNM,
is proposed for solving the classification problems. In detail,
ALDNM is made up of a synaptic layer, a dendritic layer,
a membrane layer, and a soma (cell body). Considering the
limitations of the BP algorithm and the superiority of the
heuristic optimization algorithm, especially the promising

FIGURE 1. The structure of the ALDNM.

performance of the recently proposed SL-PSO [34] for solv-
ing complex and high-dimensional problems, SL-PSO is
employed as the learning method. Four classification datasets
are used to examine the effectiveness of the ALDNM and
the training method employed. The experimental results indi-
cate that SL-PSO is the most promising method to train the
ALDNM, compared with BP and four other typical heuristic
optimization methods. Moreover, when compared with seven
traditional classifiers, the proposed model ALDNM trained
by SL-PSO can also provide very competitive results. Finally,
the highlights of the proposed ALDNM are also investi-
gated and analyzed. A trained ALDNM can be simplified by
neuronal structure pruning, including synaptic pruning and
dendritic pruning. Further, a simplified ALDNM can even be
converted into a logical circuit classifier. This logical circuit
classifier only contains digital competitor, NOT gate, AND
gate, and OR gate. It is worth noting that if the logical circuit
classifier is implemented in hardware, the classification speed
of this classifier will be greatly improved.

The remainder of this paper is organized as follows:
Section 2 describes the architecture of the ALDNM.
Section 3 introduces the learning method, neuronal structure
pruning, and logic circuit transformation process. The exper-
imental study is described in Section 4. Finally, we draw
conclusions in Section 5.

II. MATERIALS
A. APPROXIMATE LOGIC DENDRITIC NEURON MODEL
Inspired by the biological neuron model and the dendritic
mechanism, we proposed a neuron model called the ALDNM
in this study. The ALDNM consists of four layers: a synaptic
layer, a dendritic layer, a membrane layer, and a soma body.
Fig. 1 shows the architecture of the ALDNM,where n denotes
the input number and m represents the number of branches,
and thus, the total number of synapses is m ∗ n. The synaptic
layer receives incoming signals from the previous neuron and
processes a sigmoid function for the received signals. Then
an AND operation is performed between synapses on each
branch. All the dendritic branches of the dendritic layer are
connected to themembrane layer, and the interaction between
these branches corresponds to a logic OR operation. Finally,
the soma processes a nonlinear computation on the signals
from the previous layer.
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FIGURE 2. An example of the classification process of the ALDNM.

1) SYNAPTIC LAYER
This layer denotes the synaptic connection organization from
a neuron to a post neuron; its signal transfer is feed-forward.
Whether the synapse is excited or inhibited depends on a
certain specific ion that can cause a change in synaptic poten-
tial. The sigmoid function is adopted to process the synaptic
connections. The connection function of the synaptic layer
from the ith (i = 1, 2, , n) input to the jth (j = 1, 2, ,m)
branch is shown as follows:

Yij =
1

1+ e−c(wijxi−qij)
, (1)

where xi is the synaptic input, and ranges in [0, 1]. c rep-
resents a constant parameter. wij and qij denote connec-
tion parameters that need to be adjusted during the learning
process.

2) DENDRITIC LAYER
It has been known that multiplication operations exist in
neurons to process neural information [35]. For each branch,
the dendritic layer executes a multiplicative operation on the
synaptic connections. Since the synaptic signals of the den-
dritic layer are nearly binary, the operation can be replaced
by the logic AND operation. The output of the jth branch can
be expressed as follows:

Zj =
n∏
i=1

Yij. (2)

3) MEMBRANE LAYER
Each branch of the dendritic layer is connected to the mem-
brane layer. This layer executes the summation operation on
the results of all branches. This operation can be replaced
by the logic OR operation if the signals are binary. Then,
the result of the membrane layer is sent to the last layer.
The output equation of the membrane layer is formulated as
follows:

V =
m∑
j=1

Zj. (3)

4) SOMA BODY
The soma (cell body) is the last layer of the neuron model.
It performs a nonlinear computation on the received result.
The neuron will fire if the input signal exceeds a predefined
threshold. The calculation can be expressed as follows:

O =
1

1+ e−csoma(V−γ )
, (4)

where γ is the threshold constant. V represents the output
of the membrane layer. csoma is a constant parameter. O
represents the final output of the soma.

To explain the structure of ALDNM more clearly, we pro-
vide an example to show the classification process of the
ALDNM. Figure 2 shows the operation steps and the basic
components of each layer. The operation steps of ALDNM
are described as follows.

Step 1: In the synaptic layer, m branches cross with input
(n dimensions) to form m ∗ n synaptic connections (H). Each
synaptic connection produces an output by (1). Then, them∗n
outputs are transmitted to the dendritic layer.

Step 2: In the dendritic layer, each branch receives the
corresponding n inputs. The output of each branch is obtained
by (2). The generated m outputs are transmitted to the mem-
brane layer.

Step 3: The membrane layer processes the outputs of m
branches by (3). Then it sends the result to the soma layer.

Step 4: In the soma body, the sigmoid function is used
to process the output of the membrane layer to obtain the
classification result.

The numbers of inputs and outputs for each layer of
ALDNM are summarized in Table 1. The inputs of each layer
come from the outputs of the previous layer.

TABLE 1. The number of inputs and outputs for each layer.

B. CONNECTION STATES
Initially, the parameters (wij and qij) in (1) are random values
in the range [−1.5, 1.5], which means that all synaptic con-
nections are random states. θij = qij/wij is used to represent
the threshold of the synapse, which actually represents the
center of the sigmoid function on the x-axis. Depending on
the different values of wij and qij, the connection states are
divided into six cases. After further analyzing the relationship
between the input values and the output values of these six
cases, the connection states can be classified into four types:
direct connection (•), inverse connection (�), constant 1 con-
nection ( 1©), and constant 0 connection ( 0©). Fig. 3 illustrates
the four types of connection states.

To explain how a synapse connects a dendritic branch
in four states, the four function types of connection states
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FIGURE 3. The four types of connection states.

FIGURE 4. Six cases of connection states.

are plotted in Fig. 4. The description can be summarized as
follows:

Case (a): 0 < qij < wij, for example, wij = 1, qij = 0.5,
and θij = 0.5. In this case, an input greater than θ leads to a
high output, and an input less than θij leads to a low output.
Therefore, this case is defined as a direct connection.

Case (b): wij < qij < 0, for example, wij = −1,
qij = −0.5, and θij = 0.5. Contrary to case (a), an input
greater than θij leads to a low output, and an input less than
θij leads to a high output. This case is called an inverse
connection.

Case (c): qij < 0 < wij, for example, wij = 1, qij = −0.5,
and θij = −0.5. The output is always 1 regardless of how the
input changes. This case is called a constant 1 connection.

Case (d): qij < wij < 0, for example, wij = −1,
qij = −1.5, and θij = 1.5. The output of this case is also
always 1. Thus, this case is defined as a constant 1 connection.

Case (e): 0 < wij < qij, for example, wij = 1, qij = 1.5,
and θij = 1.5. In this case, the output is always 0 regardless
of how the input changes. This case is called a constant
0 connection.

Case (f): wij < 0 < qij, for example, wij = −1, qij = 0.5,
and θij = −0.5. Similarly, this case is a constant 0 connection
because the output of this connection is always 0.

Obviously, in the interval [0, 1], the outputs in case (c) and
case (d) are always high outputs, while the outputs in case
(e) and case (f) are always low outputs. This finding means
that these connection states have little impact on the final
results of classification problems. In other words, ALDNM
can discard these unnecessary connection cases, only the
direct connection and the inverse connection play crucial
roles in the structure of the ALDNM.

III. METHODOLOGY
A. TRAINING METHOD
The characteristics of the training algorithm have a great
impact on the capabilities of the neural network model [36],
[37]. In our previous works [15]–[18], the BP algorithm was
proven an effective training method to train dendritic neuron
models. However, when solving more complex tasks, the BP
algorithm suffers from its shortcomings and greatly limits
the computation capacity of dendritic neuron models [38].
Therefore, finding a high-performance training algorithm to
train the ALDNM becomes extremely necessary.

PSO is a widely used swarm intelligence algorithm intro-
duced byKennedy and Eberhart [39]. Although PSO has been
well applied to many optimization problems, its performance
on multilocal optima and high-dimensional problems is still
unsatisfactory [40]. To address this issue, Chen et al. pro-
posed an SL-PSO algorithm by introducing social learning
mechanisms [41], [42] into a classical PSO algorithm. The
swarm update mechanism of SL-PSO is completely different
from those of traditional PSO variants. Each particle in clas-
sical PSO learns from global best solutions and personal best
solutions, which is based on historical information. On the
contrary, each particle in SL-PSO can learn from any better
particle in a current swarm.

SL-PSO firstly initializes m particles of the swarm P(t) in
a randomway, where t represents the generation index. Then,
the algorithm randomly initializes a behavior vector Xi(t) for
each particle i. After that, the algorithm enters the main loop
until the termination condition is reached. Fig. 5 illustrates
the entire optimization process of SL-PSO.

According to Fig. 5, there are three main steps between
generation t and generation t + 1, including fitness evalua-
tion, swarm sorting and behavioral learning. First, the fitness
of each particle in the current swarm is evaluated. Then,
the swarm is sorted in descending order according to the fit-
ness value, assuming it is a minimum optimization problem.
Finally, each particle learns from particles with better fitness
in the current swarm. Note that, during the optimization
process, the best particle will not be updated and the worst
particle will not be learned by other particles.

Like social learning mechanisms among social animals,
a particle will learn the behaviors of different particles. The
learning rule for jth dimension of particle i in the tth genera-
tion is expressed as:

Xi,j(t + 1) =

{
Xi,j(t)+

a
Xi,j(t + 1) if pi(t) 6 PLi ,

Xi,j(t) otherwise,
(5)
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FIGURE 5. Main components of the SL-PSO.

where 1Xi,j(t + 1) represents the behavior correction,with
i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., n}. Xi,j(t) shows the jth
dimension of behavior vector. PLi is the learning probability
corresponding to each particle i, and pi indicates a randomly
generated probability. In detail, 1Xi,j(t + 1) is calculated as
follows:

1Xi,j(t + 1) = r1(t) ·1Xi,j(t)

+ r2(t) · (Xk,j(t)− Xi,j(t))

+ r3(t) · ε · (X̄j(t)− Xi,j(t)), (6)

where ε is the influence factor. r1(t), r2(t), and r3(t) are
random coefficients in the interval [0, 1].
In the above equation, the behavior correction1Xi,j(t + 1)

contains three parts, namely, 1Xi,j(t), Xk,j(t) − Xi,j(t) and
X̄j(t) − Xi,j(t). The first part is the behavior modification
of tth generation. In the second part, Xi,j(t) imitates Xk,j(t).
Specifically, k is independent for each dimension j, which
means that particle i may learn from different particles in the
current swarm. In the last part, each particle i learns from the
mean behavior of all particles. X̄j(t) is calculated as follows:

X̄j(t) =

∑m
i=1 Xi,j
m

. (7)

Specifically, SL-PSO uses dimension-dependent param-
eter control strategies to control swarm size m, learning
probability PLi , and impact coefficient ε. The swarm size m
is given by

m = M +
⌊ n
G

⌋
, (8)

where M is the base size that is preset to 100. n represents
the dimension of the behavior vector, and G is a constant
parameter equal to 70. The learning probabilityPLi mentioned
above is calculated as:

PLi =
(
1−

i− 1
m

)α·log(d nM e)
, (9)

where α is a positive coefficient and is set to 5. This indicates
that the worse the fitness of the particle is, the higher the
learning probability will be. The last parameter ε can be
calculated as:

ε = β ×
n
M
, (10)

where β is a small constant and is set to 0.01.

Due to these dimension-dependent parameters (m, PLi ,
and ε), a good balance between convergence and diversity
is achieved. Extensive experiments in previous papers have
been executed to verify the performance of SL-PSO. Specif-
ically, SL-PSO has achieved excellent results in dealing with
high-dimensional problems.

To adopt SL-PSO in training the ALDNM, the first step is
the problem representation. The goal of training the ALDNM
with SL-PSO is to find a set of parameter values to obtain the
highest classification accuracy. Each synaptic connection has
two parameters (w and q). Thus, the number of parameters
that need to be adjusted can be expressed as:

N = 2× n× m, (11)

where n denotes the input number and m represents the num-
ber of branches. Each particle in the SL-PSO is represented
by a vector, which is shown as follows:

X = (W,Q)

= (w1,1,w1,2, · · ·,wn,m, q1,1, q1,2, · · ·, qn,m). (12)

The direct goal of the training process is to make the
difference between the actual output and the ideal output
smaller. Thus, the mean square error (MSE) of the ALDNM
is employed as the fitness function of SL-PSO. The MSE is
computed as follows:

fitness =
1
2S

S∑
s=1

(Ts − Os)2 , (13)

where Ts and Os represent the ideal output and actual output,
respectively. S denotes the number of training samples.

In order to explain the training process more clearly,
we present the flowchart of the training process in Fig. 6. The
flowchart contains threemain parts: training set, SL-PSO, and
ALDNM. Their roles are described as follows.
•Training set: providing training samples for the ALDNM.
• SL-PSO: updating particles to get the best fitness. The

particles of SL-PSO are represented by (12). The fitness
function of a particle is calculated by (13). When the stopping
criterion is met, the SL-PSO outputs the particle with the best
fitness value.
•ALDNM: calculating the actual outputs of all samples as

shown in Fig. 2. Then, the value of MSE calculated in (13) is
returned to SL-PSO as the fitness of a particle.
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FIGURE 6. The flowchart of the training process.

B. NEURONAL STRUCTURE PRUNING
After the training process, the trained ALDNM has a set
of determined parameters wijs and qijs. Then, the neuronal
structure pruning operations can be performed on it to elim-
inate unnecessary synapses and branches, depending on the
four connection states described above. The pruning process
can be divided into two steps: synaptic pruning and dendritic
pruning.

a) synaptic pruning: in the dendritic layer, the operation
between synapses is multiplication. For a constant 1 con-
nection, the output result is always 1. Multiplying any value
by 1 will produce itself, which suggests that the constant
1 connection has no effect on the result of the branch. The
synapse of this connection needs to be omitted from the
branch.

b) dendritic pruning: the output result is always 0 if it is a
constant 0 connection. Any number multiplied by 0 is equal
to 0. Thus if a constant 0 connection occurs, the output result
of this branch will always be equal to 0. This dendritic branch
should be removed from the dendrites.

After the structure pruning process is completed, the struc-
ture of the model becomes simpler than before. Fig. 7 illus-
trates an example of the pruning process for a trained model.
The original structure contains two branches with six synaptic
connections. After pruning the neural structure, it retains only
one branch with two synaptic connections. For each specific
problem, the ALDNM can generate a corresponding unique
and simple structure. In a sense, it has an implicit feature
selection mechanism.

C. TRANSFORMING THE ALDNM INTO
A LOGICAL CIRCUIT
Through the neuronal structure pruning process, the ALDNM
retains only the direct connections and the inverse connec-
tions, forming a unique simple topology. Then, the simplified
ALDNM can be further transformed into a logic circuit. Only
comparators, NOT gates, AND gates, and OR gates are used
in the logic circuit, as shown in Fig. 8. For the synaptic layer,

a direct connection can be equivalent to a comparator, and a
reverse connection can be replaced by a comparator coupled
with a NOT gate. In the dendritic layer, a branch with several
connections is equivalent to an AND gate. A membrane
layer connected by several branches is equivalent to an OR
gate. The cell body is a simple nonlinear mapping and is
equivalent to a single wire. Through these transformations,
an ALDNM can be transformed into a logic circuit classifier.
As the equivalent classifier of the ALDNM, it has a very high
classification speed because it does not have floating-point
computation but only needs logical operations.

IV. EXPERIMENTAL STUDY
This section presents the experiments to verify the perfor-
mance of the proposed model. All algorithms in this study
are implemented in Python and C languages. All experiments
are performed on a Linux 64-bit system with a Core-i5 CPU,
3.4 GHz, and 8 GB memory.

In our experiments, four classification datasets are used
to verify the performance of the ALDNM trained by
SL-PSO. These four datasets are Wine, Climate model
simulation crashes (CMSC), Wisconsin diagnostic breast
cancer (WDBC), and Ionosphere. All datasets of these
classification problems are collected from the UCI machine
learning repository [43], and the details of four datasets
are summarized in Table 2. The Wine dataset includes the
chemical composition analysis results of wines in specific
regions of Italy. The origin of the wine can be inferred from
the chemical composition. This dataset contains 178 records,
each with 13 attributes. The CMSC is used to predict climate
model simulation outcomes given climate model parameter
values. It contains a total of 540 parameter value combina-
tions, each with 18 values. All attribute values of this dataset
are scaled in the interval [0, 1]. The simulation outcomes
are represented by 0 (success) and 1 (failure). The WDBC
dataset was provided by Dr. William H. Wolberg et al. from
the University of Wisconsin for breast cancer diagnosis. The
features are obtained by computing the digitized image of

141952 VOLUME 7, 2019



S. Song et al.: Training an Approximate Logic Dendritic Neuron Model Using Social Learning Particle Swarm Optimization Algorithm

FIGURE 7. Two steps of the structure pruning operation: synaptic pruning and dendritic pruning.

FIGURE 8. An example of each layer and its equivalent logical circuit
component.

TABLE 2. The details of four datasets.

breast mass. This dataset includes records from 569 sam-
ples, each with 30 feature items. The diagnosis results are
divided into two categories: benign (B) and malignant (M).
The Ionosphere dataset records the Ionosphere data collected
by Johns Hopkins University. The goal is to determine the
type of radar return by analyzing the free electrons in the
ionosphere. Returns can be classified as g (good) and b (bad).
The dataset contains 351 cases, each with 34 continuous
attributes within [−1, 1]. It should be noted that, since the
proposed ALDNM is a binary classifier, all of the employed
test classification problems are binary. When dealing with
multiclass classification problems, we can use some existing
multiclass classification techniques, such as the One-vs-One
strategy [45] and the One-vs-All strategy [46], to extend
ALDNM for these problems. This issue deserves our future
investigation.

According to our previous studies [16], [24], [33], the con-
stant paramaters c, csoma, and γ of ALDNM are set to 5, 5,
and 0.5, respectively. Each dataset is randomly split into two
subsets in one experiment. One subset is used for training,
and the other one is used for testing. The proportions of
each subset are set to 50%∼50%. For each dataset, the split
operation is performed 30 times, forming 30 pairs of subsets.
After running the proposed model, 30 experimental results

are obtained. To fit the input of the ALDNM, all features are
normalized in the interval [0, 1].

A. COMPARATIVE STUDY WITH THE BP ALGORITHM
The BP algorithm uses gradient information to minimize
the function error, which is completely based on mathe-
matical concepts. In our previous works, the BP algorithm
was applied to the benchmark datasets such as XOR, Iris,
Glass, and Cancer. The number of features in these bench-
mark problems is less than 10. However, the number of
features in the datasets in this experiment is greater than
10 (13, 18, 30, and 34). More features mean an increase
in parameters, which is a challenge for the performance of
BP algorithm.

In this section, SL-PSO is compared to the BP algorithm in
training the ALDNM. For a fair comparison between SL-PSO
and BP, the maximum function evaluation number of SL-PSO
is 20000, and the maximum number of iterations of BP is
10000. Even in this setup, the BP algorithm still spends more
memory and training time than SL-PSO. The experimental
results, including the mean square error (MSE), accuracy and
p-value, are provide in Table 3.

From Table 3, it is clear that the MSEs of SL-PSO
are smaller than those of BP on all benchmark problems.
It implies that SL-PSO is more powerful than BP in training
the ALDNM. By comparing the accuracy rate of SL-PSO
with that of BP, it is clear that the results obtained by SL-PSO
are better than those obtained by BP. The Wine dataset is
the simplest problem among the four classification prob-
lems. BP provided a competitive result for this dataset. How-
ever, BP showed poor classification accuracy on the other
three problems. The Wilcoxon signed-ranks test is utilized
in our experiments to detect significant differences between
SL-PSO and BP in term of accuracy rate. In Table 3, SL-PSO
is the control algorithm. All p-values of the four problems
are smaller than 0.05, indicating that SL-PSO outperforms
BP significantly in classification accuracy. Moreover, Fig. 9
exhibits box-and-whisker diagrams of classification accuracy
for two training algorithms on four benchmark problems.
SL-PSO has higher medians andminimums on all benchmark
problems. Moreover, SL-PSO has a shorter intentional range
in all benchmark problems, indicating that SL-PSO has a
more stable performance of training ability.

To further evaluate the performance of two training algo-
rithms, the average convergence curves of two algorithms
for four benchmark problems are demonstrated in Fig. 10.
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TABLE 3. The experimental results of SL-PSO and BP on four benchmark problems.

FIGURE 9. The boxplot graph of accuracy for four problems.

The convergence curve reflects the stability and efficiency of
an algorithm. It is quite clear that SL-PSO provides a much
faster convergence rate than BP on each classification prob-
lem. Specifically, the convergence curves of BP are almost
horizontal on two problems (WDBC and Ionosphere) with
more than 30 features, which means that BP is invalid on
these datasets. These results show that SLPSO has a obvious
advantage over BP in training the ALDNM.

B. COMPARATIVE STUDY WITH OTHER
HEURISTIC ALGORITHMS
In this subsection, we compare the performance of the
SL-PSO algorithm with four typical heuristic optimiza-
tion methods. Two of the four algorithms are the classical
PSO [40] and its variant multiswarm particle swarm opti-
mization (MSPSO) [47], which focus on improving the topol-
ogy of the classical PSO. The remaining two algorithms are
the state-of-the-art genetic algorithm (GA) [48] and differen-
tial evolution (DE) [49]. For a fair comparison, the parameter
settings of all algorithms are based on studies in the literature
[40], [47], [50], [51]. Table 4 gives the details of the parameter
settings.

Table 5 lists the results achieved by these heuristic opti-
mization algorithms for the four classification problems.

TABLE 4. The parameter settings of compared heuristic optimization
algorithms.

TABLE 5. The classification results of SL-PSO and other heuristic
optimization algorithms.

It is clear that SL-PSO achieves the highest classification
accuracy rate for each classification problem among five
algorithms. The Friedman test is used to detect differences
between multiple groups. Here, we use it to determine
whether there is a statistical difference between SL-PSO and
other algorithms. The statistical results are listed in Table 6,
where SL-PSO is the control algorithm. The ranking values
obtained by the Friedman test can evaluate the performance
of each algorithm. A smaller ranking value indicates a better
performance. As shown in Table 6, SL-PSO achieves the
smallest ranking value 1.825. In addition, since the unad-
justed p-values ignore the familywise error rare [52] in a
multiple comparison. A common post-hoc procedure called
Bonferroni-Dunn procedure is applied to obtain adjusted
p-value expressed as pBonf . In Table 6, all pBonf values are less
than the significance level of 0.05, which indicates that there
is a statistical difference between SL-PSO and other algo-
rithms. Therefore, we can conclude that SL-PSO provides the
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FIGURE 10. The convergence curves of two training algorithms for four problems.

TABLE 6. Statistical analysis of SL-PSO and other heuristic algorithms.

most powerful performance in training the ALDNM among
these heuristic optimization methods.

To further investigate the differences among these algo-
rithms in training the ALDNM, the average convergence
curves for four benchmark problems are plotted in Fig. 11.
As shown in Fig. 11, although other heuristic optimiza-
tion methods converge faster than SL-PSO at the begin-
ning, they trap into local minima quickly. Additionally,
the MSEs obtained by SL-PSO are the smallest among the
five algorithms. It suggests that SL-PSO is a highly suitable
algorithm for training the ALDNM.

The reasons for the excellent performance of SL-PSO in
training the ALDNM can be explained as follows. SL-PSO
contains a social learning mechanism, which maintains a bet-
ter balance of exploitation and exploration. Thus, the issues
of prematurity and falling into local minima can be avoided.
In addition, SL-PSO has a parameter control strategy depen-
dent on dimension, which can improve the robustness for
optimization problems of different dimensions.

C. COMPARATIVE STUDY WITH OTHER CLASSIFIERS
All the above experimental results indicate that SL-PSO is
a promising algorithm in training the ALDNM. In addi-
tion to comparison with other heuristic algorithms, we also
compare the ALDNM with seven other widely used clas-
sifiers to investigate the performance of ALDNM training

FIGURE 11. The convergence curves of SL-PSO and other heuristic
optimization algorithms.

by SL-PSO. The compared classifiers are the k-nearest
neighbors algorithm (k-NN) [53], linear SVM [44], decision
tree [54], random forest [55], MLP [20], naive Bayes (NB)
[56], and quadratic discriminant analysis (QDA) [57]. The
parameters of these classifiers are set according to the recom-
mendation of the scikit-learn library [58]. The same subsets
for four classification problems are implemented on each
classifier 30 times. The classification accuracies of all clas-
sifiers on the four classification problems are summarized
in Table 7.

VOLUME 7, 2019 141955



S. Song et al.: Training an Approximate Logic Dendritic Neuron Model Using Social Learning Particle Swarm Optimization Algorithm

TABLE 7. Comparison of the accuracy of different classifiers for four
problems.

TABLE 8. Statistical analysis of ALDNM in comparison with other
classifiers.

From Table 7, we can see that the ALDNM achieves the
best classification accuracies on the Wine and Ionosphere
datasets. On the CMSC dataset, the classification accuracy
obtained by the ALDNM is second only to NB. On the
WDBC datasets, although the ALDNM does not achieve
the best classification accuracy, it also achieves competitive
result compared with other classifiers.

In order to further determine the significant differences
between the accuracies of eight classifiers, the Friedman test
is also employed here. The statistical results of the Friedman
test are summarized in Table 8. Except for the MLP, all
unadjusted p-values of the other classifiers are smaller than
0.05. This indicates that the ALDNM trained by SL-PSO is
significantly superior to k-NN, SVM, decision tree, random
forest, NB, and QDA. The adjusted p-value (pBonf ) of MLP
is 0.497377. This value indicates that there is no significant
difference between SL-PSO and MLP. On the other hand,
according to Table 8, it can be seen that the ALDNM has
the smallest ranking value of 2.6833. MLP has the second
smallest ranking value 3.2542, and the linear SVM has the
largest ranking value 7.2625. It can be concluded that the
ALDNM is the most promising classifier on the four classi-
fication problems, MLP is the second best classifier, and the
linear SVM is the worst classifier.

The comparison results show the powerful performance
of ALDNM for the classification problems. The advantages
of SL-PSO described above make it suitable for training
the ALDNM, especially when a real-world problem is com-
plex. The ALDNM has a unique neural topology and utilizes
nonlinear computing on the neuron dendrites, which is also
an important reason why the ALDNM can acquire a high
performance in the classification problems.

FIGURE 12. The final simplified structures for the four benchmark
problems.

TABLE 9. Results of original structures and simplified structures on four
datasets.

D. LOGICAL CIRCUIT APPROXIMATION
TRANSFORMATION
As introduced above, a trained ALDNM can perform two
unique pruning operations (synaptic pruning and dendritic
pruning) to obtain a more simplified dendritic structure.
Then, a corresponding logic circuit classifier can be gen-
erated according to the simplified structure. We apply the
pruning operations on a trained ALDNM for each dataset.
Table 9 shows the results of the ALDNM before and after
simplification on four datasets. From Table 9, it can be seen
that the number of features is much less than the original
structure for each classification dataset. This means that
effective features are preserved, while unnecessary features
are discarded. Furthermore, the number of branches of all
classification problems is also greatly reduced compared to
the previous ones. Among these simplified structures, three
models retain two dendritic branches, and one model retains
only one dendritic branch. The structure of each benchmark
problem is greatly simplified by the pruning operations.

In order to have a more detailed explanation of the process
of transforming the simplified ALDNM into an equivalent
logic circuit, the final simplified structures and logic circuits
for the four benchmark problems are expressed in Fig. 12 and
Fig. 13, respectively. According to Fig. 12 (a), the classifica-
tion result of the Wine classification problem is ultimately
determined by 11 synaptic connections (9 direct connections
and 2 inverse connections). More surprisingly, there are only
three synaptic connections in the final structure of the CMSC
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FIGURE 13. The logic circuits for the four benchmark problems.

classification problem. Themost surprising thing is that Iono-
sphere, which originally had 34 features, ended up with only
five synaptic connections on one dendritic branch. Figure 13
shows the corresponding logic circuits of each simplified
ALDNM for classification. As shown in Fig. 13, all logi-
cal circuits are composed of basic circuit units, including

Comparators, NOT gates, AND gates, and OR gates. These
circuits are easy to be realized in hardware and have the
characteristics of fast computation speed and low cost. In par-
ticular, the simplified ALDNM and its corresponding logic
circuit provide some insights into how to conclude the clas-
sification results. As illustrated in Table 9, although the logic
circuits are much simplified compared to the original struc-
tures, the classification accuracy rate is not greatly sacrificed.
Therefore, it is promising to convert complex classification
problems into equivalent logic circuits.

V. CONCLUSION
Based on the dendritic structure of neurons, a variety of
neuron models have been proposed and used to solve many
real-world problems. In this study, a novel neural model
called an approximate logic dendritic neuron model was
proposed. This model is made up of four layers, namely,
a synaptic layer, a dendritic layer, a membrane layer, and
a soma body. In our previous studies, a BP algorithm was
used as a training algorithm and proved to be effective when
the number of weights in neuron models is relatively small.
However, on the high-dimensional classification problem,
the BP algorithm shows the disadvantage of being easily
trapped in local minima and slow convergence, which limits
the performance of the ALDNM. As an algorithm with excel-
lent performance on optimizing high-dimensional problems,
SL-PSO was adopted to train the ALDNM in this study. The
experimental results show that SL-PSO can acquire a superior
performance, better than the BP algorithm and four other
typical heuristic optimization algorithms.

In addition, we also compared the proposed ALDNM
trained by SL-PSO with seven other widely used classi-
fiers. The experimental results proved its superiority on these
datasets. It is worth emphasizing that the ALDNM owns the
ability to simplify its structure, which can remove redun-
dant synaptic connections and dendritic branches. In fact,
the simplification process can be regarded as a feature selec-
tion mechanism for each specific classification problem.
Furthermore, the simplified structures can be transformed
into corresponding logic circuits, which are composed of a
small number of circuit elements. The experimental results
on the four datasets indicate that the logic circuits can
maintain high classification accuracies on the four datasets.
Moreover, these logic circuits have the merit of being
easy to implement in hardware with fast computation and
low cost.

In the future, we intend to apply the proposed ALDNM
to more complex classification problems to verify its effec-
tiveness. Moreover, extending ALDNM to solve multiclass
classification problems is worth further investigating.
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