
Received September 10, 2019, accepted September 26, 2019, date of publication September 30, 2019,
date of current version October 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944559

A Set Space Model to Capture Structural
Information of a Sentence
YANPING CHEN 1, GUORONG WANG 1, QINGHUA ZHENG2, YONGBIN QIN1,
RUIZHANG HUANG1, AND PING CHEN3
1College of Computer Science and Technology, Guizhou University, Guizhou 550025, China
2Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
3Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA

Corresponding author: Yanping Chen (ypench@gmail.com)

This work was supported in part by the Guizhou Provincial Key Laboratory of Public Big Data, in part by the Shanxi Province Key
Laboratory of Satellite and Terrestrial Network Technology Research and Development, in part by the National Natural Science Foundation
of China under Grant U1836205 and Grant 91746116, and in part by the Science and Technology Projects of Guizhou Province under
Grant [2017]3002 and Grant [2018]1035.

ABSTRACT The context of a sentence is composed of a limited number of words. This leads to the
feature sparsity problem whereby the sentence’s meaning is easily influenced by language phenomena such
as polysemy, ambiguity and puns. To resolve these problems, the set space model (SSM) uses language
characteristics to group features of a sentence into different sets. Afterwards, the proposed feature calculus
is used to capture the structural information of the sentence. Experiments have shown that this approach to
the relation recognition task is effective. However, at least three weaknesses remain. First, due to the lack of
a probabilistic explanation, several aspects of SSM (e.g., filter selection) have not yet been covered. Second,
the existing studies have only provided an outline of SSM, andmany issues remain unclear. To understand this
approach, it is necessary to discuss a suitable example in detail. Third, SSM has been applied only to the task
of relation recognition. Case studies of more typical topics (e.g., named entity recognition) will help illustrate
the use of SSM’s methodology to manipulate features. This paper develops SSM to cover these problems.
It describes a systematic and novel approach to manipulating features of a sentence. In the experimental
part, two typical information extraction tasks are performed to demonstrate SSM’s capabilities. Two case
studies are considered, and favorable improvements are observed. All of the obtained results surpass those
of compared approaches. The experiments also show the influence of sentence structural information on
information extraction.

INDEX TERMS Set space model, information extraction.

I. INTRODUCTION
Information retrieval (IR) focuses on document-level infor-
mation search. It ranks documents relative to a query,
whereby a document or a query is modeled as a bag-of-words.
Accordingly, the vector space model (VSM) has been devel-
oped to support document-level processing. Under VSM,
a document is represented as a vector of a fixed length.
A corpus is represented by a matrix, where each column
refers to a document, and a row represents the distribution
of a word among documents. VSM maps documents into
a measure space. Documents are represented as scattered
dots in that space. The distance between dots corresponds

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Luo .

to similarity between documents. It is computed by using
predefined measure functions, e.g., cosine similarity or the
Manhattan distance.

IR is an effective approach to document-based retrieval.
However, the main deficiency of an IR system is that it
cannot model the level of syntactic or semantic units in a
document [1]. Given a query, an IR system usually returns
thousands or millions of documents, which leads to the
‘‘information overload’’ problem. To reduce the cost of
searching for information, the information extraction (IE)
approach provides an effective context-based information
search method. It aims at extracting linguistic units with
concrete concepts [1], [2], such as named entities, relations,
quantifiers and events. It is widely used to support extraction
of structured data from semi-structured or unstructured data.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 142515

https://orcid.org/0000-0002-9946-3157
https://orcid.org/0000-0002-3195-7775
https://orcid.org/0000-0002-1348-5305

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

It is hoped that the output of an IE system can be used to
construct a knowledge base automatically.

The main challenge for an IE system is that it is imple-
mented at the sentence level, where the context is composed
of a few words. Because the bag-of-words assumption is
unable to capture semantic information of words and word
ordering information [3], [4], it can easily lead to a signif-
icant feature sparsity problem. Furthermore, polysemy and
ambiguity are common language phenomena. These phenom-
ena have a lesser influence on term weighting in document-
level processing tasks (e.g., IR) due to the presence of many
comparatively frequently occurringwords. On the other hand,
for sentence-level tasks, the meaning of a word in a sentence
is strongly influenced by the context. The influence of pol-
ysemy and ambiguity becomes increasingly important due
to a limited number of words. For example, in two sentence
fragments ‘‘in Peking’’ and ‘‘Peking announces’’, the word
‘‘in’’ is informative in indicating that ‘‘Peking’’ is a place
name in the phrase ‘‘in Peking’’, while the verb ‘‘announces’’
reveals that ‘‘Peking’’ refers to an organization in the phrase
‘‘Peking announces’’.

In summary, several challenges arise in construction of an
IE system: (a) the meaning of a word is strongly influenced
by its context; (b) the impact of polysemy and ambiguity
of words becomes increasingly important due to sentences’
context having a short range; (c) because of the problem of
heterogeneity, the performance of using an external resource
is unpredictable, and (d) some techniques used to filter terms
may reduce performance. For instance, in the above example
‘‘in Peking’’, the word ‘‘in’’ is often removed as a stop word.

In the IE domain, a sentence can be considered as a con-
tainer that holds interrelated words. The positioning of words
in a sentence is not random. It is governed by grammar
rules and aims to express the sentence’s meaning. Due to
some linguistic phenomena (e.g., polysemy, ambiguity and
puns), the meaning of a sentence is not a simple combina-
tion of words’ meanings. To understand a sentence, word
sense disambiguation should be considered. It also critical in
implementing an IE task. In our previous study, we proposed
the set space model (SSM) for the task of entity relation
recognition [5]. The intuition of SSM is that for a specific
IE task, some linguistic units make a sentence structurally
valid. Based on the structural characteristics of sentences,
such linguistic units can be used to group features into dif-
ferent sets. Afterwards, based on set operations, grouped
features can be used to generate combined features for cap-
turing structural information of sentences. SSM provides a
formal and systematic method of generating combined fea-
tures. Experiments in Chen et al. [5] showed that structural
information of sentences was very helpful for the task of
relation recognition.

In this paper, following the motivation in Chen et al. [5],
we extend many aspects of SSM. The contributions of this
paper include the following:

1) Due to the lack of a probabilistic explanation, some
aspects of SSM (e.g., filter selection) cannot be supported.

In this paper, we provide a probability analysis under the
framework of set theory. It helps bridge the gap between
statistical learning and logic representation.

2) In the previous paper, many aspects (e.g., feature group-
ing and feature calculus) of SSM are difficult to understand
due to a lack of examples. In this paper, a detailed discussion
with a suitable example is provided, which is helpful in
constructing an SSM-based system.

3) In addition to the relation recognition task, a typical
information extraction task (named entity recognition) is con-
sidered to demonstrate the methodology of SSM applied to
implementing feature grouping, feature calculus, etc. Two
case studies are presented that help illustrate the ability
of SSM to capture structural information of sentences.

The remainder of the paper is organized as follows. Related
studies are introduced in Section II, where current approaches
to capturing structural information of sentences are discussed.
The SSM framework is presented in Section III, where many
aspects of this model are discussed. We describe exper-
iments in Sections IV and V. Conclusions are presented
in Section VI.

II. RELATED WORK
In the information extraction domain, various techniques
have been proposed to make better use of sentence struc-
tural information. They can be roughly divided into four
categories: n-gram feature, parse tree, sequence model and
combined features.

N-gram is the simplest approach whereby consecutive
words are combined into a single term. Because adjacent
words often have no dependency relationship, many n-gram
features are fragmental and noisy, especially if n is large.
To avoid these problems, n-gram features can be derived by
analytical methods. For example, Ren and Li [6] presented a
wrapper method to deduce n-gram feature templates. Another
way to reduce the fragmental problem is to combine n-grams
with relevant information, e.g., latent topic variables, and
PageRank [3], [7].

Parse tree (or dependency tree) is a fine-grained method of
modeling sentence structure. It originates from a linguistic
theory that provides a formal method of representing the
structure of a sentence. In related studies, a kernel method
based on parse trees was widely used to capture sentence
structural information for relation recognition [8]. The main
challenge for parse tree-based systems is that their perfor-
mance is often hurt by inaccurate clunking or parsing [9].
These shortcomings can easily lead to poor performance if
heterogeneous, noisy and fragmental data are being analyzed.

Sequence models, e.g., hidden Markov models (HMM)
and conditional random field (CRF), are the most commonly
used method of modeling dependencies between words. For
a specific task, a sequence model often outputs a maximized
labeling sequence. Such a sequence can effectively capture
the structural information of a sentence. However, some tasks
(e.g., coreference resolution) entail trying to determine the
semantic relationship between two linguistic units that may

142516 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

be scattered across a document. Under these conditions, it is
difficult tomodel relationships by sequence labeling. Another
shortcoming of sequence models is that they produce deci-
sions mainly based on features around each word. Because a
first-order Markov dependency is often assumed, the respec-
tive models cannot capture global features appropriately [10].

Combined features can also effectively capture structural
information of sentences [11], [12]. Unlike n-grams that use
consecutive words directly, combined features are generated
by using syntactic or semantic rules. Combined features
are often generated by greedy methods that try to iden-
tify new and additional features to improve performance.
Chen et al. [13] proposed a feature assembly method that
provided a formal method of combining features. Another
regularized method is the kernel method, where kernel sub-
stitution is used to generate combined features [14].

Capturing semantic information, in addition to structural
information, of sentences is also important for information
extraction. One way to obtain semantic information is to use
external knowledge directly. For example, Freebase [15] and
patterns [16] are often used in relation recognition to guide
the extraction process. In named entity recognition, various
external resources have been proposed, e.g., gazetteer, lex-
icon, thesaurus, and WordNet [17]. Many special features,
e.g., ontology [18], heuristic information (e.g., transliterated
names) [19], embedded logic rules [20] and bilingual infor-
mation [21] have also been explored in this field.

Neural network-based models can also effectively capture
structural information of sentences. In such methods, a word
is represented as a vector that can be automatically pretrained
based on a large corpus [22]–[24]. The word representa-
tion (also known as word embedding) encodes syntactic or
semantic information about a word. In neural network-based
models, long short-term memory (LSTM) and the attention
mechanism are widely used to model dependencies between
words. For example, Luo et al. [25] modeled a highway
network as a recurrent neural network (RNN), and Ali et al.
[26] proposed a multiattention structure. To capture structural
information, position embedding that embeds word positions
into a distributed representation, and subsequently concate-
nates them with word embeddings, creating inputs of a neural
network model [27], [28], is also widely used. In neural
network-based models, parsing trees can be used to learn
a sentence representation by an RNN [29]. For example,
Kalchbrenner et al. [30] generated a sentence representation
from a parse tree by a k-max pooling method.

Several themes can be deduced from the models discussed
above. First, techniques used by document-level process-
ing are mainly based on term frequencies, where the bag-
of-words assumption is made. In sentence-level processing,
linguistic roles and word positions are more important.
Second, sentence-level processing often results in a sparse
feature representation. It is important in such tasks to capture
structural information and use external knowledge. How-
ever, linguistic functions are rarely considered in related
studies using such information. As a result, performance of

using external resources becomes unpredictable. For exam-
ple, there is a high probability that a location name fol-
lows a preposition. However, this information can not be
captured, if a sentence is represented as a bag-of-words.
Third, some techniques used to filter stop words may reduce
performance. In contrast, combining such words with other
information may improve performance [31]. Fourth, many
techniques use greedy methods to generate combined fea-
tures. Because no linguistic information is considered,
the resulting features are difficult to interpret, and perfor-
mance is not robust.

III. SET SPACE MODEL
This section discusses SSM in greater depth, and many
aspects of the model are described in more detail. Further-
more, two important topics – probability analysis and fea-
ture selection – that help extend the theory of SSM are
presented. Probability analysis provides a unified represen-
tation for combining probability and logic. Feature selection
entails a method of filtering noisy and inconsistent features.
For ease of understanding, we first introduce the notation
in Table 1.

A. DEFINITIONS
Let A = {a1, a2, · · · } be a feature set that contains features
extracted for a specific task (e.g., relation recognition). In this
paper, we refer to the minimal granularity of features as
atomic features. Set A is used to refer to an atomic feature
space. Using structural characteristics of sentences, elements
in A can be partitioned into grouped feature sets X =

{X1, · · · ,Xn}, and X is called a partition of A. In this paper,
subscripts are used to distinguish grouped feature sets. For
∀Xi ∈ X, it is assumed that all elements inXi satisfy a certain
property.

Elements of Xi can be represented as Xi = {x im|1 ≤ m ≤
|Xi|}, where |Xi| is the cardinality of Xi. A dot operation is
used to represent elements ofXi (e.g.,Xi.xj). If x im ∈ Xi, then
x im ∈ X. Therefore, X can also be represented as

X = {x11 , · · · , x
1
|X1|
, x21 , · · · , x

2
|X2|
, x31 , · · · }

If there is no ambiguity, elements ofX orXi are all referred
to as {x1, · · · xn}. Because Xi is grouped according to struc-
tural characteristics of sentences, we assume that ∀xi∀xj(xi ∈
Xi, xj ∈ Xj), if Xi 6= Xj then xi 6= xj.

Function ‘‘Grouping’’ is defined to represent the process
of grouping a feature set: X = Grouping(A). Function
Atomizing(xi) is defined to return atomic features. Therefore,
XAtom = {z : z = Atomizing(xi), xi ∈ X} represents the pro-
cess of generating bag-of-words features from X. We assume
that functions can be implemented on elements and sets. If a
function implemented on an element, it returns the result
for the element; e.g., Atomizing(xi) = x. If a function’s
argument is a set, the function is individually applied to every
element of the set; e.g., XAtom = Atomizing(X) = {z : z =
Atomizing(xi), xi ∈ X}.

VOLUME 7, 2019 142517

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

TABLE 1. Symbol table.

B. FEATURE GROUPING
For a specific task, experience or prior knowledge are
required to partition atomic features A into grouped feature
sets X. To achieve good performance, it is better to utilize
structural or functional linguistic units to partition sentences.
For example, the entity relation recognition task tries to find
semantic relationships between two named entities in a sen-
tence. Given a sentence set S = {S1, S2, · · · , Sn}, each sen-
tence Si ∈ S can be partitioned into five parts by two named
entities. In each part, grouped features can be extracted inde-
pendently. Therefore, for entity relation recognition, grouped
feature sets can be generated as

X = {Xl,Xf ,Xm,Xs,Xr }

where x fi ∈ Xf and xsi ∈ Xs are features extracted from
the first and second entity mentions. In the task of relation
recognition, two named entities aremanually annotated. They
can precisely partition a sentence into different parts, which
reduces errors caused by parsing or segmenting the entire
sentence.

To take advantage of SSM, precisely partitioning atomic
features to support feature calculus is very important. How-
ever, there is currently no regular method that supports fea-
ture grouping. Given a specific task, experience or domain
knowledge are required to guarantee good performance. One
recommended strategy for partitioning a sentence is to use
linguistic units that can be identified precisely (e.g., function
words) or that are relevant to a specific task. For example,
some tasks (e.g., relation recognition or coreference resolu-
tion) entail trying to identify semantic relationships between
two named entities. Entities can be effectively used to group
features around them. In the task of named entity recognition,
boundaries of named entities can be identified precisely [32].
They are also useful in feature grouping. In what follows,
to demonstrate the use of the SSM methodology to group
features, the task of relation recognition is given as an
example.

TABLE 2. Descriptions of named entity and relation types.

Before the details of this example are discussed, Table 2
presents the descriptions of relation types and named entity
types. Descriptions follow the definitions in the automatic
content extraction (ACE) annotation guidelines [33] and are
used throughout this paper.

In relation recognition, a relation has two named entities
as arguments. Two named entities constitute a structured
relation mention (a sentence where a relation occurred). Two
named entities can be used to precisely partition a relation
mention into at most five parts. Features can be extracted
from each part independently. For example, consider the
following two sentences:

S1 = ‘Kelly arrived in Seoul from Beijing’

S2 = ‘Work with the leadership in the houses to discuss

legacies’

In this example, relation mention S1 contains a ‘PHYS’
relation between Kelly and Seoul. ‘Kelly’ is a ‘PER’
entity, and ‘Seoul’ is a ‘GPE’ entity. S2 contains an

142518 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

TABLE 3. Grouped feature set.

‘ORG-AFF’ relation, where ‘the_leadership’ is aPER’ entity,
and ‘the_houses’ is an ‘ORG’ entity.
In this example, seven grouped feature sets can be

extracted. Elements of them are listed in Table 3, where
spaces between words in a feature are replaced by under-
scores, e.g., ‘the_leadership’.
In Table 3, the grouped feature set isX = {XE1,XE2,XT1,

XT2,XL ,XM ,XR}. In following sections, this set is used as
an example to demonstrate aspects of feature calculus, set
space transformation, etc. To distinguish features belonging
to different feature sets, subscripts are used. For example,
in Table 3 elements of XM are marked with subscript ‘‘M’’
(e.g., ‘arrivedM ’, ‘inM ’).

C. FEATURE CALCULUS
Studies have shown that combined features are very use-
ful for information extraction [13]. The main reason is that
high-frequency features with uniform distributions exhibit no
preference for predicting a relation type. Combining such
features with others leads to skewed distributions that are
more helpful in identifying a specific type [31], [34], [35].
However, related studies of generating combined features are
mainly based on greedy methods or personal experiences.
Such approaches may generate many noisy and fragmental
features. On the other hand, feature calculus provides a for-
mal and systematic method of combining features. Based
on SSM, five set operations and two logical operations are
defined to support feature calculus that uses grouped features
to generate combined features for capturing structural infor-
mation of sentences.

1) SET OPERATION
Five feature operations, developed according to set theory,
are defined to manipulate grouped features: concatenation
(‘‘||’’), product (‘‘∗’’), sum (‘‘+’’), implication (‘‘→’’) and
equivalence (‘‘↔’’). In what follows, we assume xi ∈ Xi,
xj ∈ Xj, and KB is a knowledge base.

1. Feature concatenation : Xi||Xj = {z : z = 〈xi, xj〉}
A concatenated feature is represented as an ordered feature

pair 〈xi, xj〉. For example, let Z = XT1||XT2; then, the result
of XT1||XT2 is Z = {〈‘PER’, ‘GPE’〉, 〈‘PER’, ‘ORG’〉},
where the order of atomic features is required. Concatenated
features can also be written using the underscore symbol, e.g.,
‘PER_ORG’. In the information extraction domain, feature
concatenation is a common way of generating combined
features [11], [36].

2. Feature product : Xi∗Xj = {z : z = xi ∧ xj}
Feature product formalizes the notion that feature z =

xi ∧ xj is confirmed until two features xi and xj occur at
the same time. The difference between feature concatenation
and feature product is that in feature product, two atomic
features are interchangeable, i.e., xi ∧ xj = xj ∧ xi. Feature
product can also be denoted by z = {xi, xj}. Unlike the bag-of-
words representation, z = {xi, xj} is a feature that combines xi
and xj.

This operation is used to combine two features if their order
is unimportant. For example, the task of coreference resolu-
tion entails trying to group entity mentions (e.g., xe1 and xe2)
referring to the same entity. Because the coreference relation
between two entities is symmetric, the ordinal information of
some features is not critical. For example, let Singular(xe1) be
the function used to determine the singular form of xe1. Then,
z = Singular(xe1) ∧ Singular(xe2) determines whether two
named entities have the same singular form. In this scenario,
feature z is order-insensitive.

In our example, let Z = XE1∧XM ; then, the feature
product operation can generate feature set Z = {z1 =
‘Kelly’ ∧ ‘arrived’, z2 = ‘Kelly’ ∧ ‘in’, z3 =

‘the_leadership’ ∧ ‘arrived’, z4 = ‘the_leadership’ ∧ ‘in’}.
3. Feature sum : Xi+Xj = {z : z = xi ∨ xj}
Feature sum combines two atomic features with a dis-

junction operation, where occurrence of one of them acti-
vates the combined feature. For example, either a ‘father’
feature or a ‘mother’ feature can indicate the ‘parent’ feature,
i.e., ‘parent’ = ‘father’∨ ‘mother’. Feature sum can be used
to merge two homologous feature sets. For example, family
names and transliterated names can be merged into a person
name set.

4. Feature implication : →Xi = {z : ∃xi(xi ∈ Xi∧KB |H
xi→ z)}

Above,KB |H P means that P is satisfied under knowledge
base KB. To induce an implied feature, a knowledge base
KB (e.g., an ontology or a thesaurus) is required to support
the operation. Feature implication can be used to deduce syn-
tactic and semantic information of a sentence. For example,
given the word ‘apple’ in a sentence, according to its context,
we can deduce that it may be a ‘fruit’ or a ‘subject’ or may
have the ‘noun’ part-of-speech tag, etc. In Table 3, based
on XE1 and XT1, we can derive that ‘Kelly’→‘PER’ and
‘the_leadership’→‘PER’, etc. For simplicity,KB |H Xi→Zi
can be abbreviated as→Xi.

As another example, let KBmor be a thesaurus containing
morphemes, and Xi be a word set. Then, morphemes can be
induced by KBmor |H x → z, where z is the implied mor-
pheme. Hence, we can generate a morpheme set as Zmor =

→Xi = {z : ∃xi(xi ∈ Xi ∧KBmor |H xi→ z)}.
5. Feature equivalence : ↔Xi = {z : ∃xi(xi ∈ Xi∧KB |H

xi ↔ z)}
The equivalence operation expresses the notion that two

features have the same semantic meaning (are synonymous).
It means that they are interchangeable. To induce synonyms,
a knowledge base (e.g., a thesaurus denoted byKBsyn) should

VOLUME 7, 2019 142519

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

be used to support the operation. If z is a synonym of x, then
KBsyn |H x ↔ z. Zsyn can be induced by Zsyn = ↔Xi =

{z : ∃xi(xi ∈ Xi ∧ KBsyn |H xi ↔ z)}, where ↔Xi is an
abbreviation of KB |H Xi↔Zi.

The equivalence operation is implemented by comparing
semantic information of features. In practice, we can use an
equivalent feature with a skewed distribution to replace a fea-
ture that exhibits a weaker discriminative ability. For exam-
ple, some words are rarely used. Occurrences of such words
are noisy, and may reduce performance. On the other hand,
frequently occurring words are often evenly distributed. Such
words have no predictive ability. In information retrieval, they
are removed during term selection. However, if information
is being extracted at the sentence level, due to the feature
sparsity problem discarding these features may have some
negative impact. Therefore, instead of filtering the respective
words, we can replace them by the feature equivalence oper-
ation. It is implemented by using a thesaurus or an ontology
to group all synonyms into the same set. The word with the
highest discriminative power can be selected to represent the
synonym set by the term weighting method.

Following the above definitions, more complex oper-
ations can be defined. For example, Xi+1||, · · · , ||Xi+n
concatenates several features and generates n-tuple fea-
tures. Operation Xi+1∗, · · · , ∗Xi+n generates a set feature
(e.g., 〈xi+1, · · · , xi+n〉). It is used as a single feature. Com-
bined features can be assembled in a more sophisticated
way, e.g., →(Xi||Xj). The following is an example given
to illustrate the methodology used to generate sophisticated
features:

Z = → (XE1)‖ → (XM)‖ → (XE2)

= {z : z =→ (x1)‖ → (x2)‖ → (x3),

x1 ∈ XE1, x2 ∈ XM , x3 ∈ XE2}

If we let x1 = ‘Kelly’, x2 = ‘arrived’, and x3 =
‘Seoul’, based on external knowledge we know that ‘Kelly’
is a person’s name, and ‘Seoul’ is a geographic entity.
Then, ‘PER’_‘arrive’_‘GPE’ (or 〈‘PER’, ‘arrive’, ‘GPE’〉)
is informative for predicting a physical relation.

2) LOGICAL CALCULUS
SSM, developed using set theory, has the ability to
use logic techniques (e.g., propositional logic, first order
logic or description logic). In this section, based on the logical
calculus, we define two feature operators (feature function
and feature predicate) to support feature calculus. Before dis-
cussing this, we introduce the background of logical calculus.

Let C = {c1, c2, · · · } be a constant set. Each ci ∈ C
denotes an object in the problem domain. X = {x1, · · · , xn}
is a variable set, the elements of which take values from
range C. Constants and variables are terms of a logic lan-
guage. Furthermore, a logic language also contains vocab-
ularies or signatures used to refer to concepts of a logical
system. They are also known as symbols. Rules are defined
to determine the validity of symbols. In a logic system,

predicates and functions are used to manipulate terms.
A predicate is often defined to evaluate attributes or relations
between terms. A function maps a tuple of objects to objects.
In a logic system, all predicates and functions can be referred
to as P = {Pni (x1, · · · , xn) : 0 ≤ n ≤ ∞, 0 ≤ i ≤ n} and
F = {Fni (x1, · · · , xn) : 0 ≤ n ≤ ∞, 0 ≤ i ≤ m}, where
n is the arity and represents the number of parameters of a
predicate (or a function). Pi and Fi are symbols that are also
known as predicate constants and function constants.
In the knowledge representation domain, knowledge base

KB often contains four types of symbols: variables, constants,
predicates and functions. If ∃(x1, · · · , xn) ∈ X (where xi
takes values from C), such that Pni (x1, · · · , xn) = true, then
Pni is satisfiable. If knowledge base KB = true, and Pni
is satisfiable, then KB entails Pni . This case is denoted by
KB |H Pni . Otherwise, KB cannot entail Pni (KB 6|H Pni).
Utilizing techniques developed in knowledge representa-

tion, we define another two operations to support feature
calculus; below, 1 ≤ s, t ≤ n.
6. Feature function : F {x1, · · · , xn} = {z :

∃(Fi, xi, xs, · · · , xt)(Fmi ∈ F ∧ z = Fmi (xs, · · · , xt))}
A feature function generates new features from tuples of

features. It can take atomic features, feature sets, or a sentence
as arguments. Then, a set of features is returned. For example,
we can define function TheFirstArgumentOf (Si) that returns
the first entity mention of Si; then, XE1 = {z : z =
TheFirstArgumentOf (Si), Si ∈ S} contains all first instances
of named entities in S. To implement feature function, exter-
nal knowledge (in the form of patterns or rules) is required.
The operation can also be represented by a classifier that
extracts designated features.
7. Feature predicate : P(x1, · · · , xn) = {z : z =

Pi, ∃(xs, · · · , xt)(Pi ∈ P ∧KB |H Pmi (xs, · · · , xt))}
In traditional logical calculus, predicate Pi represents an

attribute or relation among objects. A predicate takes a true
value if it is satisfied. Otherwise, it returns false. In the SSM
framework, predicates are mainly used to generate features.
If a predicate is satisfiable, then symbol Pi is collected as a
feature.
The above process can also be formalized as

P(x1, · · · , xn) = {z : z = 〈xs, · · · , xt 〉, ∃(xs, · · · , xt)(Pi ∈
P∧KB |H Pmi (xs, · · · , xt))}. In this condition, predicate Pi is
used to select features that satisfy the predicate.
Traditionally, to run a logic system, many hard constraints

must be satisfied (e.g., decidability, completeness). Because
NLP tasks often entail processing a large number of features,
many of them are noisy and fragmental. It is difficult to
apply logical calculus to an NLP learning task directly. The
main reason for supporting feature calculus is that instead of
logical reasoning, SSM only uses logical calculus to generate
raw features that can perform weighting and filtering in later
stages. Therefore, hard constraints that would apply to a
traditional logic system can be relaxed.
Another way to utilize logical calculus is to gener-

ate new features by formal methods, e.g., clausal con-
straints, inductive logic programming and feature description

142520 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

logics [37]–[39]. Many of these methods must be imple-
mented in a knowledge base without contradictions. They can
be used to induce new predicates from KB or subset of KB.

D. SET SPACE TRANSFORMATION
In the above discussion, based on set operations and log-
ical calculus, seven feature operations have been defined
to manipulate atomic features. In this section, to introduce
probability analysis for SSM, feature calculus is redefined as
mappings. They are as follows:

(a)T|| : X→ Xn (b)T∗ : X→ P(X)
(c)T+ : X→ P(X) (d)T→ : X→ X′

(e)T↔ : X→ X′′ (f)F : X→ X′′′

(g)P : X→ P

where P(X) denotes the power set of X. To support opera-
tions T→, T↔ and F , external resources should be used.
Therefore, X ⊂ X′, X ⊂ X′′ and X ⊂ X′′′ can be induced. P
and F denote the results generated by implementing feature
predicates and feature functions, respectively.

Let Z = Xn
∪ P(X) ∪ X′ ∪ X′′ ∪ X′′′ ∪ P; then, we can

define a mapping as

T (X) = T‖(X) ∪T∗(X) ∪T+(X) ∪T→(X) ∪

T↔(X) ∪F (X) ∪P(X)

where T is a many-to-many mapping. The mappings from
(a) to (g) can be combined as

T : X→ Z (1)

Equation (1) maps the original feature set X into a higher-
dimensional feature space Z. Space Z = {z1, z2, · · · } rep-
resents the transformed feature set. In a high-dimensional
space, a more flexible hyperplane can flexibly support clas-
sification.

Feature calculus increases the number of features consid-
erably. Many of them are fragmental and noisy. There are
classifiers that claim the ability to handle arbitrary features.
However, having a large number of features increases compu-
tational complexity, and processing such features is resource-
intensive. Therefore, feature weighting and feature selection
should be introduced to improve performance [31]. This issue
will be discussed in Section III-F.

E. PROBABILITY ANALYSIS
In this section, probability analysis is developed under the
framework of SSM. To analyze the data distribution of SSM,
we follow the principle of insufficient reason used in maxi-
mum entropy [40] and random field model [41]. It is assumed
that if we know nothing about probabilities of events, the best
approach is to consider them equally likely [42].

Let Y be a label set. For every vertex zi ∈ Z, if there exists
yj ∈ Y such that zi can be labeled by yj, then we call (zi, yj) a
configuration of zi. A configuration space of zi is composed
of every configuration of zi and is denoted by ωzi = {(zi, yj) :
yj ∈ Y}. Set ωzi is a set of pairs, where zi is labeled by every

yj ∈ Y. A subset of Z, denoted by Zi, can also be labeled by
yj ∈ Y, which generates a configuration (Zi, yj) = {(zi, yj) :
zi ∈ Zi}. A configuration space of Zi on Y is represented
as ωZi = {(Zi, yj) : yj ∈ Y} = {(zi, yj) : zi ∈ Zi, yj ∈ Y}.
We denote by� the configuration space ofZ onY (� = ωZ):

� = {(Zi, yj) : Zi ∈ P(Z), yj ∈ Y}

= {(zi, yi) : zi ∈ Z, yj→ Y} (2)

P(Z) is the power set of Z. Elements of � are sets, denoted
by {ω1, ω2, · · · }. Each element of� contains a configuration
of Zi.
Another approach is to define the map between Z and Y,

such that

R : Z→ Y (3)

R is a one-to-many mapping, and can be regarded as a
binary relation. Then, the domain and range of R are

dom(R) = {z : ∃y((z, y) ∈ �), y ∈ Y}

ran(R) = {y : ∃z((z, y) ∈ �), z ∈ Z}

The restriction of R to set Zi is a mapping

R�Zi = {(z, y) : z ∈ Zi, y ∈ Y, (z, y) ∈ R} (4)

Therefore, R�Zi ⊂ �. The field of R is the set field(R) =
dom(R) ∪ ran(R). We define a probabilistic model on
field(R�Zi) as

p(ωZi) =
∫
ω∈ωZi

ϕ(ω)dω (5)

where ϕ : �→ R is a probability density function.
In practice, Z represents the transformed feature space.

Each zi ∈ Z is a feature. Features belonging to a predicated
case are denoted by Zi ⊂ Z. Labeled instances are denoted
by {(Z1, y1), (Z2, y2), · · · }. Because we focus on categorical
variables, characteristic function fc(zi, yj) ∈ {0, 1} is used to
indicate whether the respective configuration occurs.1 Vari-
able c ranges from 1 to |Z| × |Y| because vertex zi may
be labeled by all elements in Y. The difference is that the
probabilities of its occurrences are unequal. Therefore, each
configuration has a parameter λc indicating the predictive
power (feature weighting).

Using the Gibbs distribution, the distribution of ω =
{(Zi, y) : y ∈ Y} can be computed as

p(y|Zi) =
1
Z
exp

(∑
zi∈Zi

λcfc(zi, y)
)

(6)

where Z =
∑

y exp(
∑

z λcfc(zi, y)) is the partition function.
For all Zi ⊂ Z, there exists Xi ⊂ X such that Zi =

T (Xi). The restriction of R to Zi can be represented as
R�Zi=T (Xi) = {(z, y) : (z, y) ∈ R ∧ ∃(x1, · · · , xm)((x1, · · · ,
xm) ∈ Xi ∧ z = T (x1, · · · , xm))}. Given Z = T (X),
both R(Z) and T (X) can be compounded into (R ◦ T)(X).
If Xi ⊂ X, then R�T (Xi) ⊂ (R ◦T)(X).

1fc is used to denote features.

VOLUME 7, 2019 142521

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

Given a visible feature set Xi, by Equations (4) and (6),
the probability of y given Xi is computed as

p(y|Xi) =
1
Z
exp

(∑
x1,··· ,xm
∈Xi

λcfc
(
R�T (x1,··· ,xm)

))
(7)

Estimation of λc utilizes the Kullback-Leibler divergence
defined as

D(p‖q) =
∑
ω∈�

p(ω) lg
p(ω)
q(ω)

(8)

where p can be given by training samples with empirical dis-
tribution p̃. We can choose q∗ under the following restriction:

arg min
q∗∈

aD(p̃‖q∗) (9)

where
a

is the simplex on � with the Gibbs distribution
p(y|Xi) under the maximum entropy principle.

Inference of q∗ is tractable only for a restricted set of
models. In NLP, most models are actually intractable. Var-
ious methods, such as generalized iterative scaling (GIS),
improved iterative scaling (IIS) and limited-memory quasi-
Newton (L-BFGS), can be used to solve the learning problem.
In our experiment, L-BFGS is used. It can be treated as a
black-box optimization procedure [43].

F. FEATURE SELECTION
The feature operations can generate a large number of raw
features. Many feature operations are defined manually, and
may influenced by subjective judgments. Because consid-
ering a large number of features will require large mem-
ory and computational resources and the results will suffer
from degradation caused by noise, feature selection will help
improve performance.

Let FC be an atomic feature set, represented as

FC ⊂ {f : �→ {0, 1}} (10)

In likelihood-driven methods, the gain of selecting fc ∈ FC
can be computed by Kullback-Leibler divergence:

G(λc, fc) = D(p̃‖q)− D(p̃‖qλcfc) (11)

G(λc, fc) is the improvement observed if feature fc is added
with weight λc. Above, p̃ is the empirical distribution of
training samples. The term qλcfc is the model after fc has been
added. Weight λc is computed by Equation (9). Feature fc that
maximizes the gain can be determined by

arg max
fc∈FC

G(λc, fc) (12)

Considering Equation (12), Berger et al. [40] adopted an
incremental approach to constructing a feature set from FC .
In that approach, atomic feature set FC is given in advance,
a feature selection method is used, and no features are
induced.

Della Pietra et al. [41] and McCallum [43] discussed a
feature induction method, generating combined features from
the atomic feature set by

FCt+1 = {fc|fc = 〈fi, fj〉; i 6= j; fi, fj ∈ FCt } (13)

In other words, combined features are induced by combin-
ing two or more atomic features. However, in this method
atomic features being combined are selected randomly, and
no structural characteristics of the sentence are considered.
This approach may lead to overfitting. Furthermore, because
the resulting features are generated by randomly combining
atomic features, the output is uninterpretable.

As discussed in Sections III-C.1 and III-C.2, in our
SSMmodel, feature calculus provides a guided feature induc-
tion process. In what follows, we discuss how feature selec-
tion is used to delete redundant or inconsistent feature oper-
ations.

The restriction of R to Z is referred as R�Z. Feature
selection is formalized as the problem of finding a subset ofZ,
referred to as Ẑ, such that R�Ẑ is used to replace R�Z. This
can be done by Equation (12).

After Ẑ has been selected, for each Ẑ ⊂ Z, there exists
X̂ such that X̂ ⊂ X and Ẑ = T (X̂). Let X̂ be the support
of Ẑ = T (X), denoted by X̂ = supp(T). X̂ is the smallest
subset of X such that if ∃X′ ⊂ X, T (X′) = T (X̂), then
X̂ ⊂ X′. R�T (X̂) is represented as

R�T (X̂) = {(z, y) : ∃(xi, · · · , xm)((xi, · · · , xm) ∈

X̂ ∧ z = T (xi, · · · , xm)), y ∈ Y}

To select features in SSM, it is better to find X̂ such
that Ẑ = T (X̂)), which reduces X and Z into X̂ and Ẑ,
respectively. Let Z̄ = Z − Ẑ = {z : z /∈ Ẑ, z ∈ Z}. Based on
feature operations (→,↔, F and P), we define four sets as

ˆKB′ = {u : ∃xi(xi ∈ X ∧ zj ∈ Z̄ ∧ u = xi→ zj)}
ˆKB′′ = {u : ∃xi(xi ∈ X ∧ zj ∈ Z̄ ∧ u = xi ↔ zj)}

F̂ = {u : ∃(Fi, xs, · · · , xt)((xs, · · · , xt) ∈ X ∧

Fi(xs, · · · , xt) ∈ Z̄ ∧ u = Fi)}

P̂ = {u : u = Pi, ∃(xs, · · · , xt)((xs, · · · , xt) ∈ X ∧

KB |H Pi(xs, · · · , xt) ∧ Pi ∈ Z̄)}

where elements of F̂ and P̂ are function and predicate con-
stants. Elements of ˆKB′ and ˆKB′′ are predicates.
ConsiderKB, F and P being used and subtract ˆKB′∪ ˆKB′′,

F̂ and P̂, respectively. The mapping T from X to Z can be
redefined as T̂ . Because T̂ (X) = Ẑ and Ẑ ⊂ Z, it holds that
T is an extension of T̂ , dom(T̂) ⊂ dom(T) and T̂ = T
for all x ∈ dom(T̂). Therefore, we can use any feature
operations, and subsequently filter them if necessary. For
example, in Section III-C.2 the constraint on P , KB |H Pni ,
can be replaced by Pni = true, which simplifies the problem
of inference and enables more available features.

Ẑ is a subset of Z. To select features from Z, a feature (or
several features) in Z that satisfies a predefined evaluation
function (e.g., the function in Equation (12)) is chosen each

142522 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

time. One reasonable stopping criterion entails evaluation on
test data withheld from evaluation data. Determining the size
of Ẑ based on Z is also an open issue. In this field, many
methods have been proposed; examples include wrappers and
variable ranking [31].

IV. CASE STUDY 1: RELATION RECOGNITION
The task of relation recognition entails recognizing relation-
ships between two named entities. In relation recognition,
the arguments (two named entities) are supposed to be known
and provided by the annotated corpus. This task is often
approached as a classification problem. Methods for rela-
tion recognition can be roughly divided into feature-based
methods (e.g., Kambhatla [11]) and kernel-based methods
(e.g., Zhang et al. [44]). One important characteristic of
relation recognition is that two named entities constitute a
structured relation mention. Based on the SSM approach
and using the annotated named entities, we can segment
a sentence precisely and group features into different sets.
Therefore, better performance is expected to result from using
feature calculus. In this section, relation recognition is per-
formed to show the flexibility of SSM in capturing structural
information of sentences.

A. EXPERIMENTAL SETTING
The ACE 2005 corpus2 is used in our experiments. It con-
tains documents collected from broadcasts, newswires and
online blogs. The corpus is annotated with three languages:
Chinese, English and Arabic. After documents with incorrect
annotations have been filtered out, the remainder contains
628 Chinese documents. The corpus defines 6 relation types
and 18 relation subtypes. There are 9,244 Chinese relation
mentions. They are manually annotated, and referred to as
positive instances.

The result of performing the task should be a recognition
of relationships between any two pairs of named entities
in a sentence. If two named entities have no predefined
relationship, they are considered a negative instance. The
methods of Chen et al. [12] and Kambhatla [11] are used
to generate negative instances for training a classifier. As a
result, a large number of relation instances are generated.
There are 93,283 Chinese negative instances in total. Finally,
there are 7 relation types to be used in the evaluation (all
negative instances are labeled ‘‘Negative’’).

We use the traditional metrics (precision, recall, and
F-score) to evaluate performance. F-score is computed as

2× (Precision× Recall)
Precision+ Recall

(14)

Fivefold cross-validation is used for evaluation. All rela-
tion instances are randomly partitioned into five groups.
Performance metrics are reported for 6 positive rela-
tion types. The results of five runs are averaged; this
approach is also known as ‘‘macro average’’ and entails the

2https://www.ldc.upenn.edu/collaborations/past-projects/ace

following calculation:

Bmacro =
1
q

q∑
i=1

Bi (15)

where q represents the number of relation types, and B
corresponds to P, R or F , respectively. In our experiments,
the resulting performance is referred to as ‘‘Total’’.

B. FEATURE CALCULUS
Let R represent a relation set, and xe1 and xe2 denote two
named entities in a sentence. If a predefined relation type
exists between xe1 and xe2, it is represented as (xe1, xe2) ∈ R
(or, more concisely, xe1Rxe2). Based on R, we can define
two entity sets: XE1 = {x : ∃xe2(xRxe2)} and XE2 = {x :
∃xe1(xe1Rx)}. The total entity set is represented as XE∗ =

XE1 ∪ XE2. An element of XE∗ is denoted by xe∗.
To illustrate the method of generating combined features,

we consider the original feature space X given by

X = {XE1,XE2}

In what follows, based on X, new feature sets can be
induced step-by-step.

Two functions RightPosOf(xe∗) and LeftPosOf(xe∗) are
defined to obtain POS tags of xe∗. They correspond to words
located on both sides of two entity mentions. There are four
feature sets in total, denoted by3 ZRP1, ZLP1, ZRP2 and ZLP2,
whereZRP1 = RightPosOf(XE1) represents all right POS tags
of XE1. All of these features are extracted by a POS tagger4.

Another three functions TypeOf(xe∗), SubTypeOf(xe∗) and
HeadOf(xe∗) are defined to obtain types, subtypes and heads
of xe∗. As a result, six feature sets are extracted: ZT1, ZT2,
ZS1, ZS2, ZH1 and ZH2 (e.g., ZT1 = TypeOf(XE1)). These
features are manually annotated in the ACE corpus.

The position structure of xe1 and xe2 is extracted by func-
tion PositionOf(xe1, xe1). Because two entity mentions can be
nested, they may have four coarse structures; e.g., xe1 may be
nested in xe2 or xe1 may be in front of xe2.

Given the functions discussed above, based on the origi-
nal feature space X, eight feature sets can be generated as
follows:

Z1 = {z : z = RightPosOf(xe1)||TypeOf(xe1)}

Z2 = {z : z = LeftPosOf(xe1)||TypeOf(xe1))}

Z3 = {z : z = RightPosOf(xe2)||TypeOf(xe2))}

Z4 = {z : z = LeftPosOf(xe2)||TypeOf(xe2)}

Z5 = {z : z = TypeOf(xe1)||TypeOf(xe2))}

Z6 = {z : z = SubTypeOf(xe1)||SubTypeOf(xe2)}

Z7 = {z : z = HeadOf(xe1) ∗ HeadOf(xe2)}

Z8 = {z : z = PositionBetween(xe1, xe2)}

3Subscripts R, M and L stand for right, left and middle, and indices 1 and
2 correspond to the first and the second named entities. ‘‘Bin’’, ‘‘POS’’,
‘‘Type’’, ‘‘Subtype’’ and ‘‘Head’’ are denoted by ‘‘B’’, ‘‘P’’, ‘‘T’’, ‘‘S’’ and
‘‘H’’, respectively.

4http://ictclas.org/

VOLUME 7, 2019 142523

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

In relation recognition, utilizing two entitymentions, a sen-
tence can be segmented into five bins (or fewer, including
two entity mentions). Each bin can be used to extract n-gram
features independently. The bins are represented as

Zbin = {ZBL ,ZBM ,ZBR,ZB1,ZB2}

Because many n-gram features are fragmented and noisy,
they can be filtered by predicate Pword(z) that determines
whether an n-gram feature is a word. This process can be
represented as

Zword = {z : Pword(z), z ∈ Zbin}

It can also be formalized as KBlex |H Zbin→Zword
(or Zword = →Zbin). For Chinese relation recognition,
Zword contains every word in a sentence. The resulting
features are the same as Omni-word features proposed by
Chen et al. [12].

Then, the transformed feature set for the task of relation
recognition is given by

ZSSM =
⋃

Zi|1≤i≤8∪Zword ∪ ZRP1 ∪ ZLP1
∪ZRP2 ∪ ZLP2 ∪ ZT1 ∪ ZT2 ∪ ZS1
∪ZS2 ∪ ZH1 ∪ ZH2

To show the flexibility of feature calculus, we present an
example of generating sophisticated features. Let KBsyn and
KBmor be a synonym set and a morpheme set.KBsyn |H x ↔
z represents that x is a synonym of z. KBmor |H x → z
means that z is an implied morpheme of x. The implication
and equivalence operations are defined as

T→(Xi) = {z : ∃xi(xi ∈ Xi ∧KBmor |H xi→ z)}

T↔(Xi) = {z : ∃xi(xi ∈ Xi ∧KBsyn |H xi ↔ z)}

Based on feature operations T→(Xi) and T↔(Xi), a com-
posite mapping can be defined as (T→ ◦ T↔)(Xi). It returns
a set of synonyms.

C. CAPTURING STRUCTURAL INFORMATION
In this experiment, we consider two models proposed by Che
et al. [45] and Zhang et al. [46] for comparison. They are also
feature-based models. Features proposed by the cited studies
are formalized by SSM as follows:

Z1 = {z : z = TypeOf(xe1)} ∪ {z : z = TypeOf(xe2)}

Z2 = {z : z = SubTypeOf(xe1)} ∪ {z : z =

SubTypeOf(xe2)}

Z3 = {z : z = PositionBetween(xe1, xe2)}

Z4 = {z : z = TheLeftTwoWordsOf(xe1)} ∪ {z : z =

TheLeftTwoWordsOf(xe2)}

Z5 = {z : z = TheRightTwoWordsOf(xe1)} ∪ {z : z =

TheRightTwoWordsOf(xe2)

Z6 = {TheLeftTwoPosOf(xe1)} ∪ {z : z =

TheLeftTwoPosOf(xe2)}

Z7 = {z : z = TheRightTwoPosOf(xe1)} ∪ {z : z =

TheRightTwoPosOf(xe2)}

Z8 = {z : z = TheUni-InternalNgramOf(xe1, xe2)}

Z9 = {z : z = TheBi-InternalNgramOf(xe1, xe2)}

Z10 = {z : z = TheExternalNgramOf(xe1, xe2)}

In what follows, Zchen and Zzhang denote models proposed
by Chen et al. [45] and Zhang et al. [46], respectively. The
features used by these models are as follows:

Zchen = Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 ∪ Z6 ∪ Z7

Zzhang = Z1 ∪ Z2 ∪ Z3 ∪ Z8 ∪ Z9 ∪ Z10

To illustrate the performance of using features without
structural information, we generate bag-of-words features as

ZAtom =
⋃

Atomizing(zi)|zi∈ZSSM

Using neural network-based modes for entity relation
recognition is currently very popular. Suchmodels can extract
high-order semantic features from raw inputs automatically.
For neural network-based models, position embedding is
a widely used method of capturing structural information
of sentences (e.g., Zeng et al. [47], Santos et al. [48],
Wang et al. [27] and Huang et al. [28]). For every word in
a sentence, position embedding is generated by mapping its
distances from two named entities into a vector. Each posi-
tion embedding is concatenated with the respective word’s
embedding, and is subsequently used as input to a deep neural
network.

For a comparison with a neural network-based method,
we consider a CNN+Attention neural network model in our
experiment. It is referred to as ZNN. It contains an embedding
layer, a convolutional layer, a max-pooling layer, an attention
layer, a fully connected layer and a softmax layer. Word
embeddings are initialized by the BERT approach [24], where
position embeddings were encoded. In the neural network-
based model, we divide the same data into training data,
development data and testing data in proportions of 6:2:2.

The result is given in Table 4. The upper part of the
table (‘‘Positive Ins.’’) shows the performance of using only
positive relation instances. The lower part of the table (‘‘Pos.,
Neg. Ins.’’) illustrates the performance of using both positive
and negative instances.

As shown in Table 4, if only positive instances are used,
ZSSM, Zchen and Zzhang perform similarly and attain values
above 92%. ZSSM outperforms Zchen and Zzhang but shows
only a slight improvement. ZAtom only uses atomic features
and exhibits lower performance. The ZNN model exhibits
the worst performance. The reason is that the number of
positive instances is small, and is not sufficient for training a
neural network. Furthermore, ZNN only uses lexical features
of sentences and does not use features such as entity types,
POS tags, heads, etc. In relation recognition, these features
are annotated manually and are very informative in this task.

In relation recognition, two named entities that have no
predefined relationship are considered a negative instance.

142524 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

TABLE 4. Capturing structural information.

Note that many relation types are asymmetric. According to
the approach to generating negative instances, for every entity
pair (e.g., [A,B]), if it is a positive instance, there exists a
negative instance (e.g, [B,A]). Because such instances are
located in the same sentence, they have the same context.
Therefore, negative instances have a powerful impact on
relation recognition. The results in the lower part of Table 4
show the influence of negative instances.

The addition of negative instances considerably reduces
the performance of Zchen and Zzhang. However, ZSSM still
offers a robust performance. This result indicates that
SSM has a strong ability to capture structural information of
sentences.

One interesting finding is that for the ZNN model, the addi-
tion of negative instances results in no apparent decline of
performance. Instead, it even exceeds the performance with
only positive instances. The reason is that a large number
of negative instances are useful in learning better word rep-
resentations needed for the task. Because many manually
annotated features (e.g., entity types, and heads) are still
unused, the ZNN model may be potentially extended in our
future research.

D. USING EXTERNAL KNOWLEDGE
Compared with Chinese, English has a richer morphol-
ogy. In this section, the ACE 2005 English corpus is used
to demonstrate the ability of SSM to use external knowl-
edge. This corpus contains 506 English documents annotated
with 6,583 English positive relation instances. We use the
approach discussed in Section IV-A to generate 86,777 neg-
ative instances. Using the same settings, the model proposed
by Kambhatla [11] is considered for comparison, where the
used features are as follows:

Z1 = {z : z = TypeOf(xe1)} ∪ {z : z = TypeOf(xe2)}

Z2 = {z : z = SubTypeOf(xe1)} ∪ {z : z =

SubTypeOf(xe2)}

Z3 = {z : z = MentionLevelOf(xe1)} ∪ {z : z =

MentionLevelOf(xe2)}

Z4 = {z : z = WordsInMention(xe1)} ∪ {z : z =

WordsInMention(xe2)}

Z5 = {z : z = WordsBetween(xe1, xe2)}

Z6 = {z : z = PositionBetween(xe1, xe2)}

Z7 = {z : z = ParsingDependencyOf(xe1) ∪ {z : z =

ParsingDependencyOf(xe2)

In Z7, to obtain the parsing dependency information of xe1
and xe2, the Stanford parser5 is used to parse every relation
mention. For example, ‘NNP_E1_dep’ means that the word
to the left of the first entity (‘E1’) is a noun phrase (‘NNP’).
This comparisonmodel is referred to asZKambhatla. It contains
the following features:

ZKambhatla =
⋃

Zi|1≤i≤7

Another two external knowledge resources are WordNet
[49] and a word root list that contains 986 roots. They are
represented as

Zwn = {z : ∃zi ∈ Zbin, z is a synonym for zi.}

Zroot = {z : ∃zi ∈ Zbin, z is a root of zi.}

In this experiment, features are added gradually to show
the influence of external knowledge. To illustrate the ability
of SSM to use external knowledge, in the lower part of Table 5
(‘‘Atomic Features’’), all features in ZSSM, ZSSM ∪ Zwn and
ZSSM∪Zroot are used as atomic and are also added gradually.

In Table 5, the results shown for ZKambhatla represent the
performance of using features proposed in Kambhatla [11].
These results are used as our baseline. Because ZKambhatla is
mainly used for comparison, in the lower part of Table 5, this
model’s change into atomic features is not considered.

ZSSM is the model using manipulated feature sets. Because
manipulated features can effectively capture the structural
information in a sentence, performance improves consider-
ably. In the lower part of Table 5 that shows results obtained
ifZSSM is used in the form of atomic features, its performance

5http://nlp.stanford.edu/software/lex-parser.shtml

VOLUME 7, 2019 142525

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

TABLE 5. Using external knowledge.

decreases significantly. The reason is the same as that for the
results in Table 4.

In the ZSSM ∪Zwn model, morphology functions of Word-
Net are used to generate the top three frequent hypernyms
and synonyms of synsets in ZBL , ZBM and ZBR. This model’s
performance improves consistently with expectations.

In theZSSM∪Zroot model, for every word in five bins (ZBL ,
ZBM , ZBR, ZB1 and ZB2), if a root is observed, it is added to
the bin’s information. Because roots of words are informative,
this approach also improves performance considerably.

As the results show, if Zwn and Zroot are added as atomic
features, performance does not change significantly. This
finding indicates that using external knowledge can lead to
good performance only if it is modeled appropriately. The
advantage of SSM is that it provides a systematic and novel
approach to manipulating features in a sentence.

V. CASE STUDY 2: NAMED ENTITY RECOGNITION
In this case study, the task of named entity recognition is
considered to show the methodology of SSM.

An entity is defined as an object or a set of objects.
An entity mention (or, more concisely, a mention) is an
occurrence of a named entity in a sentence. The main chal-
lenge of named entity recognition is the feature sparsity
problem whereby only a few words can be used to perform
the task. It currently remains a challenging task for many
languages, especially Chinese, because of the lack of delimit-
ing words and capitalization. Furthermore, in Chinese almost
every single character can be a monosyllabic morpheme or a
word [50]. As a result, it is difficult to distinguish between
the linguistic roles of characters.

Named entity recognition is often modeled as a sequence
tagging problem. Given a sequence of characters, a sequence
model returns amaximized label sequence. Each tag indicates
whether the role of a word is in the beginning, inside, or out-
side of a named entity (the ‘B-I-O’ encoding). The task of
named entity recognition can be formalized as follows.

Let Ti, xi be random variables over the label set and tag-
ging units. The value of Ti is one of {B, I, O}. Sequences

T = T1, · · · ,Tn and S = x1, · · · , xn are variable sequences.
Given a sentence (S = x1, · · · , xn), the objective of named
entity recognition is to determine a label sequence T1, · · · ,Tn
that solves the problem of argmaxP(T1, · · · ,Tn|x1, · · · , xn).

The sequence model can effectively find entity mentions
with flattened structure in a sentence. The main problem is
that nested entity mentions cannot be appropriately identi-
fied [32]. To solve this nesting problem, several strategies
have been proposed: the outermost model, the innermost
model, the layering model and the cascading model. In the
outermost model, if entity mentions are nested, the model
selects the outermost mentions. The innermostmodel always
selects the innermost mention. The layering model and the
cascading model will be discussed in Section V-B in detail.

Based on the boundary assembling method proposed by
Chen et al. [32], the task of recognizing a named entity can
be divided into three steps. First, boundaries of named entities
are detected. Because boundaries are unambiguous and are
independent of other NLP tasks, boundary recognition has
high performance. Second, recognized boundaries are assem-
bled into named entity candidates. Third, another classifier is
used to obtain the final decision. Experiments have shown
that the boundary assembling method can effectively recog-
nize nested named entities.

In this case study, the boundary assembling method is
used to demonstrate the application of SSM methodology
to named entity recognition. The ACE 2005 Chinese corpus
is used. There are 33,932 entity mentions in total, where
24,731 are outermost mentions and 25,766 are innermost
mentions.

A. FEATURE CALCULUS
To implement feature calculus for named entity recognition,
entity mention boundaries are selected as linguistic units
for feature grouping. The beginning boundary set of entity
mentions is referred to as XB, and the last boundary set of
entity mentions is referred to as XL . Therefore, the original
feature space is represented as

X = {XB,XL}

142526 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

Based on feature setX, the task of named entity recognition
is formalized as follows: for all xBi ∈ XB, there exists at least
one xLj ∈ XL such that characters from xBi to xLj represent
an entity mention, referred to as Mention(xBi , x

L
j) (or, more

concisely, Mention(xi, xj)).
The difficulty is that it is not possible to know bothXB and

XL in advance, and they should be detected first. For con-
venience, sequence x1 x2 · · · xi−1xixi+1 · · · xj−1xjxj+1 · · · xn,
where each xi is a character (or a word) indicating the begin-
ning or the last boundary of a named entity, is considered
as an example of extraction of the corresponding features.
Possible features used to recognizeXB andXL are as follows:

Z1 = {z : z = UnigramOf(xi)}

= {xi−2, xi−1, xi, xi+1, xi+2}

Z2 = {z : z = BigramOf(xi)} = {xi−1xi, xixi+1}

Z3 = {z : z = IsSurname(xi)}

Z4 = {z : z = IsLocation(xi)}

Z5 = {z : z = IsPronoun(xi)}

Z6 = {z : z = IsLeftBoundary(xi)}

Z7 = {z : z = IsRightBoundary(xi)}

Z1 and Z2 are character-based (character unigram and
bigram) features. Z3, Z4 and Z5 are gazetteer-based fea-
tures with Boolean values {true, false}. Z6 and Z7 are
segmentation-based features that also have Boolean val-
ues. The maximum matching (MM) method is used to
extract word segmentation features. Z3, Z4 and Z5 contain
539 surnames, 31,726 location names and 125 pronouns,
respectively.
Li et al. [51] have reported the best performance on

the ACE 2005 Chinese corpus. The researchers use fea-
tures from Z1 to Z7. These features are called the basic
features and denoted by Zbasic. This method is used for
comparison.

Zbasic =
⋃

Zi|1≤i≤7

Sequence methods have the shortcoming that they can-
not use nonlocal features appropriately [10]. In the bound-
ary assembling method, after entity boundaries have been
detected, boundary pairs (e.g., xi and xj) can be used to extract
features such as the characters to the left of xi, the characters
to the right of xj and characters from xi to xj. The features are
as follows:

Z8 = {z : z = Left3gramOf(xi, xj)}

= {xi−3xi−2xi−1, xi−2xi−1, xi−1}

Z9 = {z : z = Right3gramOf(xi, xj)}

= {xj+1, xj+1xj+2, xj+1xj+2xj+3}

Z10 = {z : z = Inner3gramOf(xi, xj)}

= {xkxk+1xk+2|i≤k≤j−2, xkxk+1|i≤k≤j−1, xk |i≤k≤j}

Z11 = {z : z = Left1gramOf(xi, xj)||Right1gramOf(xi, xj)}

= {xi−1||xj+1}

Z12 = {z : z = Left2gramOf(xi, xj)||Right2gramOf(xi, xj)}

= {xi−2xi−1||xj+1xj+2}

Z13 = {z : z = WordsBetween(xi, xj)}

Z14 = {z : z = WordsLeft(xi, xj)}

Z15 = {z : z = WordsRight(xi, xj)}

Features from Z8 to Z15 are named extended features
and denoted by Zextend. Because extraction of these features
depends on both beginning and last boundaries having been
recognized, they are considered nonlocal features.

Zextend =
⋃

Zi|8≤i≤15

TheZbasic feature set is widely used in named entity recog-
nition. However, Zextend has rarely been discussed.
In related studies, all features are used the same way.

In other words, the differences between them are not con-
sidered. In practice, we observe that various features many
behave differently. In general, Z1, Z2, Z8 and Z9 are local
features. They are denoted by Zlocal. To extract features
Z10 to Z15, a named entity candidate must be determined
first. Therefore, we treat them as non-local features, denoted
by Znon-local. As to features Z3 to Z7, it is difficult to deter-
mine whether they are local or non-local.

B. UTILIZING MORE FEATURES
To perform a comparison with nested approaches, we use
methods discussed by Alex et al. [52] who focus on recogniz-
ing nested entity mentions. Two techniques are implemented
for comparison: cascading and layering.
The cascading model uses a classifier for a type of named

entity. For the same entity type, if nested mentions occur
within,the model always collects innermost mentions. In the
layering model, all nested entities are divided into layers
(an outermost layer and an innermost layer). Each layer is
processed by a single classifier. We use the CRF toolkit and
the Zbasic feature set to implement these models.
Because the deep neural network is widely used to rec-

ognize named entities, we also implement a Bi-LSTM-CRF
for comparison. Given a sentence, every character is mapped
into a 300 dimensional vector by a lookup table, which is
initialized with a random process.6 Then, a bidirectional long
short-term memory (Bi-LSTM) layer is implemented, which
transforms a word embedding into a 128 × 2 dimensional
vector. Afterwards, two dense layers are implemented, which
map the dimension of vectors from 256 to 128 and 128 to 2
respectively. Finally, the CRF layer output a maximized label
sequence. The ‘‘Adam’’ optimizer is used. Learning rate,
weight decay rate and batch size are set as 0.00005, 0.01 and
30 respectively. A dropout regularization with value 0.5 is set
to avoid the over-fitting problem. Because the Bi-LSTM-CRF

6In this place, we do not use the BERT approach, becauseword embedding
has a huge influence on the performance of recognizing named entities. With
word embedding pre-trained from external resources, it’s hard to compare
their abilities to utilize features from a sentence.

VOLUME 7, 2019 142527

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

TABLE 6. Comparing performance with other state-of-art methods.

is a sequence model, if named entities are nested, we only
collect the outmost entity.

In the SSM method, we first use the maximum entropy
toolkit and Zlocal = {Z1,Z2,Z8,Z9} to extract possible
entity boundaries ({XB,XL}). Afterwards, for each boundary
xj ∈ XL , we retrieve the left Last boundary that crosses
a Beginning boundary. Between the two Last boundaries,
the top two Beginning boundaries with higher probabili-
ties (e.g., xj, xj′) are combined with xi, resulting in, e.g.,
Mention(xi, xj),Mention(xi, xj′). After all mention candidates
have been collected, we use both Zbasic and Zextend feature
sets to recognize them with the maximum entropy clas-
sifier. The result is shown in Table 6. The row labeled
‘‘Det’’ denotes the performance of finding entity men-
tions. The row labeled ‘‘Total’’ corresponds to the task of
finding entity mentions and recognizing the type of each
mention.

As Table 6 shows, compared with the cascading and lay-
ering methods, an impressive improvement is attained for
‘‘ORG’’ (organization). The reason for this type is that orga-
nization names often have a long range and exhibit a signifi-
cant nesting problem. In this condition, structural information
is very important for recognition. On the other hand, because
of a small number of annotated instances, the compared
methods exhibit lower performance for entity types ‘‘FAC’’
(facility), ‘‘LOC’’ (location), ‘‘VEH’’ (vehicle) and ‘‘WEA’’
(weapon). Overall, the SSMmodel outperforms the compared
methods for all entity types.

The cascading model received the worst performance.
Because it recognizes every entity type by an independent
classifier, it can not take full advantage of annotated named
entities. Furthermore, some nested mentions have the same
type, they can not be identified by the cascading method.
The layering model gets better performance. Because many
nested named entities have two layers, they can be identified
by the layering model. Comparing the layering model with
the Bi-LSTM-CRF model, the former has better performance
in recognizing named entities. The reason is that the Bi-
LSTM-CRF model is a sequence model, which can not rec-
ognize nested named entities. However, in entity mention
detection, the Bi-LSTM-CRF model outperforms the layer-
ing model, even if it only collects the outmost entities. It is
due to the fact that neural network can automatically learn

better abstract features from row inputs when the annotated
entity mention is sufficient enough.

The result shows that the SSM method outperforms the
cascading, layering and Bi-LSTM-CRF methods in terms of
the F-score by 3% in entity mention detection and by 4%
in entity mention recognition. The reason for SSM’s out-
performance is that boundaries of named entities are unam-
biguous and depend on no single NLP task. Furthermore,
assembling boundaries can generate nested named entities.
The presented example has shown that the task of named
entity recognition can be formalized within the framework
of SSM. Feature grouping and feature calculus can be used
to manipulate features to capture structural information and
semantic information of sentences.

VI. CONCLUSION
In this paper, we propose using SSM, a technique developed
using set theory, for information extraction. This method’s
ability to effectively capture structural information by using
external knowledge and more features is demonstrated. This
framework can be extended to support more information
extraction tasks (e.g., event extraction, and coreference res-
olution). It can also be extended to ensure the Markov depen-
dency. Furthermore, we hope that in future research it can
be combined with neural networks, a topic that has been
extensively explored in recent years.

REFERENCES
[1] A. McCallum, ‘‘Information extraction: Distilling structured data from

unstructured text,’’ Queue, vol. 3, no. 9, pp. 48–57, 2005.
[2] R. Grishman, ‘‘Information extraction: Capabilities and challenges,’’

Tech. Rep., 2012.
[3] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and

documents,’’ in Proc. ICML, 2014, pp. 1–9.
[4] X. Deng, Y. Li, J. Weng, and J. Zhang, ‘‘Feature selection for text classifi-

cation: A review,’’ Multimedia Tools Appl., vol. 78, no. 3, pp. 3797–3816,
2019.

[5] Y. Chen, Q. Zheng, and P. Chen, ‘‘A set space model for feature calculus,’’
IEEE Intell. Syst., vol. 32, no. 5, pp. 36–42, Sep./Oct. 2017.

[6] Y. Ren and D. Li, ‘‘Fast and robust wrapper method for N -gram fea-
ture template induction in structured prediction,’’ IEEE Access, vol. 5,
pp. 19897–19908, 2017.

[7] W. Zeng, X. Zhao, J. Tang, and H. Shang, ‘‘Collective list-only entity
linking: A graph-based approach,’’ IEEE Access, vol. 6, pp. 16035–16045,
2018.

[8] M. Sahami and T. D. Heilman, ‘‘A Web-based Kernel function for mea-
suring the similarity of short text snippets,’’ in Proc. 15th Int. Conf. World
Wide Web, May 2006, pp. 377–386.

142528 VOLUME 7, 2019

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

[9] S. Zhao and R. Grishman, ‘‘Extracting relations with integrated informa-
tion using Kernel methods,’’ in Proc. 43rd Annu. Meeting Assoc. Comput.
Linguistics, 2005, pp. 419–426.

[10] L. Ratinov and D. Roth, ‘‘Design challenges and misconceptions in named
entity recognition,’’ in Proc. 13th Conf. Comput. Natural Lang. Learn.,
Jun. 2009, pp. 147–155.

[11] N. Kambhatla, ‘‘Combining lexical, syntactic, and semantic features with
maximum entropy models for extracting relations,’’ in Proc. Interact.
Poster Demonstration Sessions, Jul. 2004, p. 22.

[12] Y. Chen, Q. Zheng, andW. Zhang, ‘‘Omni-word feature and soft constraint
for Chinese relation extraction,’’ in Proc. 52nd Annu. Meeting Assoc.
Comput. Linguistics, 2014, pp. 572–581.

[13] Y. Chen, Q. Zheng, and P. Chen, ‘‘Feature assembly method for extracting
relations in Chinese,’’ Artif. Intell., vol. 228, pp. 179–194, Nov. 2015.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[15] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, ‘‘Distant supervision for

relation extraction without labeled data,’’ in Proc. 4th Int. Joint Conf.
Natural Lang. Process., 2009, pp. 1003–1011.

[16] A. Moro, H. Li, S. Krause, F. Xu, R. Navigli, and H. Uszkoreit, ‘‘Semantic
rule filtering forWeb-scale relation extraction,’’ in Proc. Int. Semantic Web
Conf., 2013, pp. 347–362.

[17] K. Hacioglu, B. Douglas, and Y. Chen, ‘‘Detection of entity mentions
occurring in English and Chinese text,’’ inProc. Conf. Hum. Lang. Technol.
Empirical Methods Natural Lang. Process., 2005, pp. 379–386.

[18] F. Ali, D. Kwak, P. Khan, S. H. A. Ei-Sappagh, S. M. R. Islam, and D. Park,
‘‘Merged ontology and SVM-based information extraction and recommen-
dation system for social robots,’’ IEEE Access, vol. 5, pp. 12364–12379,
2017.

[19] Y. Wu, J. Zhao, B. Xu, and H. Yu, ‘‘Chinese named entity recognition
based on multiple features,’’ in Proc. Conf. Hum. Lang. Technol. Empirical
Methods Natural Lang. Process., 2005, pp. 427–434.

[20] B. Chen, Z. Hao, X. Cai, R. Cai, W. Wen, J. Zhu, and G. Xie, ‘‘Embed-
ding logic rules into recurrent neural networks,’’ IEEE Access, vol. 7,
pp. 14938–14946, 2019.

[21] M.Wang,W. Che, and C. D.Manning, ‘‘Joint word alignment and bilingual
named entity recognition using dual decomposition,’’ in Proc. 51st Annu.
Meeting Assoc. Comput. Linguistics, 2013, pp. 1073–1082.

[22] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, ‘‘A neural probabilistic
language model,’’ J. Mach. Learn. Res., vol. 3, pp. 1137–1155, Feb. 2003.

[23] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805. [Online]. Available: https://arxiv.org/abs/1810.04805

[25] X. Luo,W. Zhou,W.Wang, Y. Zhu, and J. Deng, ‘‘Attention-based relation
extraction with bidirectional gated recurrent unit and highway network in
the analysis of geological data,’’ IEEEAccess, vol. 6, pp. 5705–5715, 2018.

[26] M. N. A. Ali, G. Tan, and A. Hussain, ‘‘Boosting Arabic named-
entity recognition with multi-attention layer,’’ IEEE Access, vol. 7,
pp. 46575–46582, 2019.

[27] L. Wang, Z. Cao, G. de Melo, and Z. Liu, ‘‘Relation classification via
multi-level attention CNNS,’’ in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistics, vol. 1, 2016, pp. 1298–1307.

[28] X. Huang, ‘‘Attention-based convolutional neural network for semantic
relation extraction,’’ in Proc. 26th Int. Conf. Comput. Linguistics, 2016,
pp. 2526–2536.

[29] K. S. Tai, R. Socher, and C. D. Manning, ‘‘Improved semantic repre-
sentations from tree-structured long short-term memory networks,’’ 2015,
arXiv:1503.00075. [Online]. Available: https://arxiv.org/abs/1503.00075

[30] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, ‘‘A convolutional neu-
ral network for modelling sentences,’’ 2014, arXiv:1404.2188. [Online].
Available: https://arxiv.org/abs/1404.2188

[31] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and feature selec-
tion,’’ J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[32] Y. Chen, Q. Zheng, and P. Chen, ‘‘A boundary assembling method for
Chinese entity-mention recognition,’’ IEEE Intell. Syst., vol. 30, no. 6,
pp. 50–58, Nov./Dec. 2015.

[33] G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw, S. Strassel, and
R. Weischedel, ‘‘The automatic content extraction (ACE) program-tasks,
data, and evaluation,’’ in Proc. LREC, vol. 4, 2004, pp. 837–840.

[34] G. Salton and C. Buckley, ‘‘Term-weighting approaches in automatic text
retrieval,’’ Inf. Process. Manage., vol. 24, no. 5, pp. 513–523, 1988.

[35] G. Salton and C.-S. Yang, ‘‘On the specification of term values in automatic
indexing,’’ J. Document., vol. 29, no. 4, pp. 351–372, 1973.

[36] Z. GuoDong, S. Jian, Z. Jie, and Z. Min, ‘‘Exploring various knowledge in
relation extraction,’’ in Proc. 43rd Annu. Meeting Assoc. Comput. Linguis-
tics, 2005, pp. 427–434.

[37] S.Muggleton and L. De Raedt, ‘‘Inductive logic programming: Theory and
methods,’’ J. Logic Program., vols. 19–20, pp. 629–679, May/Jul. 1994.

[38] L. Dehaspe, ‘‘Maximum entropy modeling with clausal constraints,’’ in
Proc. Int. Conf. Inductive Logic Program., 1997, pp. 109–124.

[39] C. M. Cumby and D. Roth, ‘‘Learning with feature description logics,’’
in Proc. Int. Conf. Inductive Logic Program. Berlin, Germany: Springer,
2003, pp. 32–47.

[40] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, ‘‘A maximum entropy
approach to natural language processing,’’ Comput. Linguistics, vol. 22,
no. 1, pp. 39–71, 1996.

[41] S. Della Pietra, V. Della Pietra, and J. Lafferty, ‘‘Inducing features of
random fields,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 4,
pp. 380–393, Apr. 1997.

[42] S. Guiasu and A. Shenitzer, ‘‘The principle of maximum entropy,’’ Math.
Intell., vol. 7, no. 1, pp. 42–48, 1985.

[43] A. McCallum, ‘‘Efficiently inducing features of conditional random
fields,’’ in Proc. 19th Conf. Uncertainty Artif. Intell., 2003, pp. 403–410.

[44] M. Zhang, J. Zhang, J. Su, and G. Zhou, ‘‘A composite kernel to extract
relations between entities with both flat and structured features,’’ in Proc.
21st Int. Conf. Comput. Linguistics 44th Annu. Meeting Assoc. Comput.
Linguistics, 2006, pp. 825–832.

[45] W. Che, T. Liu, and S. Li, ‘‘Automatic entity relation extraction,’’ J. Chin.
Inf. Process., vol. 19, no. 2, pp. 1–6, 2005.

[46] P. Zhang, W. Li, Y. Hou, and D. Song, ‘‘Developing position structure-
based framework for chinese entity relation extraction,’’ ACMTrans. Asian
Lang. Inf. Process., vol. 10, no. 3, p. 14, 2011.

[47] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, ‘‘Relation classifica-
tion via convolutional deep neural network,’’ in Proc. COLING, 2014,
pp. 2335–2344.

[48] C. N. dos Santos, B. Xiang, and B. Zhou, ‘‘Classifying relations by ranking
with convolutional neural networks,’’ 2015, arXiv:1504.06580. [Online].
Available: https://arxiv.org/abs/1504.06580

[49] G. A. Miller, ‘‘WordNet: A lexical database for English,’’ Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[50] K.-J. Chen and M.-H. Bai, ‘‘Unknown word detection for Chinese by a
corpus-based learning method,’’ Int. J. Comput. Linguistics Chin., vol. 3,
no. 1, pp. 27–44, Feb. 1998.

[51] W. Li, D. Qian, Q. Lu, andC. Yuan, ‘‘Detecting, categorizing and clustering
entitymentions in Chinese text,’’ inProc. 30th Annu. Int. ACMSIGIRConf.
Res. Develop. Inf. Retr., 2007, pp. 647–654.

[52] B. Alex, B. Haddow, and C. Grover, ‘‘Recognising nested named entities
in biomedical text,’’ in Proc. Workshop BioNLP Biol., Transl., Clin. Lang.
Process., 2007, pp. 65–72.

YANPING CHEN is currently an Associate Pro-
fessor with the College of Computer Science and
Technology, Guizhou University, Guiyang. His
research interests include artificial intelligence and
natural language processing.

GUORONG WANG is currently a Graduate
Student with the College of Computer Science
and Technology, Guizhou University, Guiyang.
Her research interest includes natural language
processing.

VOLUME 7, 2019 142529

Y. Chen et al.: SSM to Capture Structural Information of a Sentence

QINGHUA ZHENG is currently a Professor with
the Department of Computer Science and Tech-
nology, Xi’an Jiaotong University. His research
interests include multimedia distance education
and computer network security.

YONGBIN QIN is currently a Professor with the
College of Computer Science and Technology,
Guizhou University, Guiyang. His research inter-
ests include big data processing, cloud computing,
and text mining.

RUIZHANG HUANG is currently an Associate
Professor with the College of Computer Sci-
ence and Technology, Guizhou University,
Guiyang. Her research interests include informa-
tion retrieval and text mining.

PING CHEN received the Ph.D. degree in infor-
mation technology from George Mason Univer-
sity. He is currently an Associate Professor of
computer science and the Director of the Artifi-
cial Intelligence Laboratory, University of Mas-
sachusetts Boston, Boston. His research interests
include data mining and computational semantics.

142530 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	SET SPACE MODEL
	DEFINITIONS
	FEATURE GROUPING
	FEATURE CALCULUS
	SET OPERATION
	LOGICAL CALCULUS

	SET SPACE TRANSFORMATION
	PROBABILITY ANALYSIS
	FEATURE SELECTION

	CASE STUDY 1: RELATION RECOGNITION
	EXPERIMENTAL SETTING
	FEATURE CALCULUS
	CAPTURING STRUCTURAL INFORMATION
	USING EXTERNAL KNOWLEDGE

	CASE STUDY 2: NAMED ENTITY RECOGNITION
	FEATURE CALCULUS
	UTILIZING MORE FEATURES

	CONCLUSION
	REFERENCES
	Biographies
	YANPING CHEN
	GUORONG WANG
	QINGHUA ZHENG
	YONGBIN QIN
	RUIZHANG HUANG
	PING CHEN

