
Received September 4, 2019, accepted September 19, 2019, date of publication September 30, 2019,
date of current version October 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944679

PDF-Euclidean Distance-Based Adaptive
Waveform Selection for Maximizing
Radar Practical Resolution
CHENGCHENG SI , BO PENG , AND XIANG LI
National University of Defense Technology, Changsha 410072, China

Corresponding author: Bo Peng (pengbo06@gmail.com)

This work was supported by the National Natural Science Foundation of China under Grant 61701510.

ABSTRACT This paper focuses on the issue of adaptive waveform selection to optimize the radar
resolvability of closely located targets, which is significant in radar detection and estimation. Thewell-known
ambiguity function-based radar resolution only takes transmitted waveform into consideration, which cannot
reflect the achievable resolution of a real radar system. In this paper, we consider radar practical resolution
based on a geometric metric, Euclidean Distance between probability density functions (PDF-ED), which is
defined as square difference between the probability density functions of radar measurements. The PDF-ED
takes the PDF’s envelope curve into account and specifies the essential difference between the two PDFs in
terms of information geometry. Thus the radar practical resolution based on this conveniently characterizes
the effect of waveform parameter, target state and measurement model, etc. and offers a statistical way to
assess radar sensing capability for a given application. Accordingly, an adaptive waveform selection criterion
aiming tomaximize the practical resolution is proposed. The experimental simulations verify its effectiveness
in decreasing the probability of error when distinguishing two targets.

INDEX TERMS Adaptive waveform selection, PDF-Euclidean distance, radar practical resolution.

I. INTRODUCTION
The ability to distinguish multiple adjacent targets, usually
represented by resolution, is of great importance for evaluat-
ing the performance of radar and other sensing systems. As
a basic concept in radar signal processing, it has important
applications in the fields of detection, tracking, imaging, etc
[1], [2]. Usually, radar resolution is defined as the half power
beam width (HPBW) of the radar response of the target in a
certain dimension [3] such as range, velocity, etc.

Woodward originally proposed the ambiguity function of
a signal [4], which can be regarded as the output of radar
matched filter in the absence of noise [5]. The shape of the
ambiguity function is strongly dependent on the waveform
and specifies the shape of radar resolution cell [6]. This
concept has been extended to fit different signal forms (e.g.
narrow band [7], wide band [6]), measurement parameters
(e.g. acceleration [5], azimuth [9]) and radar systems (e.g.
monostatic radar, bistatic radar). Nevertheless, the resolution
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derived from ambiguity function just focuses on the intrinsic
resolution, in other words, the potential resolution of the
transmitted waveform. A waveform has the same intrinsic
resolution in low and high signal-to-noise ratio (SNR) con-
ditions, which is almost impossible in practice due to the
presence of noise.

Based on ambiguity function, many waveform opti-
mization methods are proposed to design waveforms with
extremely narrow main lobe and extremely low side lobes so
as to improve the resolvability of adjacent targets [10]–[12].
The majority of these methods also concentrate on the intrin-
sic resolution of waveforms while seldom algorithms con-
sider waveform optimization enhancing practical resolution.

In recent years, adaptive waveform design has attracted
much interest among scholars in many situations such as tar-
get detection [13] and tracking [14], [15], parameter estima-
tion [16] and target recognition [17]. These algorithms greatly
improve the performance of radar. Yet as a basic parame-
ter of radar, the adaptive waveform design for optimizing
radar resolution also needs researching. Based on the mutual
information, Nijsure et al. propose a waveform optimization
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algorithm for an adaptive multi-input-multi-output (MIMO)
radar, which results in improved resolution as the increase of
iterations [18], [19].

The stochastic character of measurement is introduced to
the definition of practical resolution in order to describe the
radar resolution performance more accurately. Due to the
presence of noise, the radar measurement is characterized
by a likelihood function of measurement parameters. Ref-
erence [20] introduces Fisher information metric to mea-
sure the distance between likelihood functions and defines
the information resolution, which is a practical resolution
providing a unified statistical measure for the capability of
sensing devices for a given application. But the high com-
putation complexity for Fisher information distance provides
difficulty for practical applications. Reference [21] proposes
a practical resolution based on Kullback-Leibler Divergence
and develops an adaptive waveform design method to opti-
mize radar practical resolution. This gives a new way for
radar adaptive waveform design. However, the Kullback-
Leibler Divergence, not satisfying the symmetry and triangle
inequality properties, is not a true metric [22]. Furthermore,
the value of the Kullback-Leibler Divergence makes no sense
when the overlap of the two distributions is little.

The manifold is equivalent to the Euclidean space in local
cases and hence it is reasonable to use the Euclidean met-
ric as an approximation for the Fisher information distance,
which can greatly simplify the calculation. This paper adopts
Euclidean Distance between the probability density func-
tions (PDF-ED) to specify the radar practical resolution. This
metric considers the geometric shape and structure of the
PDF and is therefore a more accurate and reliable way to
measure the difficulty for distinguishing different PDFs than
the methods that considers the mean only. Via using the
PDF-ED, the practical resolution takes the statistical prop-
erties of measurement, i.e. waveform, noise, measurement
model and the radar cross section (RCS) fluctuation of targets
into account. Compared with the intrinsic resolution derived
from ambiguity function, the PDF-ED-based resolution is
more suitable for practical situations. Furthermore, we pro-
pose an adaptive waveform optimization method using the
PDF-ED criterion to maximizing the resolvability of adjacent
targets, by which the selected waveform behaves better than
the fixed waveform in terms of resolution.

The paper is organized as follows. Section 2 introduces
PDF-ED to represent radar resolution and the adaptive wave-
form selection algorithm maximizing the resolvability of
targets is proposed in section 3. The simulation results in
section 4 validate the effectiveness of the proposed algorithm
both in static and dynamic scenarios. Finally, section 5 con-
cludes the whole paper.

II. PDF-ED-BASED RADAR RESOLUTION
In this section, we first present how the PDF-ED-based radar
resolution is proposed. Then a comparison is made between
it and ambiguity function-based radar resolution.

A. MINIMUM PROBABILITY OF ERROR AND PDF-ED
In practice, radar measurements of targets, which are random
variables contaminated by noise, follows a parameter-based
likelihood function. We consider the following hypothesis
testing problem {

H1 : x = s1 + w
H2 : x = s2 + w

(1)

Here, x is the radar measurement. s1 and s2 are two closely
spaced target states i.e. delay, doppler-shift, etc. w is zero-
mean gaussian white noise with variance σ 2. So under the
two hypotheses, x obeys Gaussian distributions with mean s1
and s2 respectively. Usually, both the two testing errors (H1 is
decided when H2 is true and H2 is decided when H1 is true)
are unexpected. And the error probability is defined as

Pe = P (H1;H2)+ P (H2;H1) (2)

where P(Hi; Hj) represents the probability that Hi is decided
when Hj is true. We design the detector satisfying the mini-
mum probability of error [23]

p (x|H1)

p (x|H2)

H1
≶
H2

γ =
P (H2)

P (H1)
(3)

In the case that s1 and s2 have the same prior probability,
the total probability of errors, according to multiple-signal
hypothesis theory, is [23]

Pe = Q

1
2

√
‖s1 − s2‖2

σ 2

 (4)

where Q (x) =
∫
+∞

x
1
√
2π

exp
(
−
t2
2

)
dt , and ‖s1 − s2‖ is the

distance between s1 and s2.
Equation (4) informs that the total probability of incorrect

decisions, which describes how difficult to distinguish the
two signals in an extent, is just negatively related to the
distance between them. In terms of probability theory, s1 and
s2 are the mean values of the two hypotheses. It is suggested
that the difficulty to distinguish the two distributions is only
related to their means.

However, the mean is not the only factor that influences the
resolvability of the hypotheses. Variance also has impact on
it. As depicted in Fig. 1, there are the PDFs of some range
measurements. The farther away from the radar, the lower
the SNR, the greater the impact of noise, the ‘‘chunkier’’
the PDF. It is shown that the overlap between target 3 and
target 4 is much larger than that between target 1 and tar-
get 2. It is implied that with the expanding overlap, the two
targets at a fixed distance apart tend to be unresolvable due
to the dropping SNR. Thus, it is more reliable to consider
the distance between two PDFs ‖p (x|H1)− p (x|H2) ‖ using
likelihood methods to represent the difficulty to distinguish
the two hypotheses. In this paper, we use the Euclidean
metric to measure the distance between the PDFs. And in
order to distinguish from the traditional Euclidean Distance
‖s1 − s2‖, we call ‖p (x|H1)− p (x|H2) ‖ as PDF-ED.
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FIGURE 1. The likelihood functions of targets at fixed distance apart.

The PDF-ED between two PDFs p1 (x) and p2 (x) is
obtained by integrating the squared difference over the whole
PDF space.

e = ‖p1 (x)− p2 (x) ‖

=

∫
+∞

−∞

[p1 (x)− p2 (x)]2dx

= e11 + e22 − 2e12 (5)

where e11 =
∫
+∞

−∞
[p1 (x)]2dx, e22 =

∫
+∞

−∞
[p2 (x)]2dx,

e12 =
∫
+∞

−∞
p1 (x) p2 (x)dx. Especially, for two Gaussian

distributions,∫
+∞

−∞

N1 (x;µ1,61)N2 (x;µ2,62)dx

=
1

N∏
n=1

√
σ 2
1,n + σ

2
2,n

exp

[
−
1
2

N∑
n=1

(
µ1,n − µ2,n

)2
σ 2
1,n + σ

2
2,n

]
(6)

where µi =
[
µi,1, ..., µi,N

]
(i = 1,2) is the mean of Gaus-

sian distribution and σi,n (i = 1,2; n = 1,...,N ) is the nth
diagonal element of its covariance matrix [24].

It is evident that PDF-ED is a true metric satisfying the
nonnegativity, symmetry and triangle inequality properties,
which accords with the physical background.

B. PDF-ED-BASED RADAR RESOLUTION
The following discussion presents how PDF-ED-based res-
olution is practical. It takes waveform parameters, SNR and
radar measurement model into account and can be regarded
as a statistical resolution from a statistical estimation view
point. The radar measurement model is represented as

x = h (θ)+ w (7)

where h (·) describes the relationship between radar mea-
surement x = [rv]T and target state θ = [τ fd ]T . The
parameters r , v, τ and fd represent range, velocity, time delay
and Doppler shift, respectively. The measurement noise w is

approximated by a zero-mean Gaussian process with covari-
ance 6 (β, θ), where β denotes the waveform parameter. It
is assumed that the SNR is large enough so that the esti-
mation achieves Cramer-Rao Lower Bound (CRLB). Hence
the measurement noise covariance is approximated by the
CRLB on the range and velocity estimation errors for the
given waveform, which is calculated by [23]

6 (β, θ) = JI−1JT (8)

Here, J = diag
(
c
/
2, c

/
(2fc)

)
is the Jacobian matrix and the

Fisher information matrix is calculated by

I =


−η

∂2A (τ, fd )
∂τ 2

∣∣∣∣
τ=0,fd=0

−η
∂2A (τ, fd )
∂τ∂fd

∣∣∣∣
τ=0,fd=0

−η
∂2A (τ, fd )
∂fd∂τ

∣∣∣∣
τ=0,fd=0

−η
∂2A (τ, fd )

∂f 2d

∣∣∣∣∣
τ=0,fd=0


(9)

where A (τ, fd ) is the ambiguity function of the given wave-
form and the SNR η is given by [25]

η =
ER
N0
=

ETGtGrc2σ

(4π)3 r4f 2c kTs
(10)

where ER and ET are the energy of the echo and the trans-
mitted pulse respectively; N0 = kTs is the power spectrum
density (PSD) of the thermal noise at radar receiver; Gt
and Gr denote the transmitting and receiving antenna gain
respectively; σ represents the RCS of the target; fc is the
carrier frequency. And the speed of light c = 3 × 108m/s,
the Boltzmann constant k = 1.38 × 10−23J/K, the normal
operating temperature Ts = 290 K. Noted that (10) considers
an ideal situation where the transmitter directly sends its
output to the antenna and there is no energy loss in the
transmitter-target-receiver path.

Thus, for each state θ , the measurement x obeys a parame-
terized probability distribution p (x|θ). Our work is to decide
whether two target states θ1 and θ2 can be resolved according
to the radar measurements.

From above discussion, our hypothesis testing problem is
presented as{

H1 : x = h (θ1)+ w1 ∼ N (h (θ1) ,61)

H2 : x = h (θ2)+ w2 ∼ N (h (θ2) ,62)
(11)

The likelihood functions are

p (x|H1)=
1

2π
√
det (61)

· exp
(
−
1
2
(x−h (θ1))T 6−11 (x−h (θ1))

)
(12)

p (x|H2)=
1

2π
√
det (62)

· exp
(
−
1
2
(x−h (θ2))T 6−12 (x−h (θ2))

)
(13)
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Based on [24], the PDF-ED between the two likelihood
functions is

e (N (x; h (θ1) ,61) ||N (x; h (θ2) ,62))

=
1

2
√
σ 2
1,1σ

2
1,2

+
1

2
√
σ 2
2,1σ

2
2,2

−
2√

σ 2
1,1 + σ

2
2,1

√
σ 2
1,2 + σ

2
2,2

· exp

[
−
1
2

(
(r1 − r0)2

σ 2
1,1 + σ

2
2,1

+
(v1 − v0)2

σ 2
1,2 + σ

2
2,2

)]
(14)

The larger the value of e(N (x; h(θ1), 61)||N (x; h(θ2),62)),
the easier the two targets can be separated.

Therefore, the definition of PDF-ED-based resolution cells
is given as: all equidistant points

{
θ ′
}
with identical PDF-

ED from θ0 form a practical resolution cell, i.e., for a
given PDF-ED threshold, the practical resolution cell is the
set R =

{
θ ′|e

(
N (x; h (θ0) ,60) ||N

(
x; h

(
θ ′
)
,6′))

≤ eT
}
,

which is a section of the PDF-ED contour.
Based on this, the judging criterion (3) can be rewrote as

e (p (x) ||p (x|H1))
H0
≶
H1

e (p (x) ||p (x|H2)) (15)

where p (x) is the empirical PDF obtained from the radar
measurements.

This PDF-ED-based resolution calculates the resolvability
of targets in measurement domain, and corresponds to the
waveform parameter, target state, and measurement model.
Therefore, it is a more practical criterion for measuring the
radar sensing performance. Also, for fluctuating targets, the
RCS fluctuation also influences the uncertainty of radar mea-
surements and is reflected in the PDFs. Thus the PDF-ED is
also suitable for amplitude fluctuation situations. Besides, as
the PDF-ED reflects the differences between the likelihood
functions quantitatively, it promotes the radar resolvability of
targets.

C. COMPARISON OF TRADITIONAL RESOLUTION AND
PRACTICAL RESOLUTION
Traditional resolution cells, also called the intrinsic resolution
cells, are the −3dB section of the normalized ambiguity
function contour, i.e., RAF =

{
θ ′|
∣∣A (θ ′)∣∣ ≥ −3dB}, where

A (θ) is the normalized ambiguity function, which specifies
the output of the matched filter in the absence of noise.

The following discussion compares intrinsic resolution
and practical resolution based on PDF-ED in range-
speed resolution with gaussian pulse of continuous wave
(CW), whose corresponding noise covariance matrix is as
follows [26], [27]:

s (t) =
(

1
πλ2

) 1
4

e−
t2

2λ2 (16)

6 (β) =

 c2λ2
2η 0

0 c2

2ηλ2f 2c

 (17)

β = λ (18)

where λ denotes the duration of the Gaussian envelope.

FIGURE 2. Differences between intrinsic resolution cells and practical
resolution cells. (a) AF-based resolution cells of Gaussian pulse of CW
(contour of AF); (b) PDF-ED-based resolution cells of Gaussian pulse of
CW (contour of PDF-ED).

Fig. 2 presents the differences between intrinsic resolution
and practical resolution of Gaussian pulse of CW (given λ =
1µs, fc = 5 GHz). Five target states are given in the range-
velocity plane where the resolution cells are obtained with
their centers at the five crosses. Intrinsic resolution is only
influenced by the waveform. Thus, as shown in Fig. 2(a),
the resolution cell at each target state is the same, which
reflects the potential resolution ability of the waveform. For
practical resolution cell, it is related to the waveform and the
target state, actually the SNR. Therefore, the shape and size
of the resolution cell at each target are various, as seen in
Fig. 2(b), indicating the resolution performance of the real
radar system. Here, we set eT = 30.

Fig. 3 shows the improvement that PDF-ED brings to the
signal processing performance. For convenience, we consider
the resolution performance around r = 50 km (given λ =
2µs, fc = 5 GHz). Target A is static at 50 km and target B
is moving around A. The measurements are generated from
the two hypotheses alternately. Then we calculate the error
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FIGURE 3. Illustration of practical range resolution based on PDF-ED.
(a) error probability versus range; (b) comparison of resolutions versus
error probability with different distance measures.

probability Pe of the detector (15) via 106 Monte Carlo simu-
lations. Other simulation parameters for the radar system are
listed in Table 1. It is clearly in Fig. 3(a) that the resolvability
of the two targets deteriorates as target B approaching target
A and they are completely unresolvable, i.e. Pe = 0.5 when
they are at the same location. The values of corresponding to
the Kullback-Leibler Divergence measure are also plotted for
comparison. There is a slight drop of Pe by using PDF-ED
metric. Based on this, we compare the practical resolutions
versus the probability of error with different distance mea-
sures at detection range r = 50 km in Fig. 3(b). The practical
range resolution cell is enlarged with the fall of the error
probability owing to the requirement of a higher success rate.
For the same error probability, the PDF-ED measure requires
smaller resolution cell than the Kullback-Leibler Divergence
measure. For a comparison, the intrinsic range resolution i.e.
1r = cλ

/
2 = 300m is also plotted. The comparison among

the three types of resolutions indicates that adopting PDF-
EDmeasure can adjust to the different precision requirements
and promote the radar resolution performance in reducing the
error probability.

TABLE 1. Simulation parameters for the radar.

FIGURE 4. Comparison between Euclidean Distance and Jensen-Shannon
Divergence versus range.

To illustrate the effectiveness of the PDF-ED, we also
compare it to the Jensen-Shannon Divergence, which is a
variant of Kullback-Leibler Divergence. As shown in Fig. 4,
the Jensen-Shannon Divergence achieves its ceiling ln 2

/
2

when the two targets are far enough apart. Then it becomes
a constant and cannot reflect the difficulty distinguishing the
two targets. By contrast, the PDF-ED does not have upper
limit and does not have such trouble. Thus, the PDF-ED
metric is more suitable for the radar resolution problem.

III. ADAPTIVE WAVEFORM SELECTION FOR MAXIMIZING
PRACTICAL RESOLUTION
An adaptive waveform selection algorithm based on PDF-ED
is proposed in this section, aiming to enhance the radar reso-
lution performance in practice.

Provided two target state θ1 and θ2, the optimal waveform
parameter β which maximizes the radar practical resolvabil-
ity should satisfy

max
β
{e (p (x|θ1) ||p (x|θ2))} st. β ∈ 5 (19)

where 5 is the waveform parameter library and e(p(x|θ1)||
p(x|θ2)) can be calculated by (14). For moving targets,
namely the target states and the likelihood functions are
dynamic, the PDF-ED between the two likelihood functions
is a function of time. Therefore, the optimal waveform param-
eter can be selected adaptively at every instant to obtain the
maximum PDF-ED and ultimately adapt to the environment
changes.

VOLUME 7, 2019 148927



C. Si et al.: PDF-ED-Based Adaptive Waveform Selection for Maximizing Radar Practical Resolution

The generic algorithm is used to solve the optimization
problem, which is an adaptive global optimization search
algorithm that simulates the genetic and evolutionary process
of living organisms in the natural environment [28]. Each
chromosome represents a waveform and each gene of the
chromosome represents a parameter of the waveform. The
fitness function is a measure to evaluate the quality of an
individual, which is constructed as the objective function
in (19), i.e.,

f = e (p (x|θ1) ||p (x|θ2)) (20)

Via mutation, crossover and positive natural selection, the
fitness function is adjusted and reaches its peak after itera-
tions. Then the corresponding waveform is the optimal.

To improve the iterative efficiency of the algorithm, the
chromosome changing range is negatively correlated with its
fitness value in the mutation operation. So the new gene x ′

after mutation is obtained by

x ′ = x ·

(
1+ r ·

(
f
fbest

)2
)

(21)

where x is the original gene. r is a random number uniformly
distributed between −1 and 1. f is the fitness value of the
current individual and fbest is the highest fitness value in the
current population.

In this paper, we focus on two types of waveforms, the
Gaussian pulse of CW and the linear frequency modulation
(LFM) pulse with Gaussian envelope. The noise covariance
matrix of the former is (17) and that of the latter is as follows
[26], [27]:

s (t) =
(

1
πλ2

) 1
4

e−
t2

2λ2
+j2πbt2 (22)

6 (β) =

 c2λ2
2η −

2πc2bλ2
ηfc

−
2πc2bλ2
ηfc

c2
(
1+16π2b2λ4

)
2ηλ2f 2c

 (23)

β = [λ b]T (24)

where λ and b parameterize the duration of the Gaussian
envelope and the chirp rate of the frequency modulation
respectively.

In order of comparison, the conventional ambiguity
function-based waveform selection algorithm is also utilized,
which selects waveforms by minimizing the trace of the noise
covariance matrix. For Gaussian pulse of CW, the optimiza-
tion problem is

min
β

{
c2λ2

2η
+

c2

2ηλ2f 2c

}
st. β ∈ 5 (25)

(25) is equivalent to

min
β

{
λ2 +

1
λ2f 2c

}
st. β ∈ 5 (26)

where the objective function and optimal result are indepen-
dent of target states and SNR.

For LFM pulse with Gaussian envelope, the optimization
problem for ambiguity function-based waveform selection is

min
β

{
c2λ2

2η
+
c2
(
1+ 16π2b2λ4

)
2ηλ2f 2c

}
st. β ∈ 5 (27)

(27) is equivalent to

min
β

{
λ2 +

1+ 16π2b2λ4

λ2f 2c

}
st. β ∈ 5 (28)

where the objective function and optimal result are indepen-
dent of target states and SNR.

Therefore, the waveform selection algorithm based on
ambiguity function optimizes the fixed waveform and can-
not select waveform adaptively to adjust to the change
of target states. Our proposed algorithm addresses this
problem and its performance is analyzed in the following
section.

IV. NUMERICAL EXPERIMENTS
The proposed adaptive waveform selection method is applied
both in stationary and dynamic scenes to choose optimal
waveform parameter.

A. STATIONARY SCENE
The two static targets A and B are located at rA = 30 km
and rB = 30.5 km along a radar line-of-sight respectively.
For Gaussian pulse of CW, we take 5 = [1µs, 10µs] as the
parameter library. The carrier frequency is fc = 10 GHz. The
waveform selected by the ambiguity function-based algo-
rithm is for comparison. According to (7) and (17), the radar
measurements of A and B are as follows:

x|θA ∼ N (µA,6A)=

[ rAvA
]
,


c2λ2

2ηA
0

0
c2

2ηAλ2f 2c


 (29)

x|θB ∼ N (µB,6B)=

[ rBvB
]
,


c2λ2

2ηB
0

0
c2

2ηBλ2f 2c


 (30)

Evidently vA = vB = 0. Taking (29) and (30) into (14), we
have the objective function

e =
fc (ηA + ηB)

c2
−

4fcηAηB
c2 (ηA + ηB)

· exp

[
−
(rA − rB)2 ηAηB
c2λ2 (ηA + ηB)

]
(31)

which is a monotonic decreasing function of λ. There-
fore, the optimal waveform parameter in this scene is
λopt = 1µs.

As for LFM pulse with Gaussian envelope, the param-
eters are selected where λ ∈ [1µs, 10µs] and b ∈[
1012Hz/s, 1013Hz/s

]
. The waveform selected by the ambi-

guity function-based algorithm is for comparison. According
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FIGURE 5. PDF-ED variation versus waveform parameters for LFM pulse
with Gaussian envelope in the case of equal velocity.

to (7) and (23), the radar measurements of the two targets are

x|θA ∼ N (µA,6A)

=

[ rAvA
]
,


c2λ2

2ηA
−
2πc2bλ2

ηAfc

−
2πc2bλ2

ηAfc

c2
(
1+ 16π2b2λ4

)
2ηAλ2f 2c


 (32)

x|θB ∼ N (µB,6B)

=

[ rBvB
]
,


c2λ2

2ηB
−
2πc2bλ2

ηBfc

−
2πc2bλ2

ηBfc

c2
(
1+ 16π2b2λ4

)
2ηBλ2f 2c


 (33)

Taking (32) and (33) into (14), we obtain the objective
function

e =
fc (ηA + ηB)

c2
√
1+ 16π2b2λ4

−
4ηAηBfc

c2 (ηA + ηB)
√
1+ 16π2b2λ4

· exp

[
−
(rA − rB)2 ηAηB
c2λ2 (ηA + ηB)

]
(34)

As suggested in Fig. 5, the PDF-ED in this case ascends
with the decline of λ and has little relationship with.
Hence, (34) is maximized by λopt = 1µs and almost inde-
pendent of b.

The error probability defined as (2) is utilized to access the
performance of the proposed algorithm, which is calculated
by 106 Monte Carlo simulations to improve the accuracy.

The probability of error in above cases is listed in Table 2.
Compared with the ambiguity function-based algorithm,
the proposed adaptive waveform method can lead to a
considerable reduction of the error probability for both wave-
forms, which can be exploited to enhance the radar reso-
lution. In parameter optimization, the proposed method is
consisting with the waveform optimization algorithm based
on Kullback-Leibler Divergence-based practical resolution.

TABLE 2. Error probability in stationary scene where rA = 30 and
rB = 30.5.

TABLE 3. Error probability in stationary scene where rA = 40 and
rB = 40.5.

However, the PDF-ED-based detector performs better in
resolving the two targets and achieves a lower probability of
error, because the PDF-ED specifies the difference between
the two PDFs more accurately than the Kullback-Leibler
Divergence.

To evaluate the robustness of the proposed method, another
static scene is considered where target A and target B are
located at rA = 40 km and rB = 40.5 km. The radar
parameters are the same as the above. The simulation results
are listed in Table 3. The proposed PDF-ED-based algorithm
reduces the error probability significantly compared to the
ambiguity function-based waveform design. The robustness
of the algorithm in stationary scenes is also verified.

B. DYNAMIC SCENE
Two targets A and B are located at rA = 60.2 km and
rB = 60 km along a radar line-of-sight at time instant t =
0 s respectively. They move towards the radar with velocity
vA = 200 m/s and vB = 100 m/s. The carrier frequency is
fc = 9 GHz while the observation time is from 0 s to 4 s with
N = 100 samples.
For Gaussian pulse of CW as model wave, the parameter

is chosen from 5 = [1µs, 11µs], and the waveform opti-
mized by the ambiguity function-based method is utilized for
comparison. Similarly to the stationary scene, the objective
function at discrete time instant t[k] (k = 0, 1, . . . ,N − 1) is

e =
fc (ηA [k]+ ηB [k])

c2
−

4fcηA [k] ηB [k]
c2 (ηA [k]+ ηB [k])

· exp

[
−
(rA − rB + (vB − vA) t [k])2 ηA [k] ηB [k]

c2λ2 (ηA [k]+ ηB [k])

]

· exp

[
−
(vB − vA)2 λ2f 2c ηA [k] ηB [k]

c2 (ηA [k]+ ηB [k])

]
(35)
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For simplicity, we rewrite the optimization problem as

max
λ∈5

{
(rA − rB + (vB − vA) t [k])2

λ2
+ (vB − vA)2 λ2f 2c

}
(36)

where the objective function is a concave function of λ and
has the only minimum point, also the least point λ0 =√
|rA−rB+(vB−vA)t[k]|

fc|vA−vB|
. Thus, the optimal is either λmin or λmax,

which is illustrated in Fig. 6(a). At the very beginning, the two
targets are far apart, and the PDF-ED is mainly dominated
by range difference. The shorter time duration of signal is
chosen to attain higher range resolution so as to distinguish
them in range domain. When target A approaches target B,
the difference in velocity dominates the PDF-ED. Increasing
λ helps to improve the velocity resolution and then enlarge the
PDF-ED. In the end, target A is departing from target B. The
drop of λ is needed because range resolution is dominating
the PDF-ED gradually.

Fig. 6(b) presents the trend of the probability of error
during the whole process. As the velocity difference is con-
stant, the PDF-ED first decreases and then increases with
the change of the range between A and B. Thus the error
probability tends to go up when A approaches B and go down
when they depart. The error probability drops a little steeper
than it rises because the increasing SNR helps to improve the
resolvability of targets. It is obvious that the error probability
of the adaptive selected waveform is much lower than that
of the waveform based on the ambiguity function during the
whole process, which infers the advantage of the proposed
algorithm in radar resolution.

Furthermore, to compare the performance of the two crite-
ria, the difference between the error probability under PDF-
ED criterion and that under Kullback-Leibler Divergence
criterion is plotted in Fig. 6(c). In most of the time, the former
is smaller than the latter, indicating that using the PDF-ED-
based detector helps to promote the resolvability of targets
and achieve a lower error probability.

As for LFM pulse with Gaussian envelope, the param-
eters are selected where λ ∈ [1µs, 11µs] and b ∈[
1012Hz/s, 1013Hz/s

]
. Similarly to the stationary scene, the

objective function at instant t[k] (k = 0, 1, . . . ,N − 1) is

e [k]=
fc (ηA [k]+ ηB [k])

c2
√
1+ 16π2b2λ4

−
4ηA [k] ηB [k] fc

c2 (ηA [k]+ηB [k])
√
1+ 16π2b2λ4

· exp

[
−
(rA − rB)2 ηA [k] ηB [k]
c2λ2 (ηA [k]+ ηB [k])

]

· exp

[
−

(vA − vB)2 λ2f 2c ηA [k] ηB [k]

c2
(
1+ 16π2b2λ4

)
(ηA [k]+ηB [k])

]
(37)

Via solving the optimization problem at each time instant,
we acquire the dynamic optimal parameter shown in Fig.
7(a). The variation regularity of pulse width λ is similar

FIGURE 6. Adaptive waveform selection for Gaussian pulse of CW in
dynamic scene. (a) waveform parameter versus time; (b) probability of
error versus time; (c) the difference between the two criteria.

with the case of Gaussian pulse of CW, while the chirp rate
b keeps a low value to avoid velocity ambiguity. Here the
proposed algorithm and the ambiguity function-based one
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FIGURE 7. Adaptive waveform selection for LFM pulse with Gaussian
envelope in dynamic scene. (a) waveform parameter versus time;
(b) probability of error versus time; (c) the difference between the two
criteria.

select the same chirp rate. The trend of error probability
described in Fig. 7(b) is similar to the Gaussian pulse of CW
case. It is suggested that the PDF-ED based algorithm can

FIGURE 8. Simulation statistics for Scene 1. (a) waveform parameters;
(b) error probability; (c) difference between the two criteria.

adjust the waveform parameter adaptively according to the
change of target states and therefore improves the accuracy
of radar resolution while the ambiguity function-based wave-
form selection method cannot. Besides, the error probability
of the PDF-ED-based detector tend to be lower than that of
the KLD-based one, which implies the slight advantage of the
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FIGURE 9. Simulation statistics for Scene 2. (a) waveform parameters;
(b) error probability; (c) difference between the two criteria.

former in radar resolution. Therefore, the effectiveness of the
proposed adaptive waveform selection method is validated.

The other two scenarios with moving targets are also
considered to access the robustness of the algorithm. The
simulation parameters are listed in Table 4.

TABLE 4. Simulation parameters for dynamic scenes.

Scene 1 is designed to evaluate the performance of the
proposed algorithm in conditions where the targets are rel-
atively static. The result is shown in Fig. 8. Because the
velocity difference is zero, the optimization problem is the
same as (34), the one for static scenes, where the PDF-ED
falls down with the increase of λ and is almost unrelated
with b. Thus the adaptive λ keeps a low value during the
observation. Compared with the ambiguity function-based
method, the proposed adaptive algorithm achieves a quite
lower error probability, which can be applied to boost radar
practical resolution.

The performance of the proposed algorithm in scenarios
with moving and stationary targets is analyzed in Scene 2,
where the optimization problem is similar to (37). The result
is shown in Fig. 9. At around 2.5 s when the range difference
is almost zero, the two algorithms select the same waveform.
Hence their error probabilities are almost the same. In other
time, the error probability of the proposed adaptive waveform
is much lower than that of the ambiguity function-based
one, which suggests the superiority of our method in radar
practical resolution.

V. CONCLUSION
This paper proposes a novel approach to define radar practical
resolvability based on PDF-ED. Compared with the tradi-
tional ambiguity function-based resolution, which only takes
the waveform into account, the newly proposed resolution is
a function of waveform parameter, target state and measure-
ment model. As a result, it has a better environment adapta-
tion and depresses the probability of incorrect decisions. The
decision criterion based on this is suggested to have better
performance in radar resolution. Consequently, we present
an adaptive waveform selection algorithm maximizing the
practical resolvability of a radar system. Simulation results
verify the robustness and effectiveness of the algorithm.
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