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ABSTRACT The artificial intelligence calculation method can effectively solve various nonlinear mapping
relationships. The strength of these nonlinear solvers is exploited for the evaluation of power grid investment
risk using back propagation (BP) neural network optimized by genetic algorithm. The mathematical model
of the problem is constructed by selecting the transfer function of the neural network and defining the
fitness function of genetic algorithm. BP neural network has good ability of self-learning, self-adaptation
and generalization, which can overcome the drawbacks of traditional evaluation methods relying on experts’
experience. For the characteristics of genetic algorithm global optimization, the genetic algorithm is used
to optimize the weight and threshold of BP neural network, and BP neural network is trained to obtain
the optimal evaluation model. The model fully exploits the local search ability of BP neural network and
the global search ability of genetic algorithm. It has obtained good evaluation accuracy for the processing
of multi-dimensional influence factor problem. And the model can be adapted to different power grids by
changing the training data. However, the method cannot describe the specific relationship between each
impact factor and the investment risk of the grid. The case study shows that the method can accurately and
effectively evaluate power grid investment risk and improve the fault tolerance of the power grid investment

risk evaluation.

INDEX TERMS Power grid investment risk, risk evaluation, BP neural network, genetic algorithm.

I. INTRODUCTION

The power industry is an important part of the national econ-
omy which is indispensable in many fields and is closely
related to people’s life. Many countries have upgraded the
power industry to the level of national strategy and regarded
it as an important development target. However, at routine,
there are many uncertainties and instabilities in the power
grid [1], [2].

In the context of the transformation and upgrade of the
electrical industry, the profit model of the power grid enter-
prises has changed from the traditional purchase and sale
difference for electricity sales to the wheeling price for
electricity sales. This change of profit model, as well as
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the uncertainty of transmission and distribution prices and
marketization rates, will bring certain risks to power grid
investment. In order to get a reasonable investment plan,
it is necessary to use effective evaluation methods to screen.
At this time, the power grid investment risk evaluation is
particularly important.

A. RELATED WORK

At present, there are many evaluation methods used in the
world. The widely used methods of investment risk eval-
uation include Delphi method, principal component anal-
ysis method and fuzzy comprehensive evaluation method.
In [3], [4], the regret value is used to measure the risk in the
market environment. The difference of the evaluation values
between the specific scheme and the optimal scheme is used
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as a regret value to characterize the magnitude of the loss
that the scheme will might cause. In [5], considering the
uncertain factors of power grid investment, a risk evalua-
tion method of grid investment and transformation projects
in a market environment is proposed. It quantifies the risk
of power grid investment by calculating the expected value
and variance of the project’s net present value. However,
this method is meaningful, only when the distribution of
uncertain factors is known, and in practice, their distribu-
tion parameters may not be obtained easily. The set pair
analysis theory is used to measure the investment risk of
the power grid. In [6], the break-even method and sensitiv-
ity analysis method are used to analyze the risk of invest-
ment. Because they can only reflect the investment risk of
the project as a whole, they cannot reflect the degree of
influence of various uncertain factors, and cannot reflect
the randomness of uncertain factors, so there are certain
limitations. In [7], [8], the interval mathematics method is
used to propose an economic evaluation method for power
grid construction projects that takes into account fluctuations
in electricity prices. However, this method only considers
electricity prices, does not consider other risk factors such as
marketization rate. It is difficult to obtain interval distribution
and risk thresholds. Multi-scenario analysis is used in the
literature [9], [10]. Since the multi-scenario analysis does
not reflect all possible scenarios of uncertainty, it will cause
deviations in the results of investment risk analysis. In [11],
it used the fuzzy mathematics method. However, because the
fuzzy membership function is difficult to determine. It cannot
reflect the randomness of various uncertain factors. In [12],
it constructs a cost-benefit net present value model of power
grid investment from the perspective of cost and benefit. The
set pair analysis theory is used to measure the investment
risk of the power grid, and the set pair analysis coefficient
of the net present value is calculated. And the correlation
degree is further calculated, which is used as the evaluation
indicator of the investment decision to quantify the risk of
the power grid investment. In [13], various uncertain factors
of distribution network operation risk are comprehensively
considered. It adopts the fuzzy comprehensive evaluation
theory and the analytic hierarchy process to assign weights to
the risk indicators, thus constructing the distribution network
operation risk evaluation model.

All these deterministic methodologies are effective with
their own advantages and limitations in terms of solution
quality, convergence rate, and applicability domain. However,
there are mostly qualitative analysis of risks, lacking quan-
titative analysis. The influence of random factors can’t be
neglected, and the results are easily affected by the subjective
consciousness of the reviewers. Besides the evaluation will be
limited by the sample, which is less versatile for power grids
with different time and space.

B. INNOVATION CONTRIBUTION
The number of illustrative applications of these solvers
based on back propagation (BP) neural networks and genetic
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algorithms is seen in the literature, such as nonlinear
optics problems [14], nonlinear nanofluidic systems of
Jeffery-Hamel flow [15], the dynamics of nonlinear singular
heat conduction model of the human head [16], nonlinear
Painlev’e II systems in applications of random matrix the-
ory [17], hermal analysis of porous fin model [18], Nonlinear
Singular Thomas-Fermi Systems [19], credit evaluation for
listed companies [20], vibration dynamics of rotating elec-
trical machines [21], environmental quality assessment [22],
grid fault diagnosis [23], wind speed soft sensor [24], predic-
tion of postgraduate entrance examination [25], fault section
locating in distribution net-work with DG [26], crude oil pro-
duction prediction [27], prediction of junction temperature
for high power LED [28].

BP neural network can achieve a mapping function from
input to output, which makes it particularly suitable for solv-
ing complex mapping problems with internal mechanisms.
The genetic algorithm is very suitable for solving optimiza-
tion problems [25]. Therefore, based on the characteristics of
multi-dimensional, nonlinear and strong correlation of power
grid investment risk, this paper proposes a power grid invest-
ment risk evaluation model based on GA-BP neural network.
The model uses only evaluation functions instead of gradients
and other ancillary information. The optimization process
starts from the set of spatial points of the solution until the
global optimum. After the successful training, the network
no longer relies too much on the impact of the new input
samples, which reduces the possibility of training failure, and
the output accuracy and convergence speed are improved.
Moreover, as long as the training data has changed, a power
grid investment risk evaluation model, which is suitable for
each power grid investment risk, can be obtained.

C. ORGANIZATION

The organization of the paper is as follows: In Sect. 2, the risk
factors which affect the power grid investment are screened
and a power grid investment risk evaluation indicator system
is established. In Sect. 3, the modeling process and algorithm
steps of the power grid investment risk evaluation model
based on GA-BP neural network are described. In Sect. 4,
the parameters of the model are set and the inputs and outputs
of the neural network are explained. The necessary neural
network architecture is also given in this section. An exam-
ple analysis of the model and comparative analyses of the
proposed algorithms are listed in Sect. 5. Concluding infer-
ences along with future research perspectives are provided in
Sect. 6.

Il. POWER GRID INVESTMENT RISK INDICATORS
In the process of power grid investment risk evaluation, it is
very crucial to establish an evaluation indicator system, which
will directly affect the scientific and rationality of power grid
investment risk evaluation.

In order to ensure the accuracy of the power grid invest-
ment risk evaluation, we select indicators through the fol-
lowing procedures. First of all, with reference to the risk
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FIGURE 1. Power grid investment risk evaluation indicators.

evaluation criteria and the actual situation of the industry
risk evaluation, we reviewed a number of related papers and
selected 30 indicators [29], [30]. Then, through the discussion
of the expert meeting and the analysis of the past data, 11 indi-
cators were finally extracted as the main research object of
the power grid investment risk evaluation. Therefore, this
paper only considers three main risk aspects of power grid
investment risk: policy risk A, economic development risk B,
and power grid development form risk C. Risk factors refer
to factors that can cause or increase the probability of a risk
event or the extent of the loss. On this basis, the three main
risks are divided into 11 secondary indicators: risk factors.
The policy risk is divided into power transmission and distri-
bution price Al, electricity price subsidies A2, average elec-
tricity price A3 and electricity purchasing cost A4; economic
development risk is divided into GDP BI1, fluctuations in
exchange B2 and inflation B3; power grid development form
risk is divided into power grid scale C1, power quality C2,
power grid structure C3 and equipment level C4. Its main
hierarchy is shown in Figure 1.

Where, Al (power transmission and distribution price)
refers to the general price of the service provided by the power
grid management enterprise for access systems, networking,
power transmission and sales; A2 (electricity price subsidies)
means the subsidy which is announced by the government and
generally depends on the cost and installation cost of such
an energy generation facility; A3 (average electricity price)
equals to total electricity sales divided by total electricity
output; A4 (electricity purchasing cost) means the unit price
of electricity purchased by power companies from power
plants; B1 (GDP) refers to the final result of production
activities of all resident units of a country at a market price
for a certain period of time; B2 (fluctuations in exchange)
refers to fluctuations in the external value of money, including
currency depreciation and currency appreciation; B3 (infla-
tion) refers to the situation where the money supply is greater
than the actual demand of the currency under the condition of
currency circulation; C1 (power grid scale) means the overall
size of the substation and transmission and distribution lines
of various voltages in the power system; C2 (power quality)
refers to the quality of electrical energy in the power system;
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C3 (power grid structure) refers to the layout of power
plants, substations and switchyards within the power grid,
and the connection of their various voltage and power lines;
C4 (equipment level) refers to the level of power generation
equipment and power supply equipment.

Ill. ESTABLISHMENT OF POWER GRID INVESTMENT
RISK EVALUATION MODEL
The power grid investment is a comprehensive, professional
and technical activity, and it is also a high-input and high-
risk investment process. Therefore, it is essential to find a
scientific and accurate method to evaluate the risk of power
grid investment. The power grid investment risk evaluation
model based on GA-BP neural network proposed in this paper
is aimed at the characteristics of multi-dimensional, nonlinear
and strong correlation of power grid investment risk, which
solves the problem that the existing model is not accurate and
practical.

The basic idea is: Take the expert rating of 11 secondary
indicators as the input of GA-BP neural network, and the
evaluation value of power grid investment risk as the output.
By training GA-BP neural network, the nonlinear mapping
between the factors and the evaluation of power grid invest-
ment is realized.

The working mechanism of the model is: Use the global
search ability of genetic algorithm to determine the opti-
mal range of BP neural network weights and threshold, and
then use the BP neural network to search the local opti-
mal solution. When the BP neural network training has a
slow convergence or even no convergence, the threshold and
weight of each hidden layer node and output layer node of
the BP neural network are used as the input information of the
genetic algorithm. The optimal solution of BP neural network
is obtained by using the selection operator, crossover operator
and mutation operator of genetic algorithm. Continue to train
the neural network and repeat this step until the required error
accuracy is achieved [31], [32].

The process of the power grid investment risk model
mainly includes four parts: the determination of BP neural
network connection structure, the optimization of BP neural
network weight and threshold by genetic algorithm, the train-
ing of BP neural network, and the risk evaluation of power
grid investment, as shown in Figure 2.

The power grid investment risk model process based on
GA-BP neural network is as follows:

(1) The weights and thresholds of the BP neural network are
cascaded in order. That is: the weight between the input
layer and the hidden layer, the weight between the hid-
den layer and the output layer, and the threshold of the
hidden layer and the output layer. Randomly generating
50 chromosomes with a coding length of 196 (11*12 +
124 4+ 12 + 4 = 196);

(2) According to the characteristics of the power grid invest-
ment risk evaluation model, the parameters of genetic
algorithm process and BP neural network training pro-
cess are set, including population size, selection operator,
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FIGURE 2. Flow chart of power grid investment risk evaluation model
based on GA-BP neural network.

crossover operator, mutation operator, network layer
number, training accuracy, etc.;

(3) The reciprocal of the neural network error function is
chosen as the fitness function of the genetic algorithm.
If the error is larger, the fitness value will be smaller
and the adaptability will be lower correspondingly. And
determine whether the result meets the optimization cri-
teria or not. If yes, skip to the step 6);

(4) Selection. The populations are ranked according to fit-
ness values from large to small, and individuals with
greater adaptability are selected to ensure that the
original good properties are maintained in the genetic
process;

(5) Crossover and mutation. Select crossover and mutation
operators as needed to cross and mutate contemporary
individuals and form new populations;

(6) Check whether the new generated individuals meet the
criteria of the optimal individual or not. If they meet,
continue the next step, if they do not, return to step 3);

(7) The optimal individuals are sequentially split into the
weights and thresholds of the BP neural network;

(8) The BP neural network performs forward propagation,
calculates global errors, and adjusts network parameters
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(weights and thresholds). Repeat the learning training
until the required accuracy or the upper limit of learning;

(9) Input the risk factor score into the network to get the risk
evaluation value of power grid investments.

IV. DETERMINATION OF THE POWER GRID INVESTMENT
RISK MODEL BASED ON GA-BP NEURAL NETWORK

The evaluation model of power grid investment risk can be
seen as the non-linear mapping from input: expert scoring
value of each risk factor of power grid investment to output:
power grid investment risk evaluation value.

A. THE DETAILED DESIGN OF BP NEURAL NETWORK

1) DETERMINATION OF INPUT NODE

We selected the 11 most important factors which affect the
results of the power grid investment risk evaluation as the
input of the GA-BP neural network. The 11 indicators were
scored by considering the risk weights, probability of occur-
rence, magnitude of impact, and degree of association with
risk. The scores are divided into five levels: very low (0.1),
lower (0.3), average (0.5), higher (0.7), very high (1.0). The
larger the value, the greater the impact of this factor on the
power grid investment risk. When scoring, the experts fully
review and analyze the investment plan, and give the scores
of each risk indicator to measure the performance of the
evaluated project on the indicator and the related risks that
may arise as a result [33].

X = {Xi, X2, ..., Xinn} (1)

where X is the input vector of the i-th sample; Xji, Xj2,

.., Xj11 correspond to power transmission and distribution
price Al, electricity price subsidies A2, average electricity
price A3, electricity purchasing cost A4, GDP B1, exchange
rate changes B2, inflation B3, power grid scale C1, power
quality C2, power grid structure C3 and equipment level C4
respectively.

2) DETERMINATION OF OUTPUT NODE

Because the output of the GA-BP neural network corresponds
to the risk evaluation value of policy risk A, economic devel-
opment risk B, power grid development form risk C and the

power grid investment risk, then the number of output nodes
is 4.

0; =[0i1, Oi2, 03, Oj4] )

where, O; is the output vector of the i-th sample; Oj; is the
policy risk evaluation value; Oj; is the economic development
risk evaluation value; Oj3 is the power grid development form
risk evaluation value; and Oj4 is the total risk evaluation value
of the power grid investment.

For a more intuitive and unified response to power grid
investment risks, the output value of the GA-BP neural net-
work is limited to any value between [0, 1]. Among them,
0 is no impact, 1 is serious impact, and the larger the value,
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TABLE 1. Power grid investment risk evaluation indicators.

TABLE 2. Genetic algorithm parameter settings.

Risk Evaluation

Risk Degree Risk Dade
Value
[0,0.2) Very small 1
[0.2,0.4) Small 2
[0.4,0.6) General 3
[0.6,0.8) Large 4
[0.8,1] Very large 5

the more serious the impact of the risk. At the same time,
the grade of risk and the degree of risk are divided into
five grades according to the output value interval: grade 1,
grade 2, grade 3, grade 4, and grade 5 (the degree of risk
is strengthened in turn). The correspondence between the
output and the risk grade and the degree of risk is established,
as shown in Table 1.

3) DETERMINATION OF NETWORK STRUCTURE

The model uses a typical three layer BP neural network. The
determination of the number of hidden layer nodes in a neural
network is a complex problem. It affects the results of risk
evaluation. If the number of nodes is too small, the effective
diagnostic information obtained during the diagnosis process
is relatively less, and it is difficult to achieve accurate diag-
nosis. If the number of nodes is too large, not only will the
network learning and training time be too long, but also the
fault tolerance will be poor, and the generalization ability will
be reduced.

N=+VL+M+a 3)
N = bL @

where, L is the number of the input layer; M is the number of
the hidden layer; N is the number of the output layer; a is an
integer in the interval [1, 10]; b is a value within [0, 1].

Therefore, this paper limits the range of hidden layer nodes
in the power grid investment risk model according to empir-
ical formula (3) (4), and then uses the training error and the
training speed to select the optimal number of nodes in the
hidden layer [34]. Finally, the number of hidden layers is
determined to be 12.

4) DETERMINATION OF NETWORK TRANSFER FUNCTION
When choosing a transfer function, two main aspects are con-
sidered: 1) non-linear; 2) guaranteed output in the range [0,1].
Only changing the transfer function and other parameters are
fixed, it is found that the hidden layer transfer function uses
the tansig function with less error than the sigmoid function
when the GA-BP neural network is trained with the samples
in Table 3.

Therefore, the nonlinear function tansig is selected as the
transfer function in the hidden layer.

1—¢*

f) = Tre 5)
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Parameter pop gen Pc Pm q
Value 50 1000 0.3 0.001 0.01

TABLE 3. Power grid investment risk evaluation risk data.

Al A2 A3 A4 Bl B2 B3 ClI C2 C3 C4

03 01 01 03 03 05 03 05 03 01 03
03 01 01 03 03 05 01 10 03 07 03
01 01 01 03 03 01 01 10 05 05 07

03 01 01 03 03 01 03 05 03 01 05
03 07 07 05 03 07 03 05 03 10 03
03 07 07 03 03 05 07 05 03 01 03
05 03 03 03 03 01 03 05 01 05 03
03 07 03 05 07 10 03 03 03 01 03
03 03 03 03 05 01 03 10 01 03 03
10 03 03 03 03 03 05 03 05 05 01 03
05 03 03 03 03 01 03 10 01 01 03
2 03 07 03 03 07 05 03 05 05 05 03
3 07 03 03 05 05 01 07 05 03 01 03
14 03 03 07 05 1 05 03 05 03 07 07
15 03 03 03 01 03 05 03 03 07 07 03
16 07 01 01 05 01 07 05 07 05 03 05
7 05 03 01 03 05 01 05 05 03 03 07
8 03 03 05 01 05 05 03 05 03 01 05
9 05 03 03 01 05 05 05 07 03 01 05
20 03 05 01 03 07 03 05 07 07 03 0.1

O 0 N A R WD =

—
—

Select the sigmoid function as the transfer function in the
output layer.

gx) = Q)

1+ e

5) FORMULAS BETWEEN INPUT AND OUTPUT

Supposing there are 11 inputs and 4 outputs in the network,
and 12 neurons in the hidden layer, the threshold value of the
hidden layer is

{On1, On2, - - -, On12} (7
The threshold value of the output layer is
{601, 002, 003, Ooa} (3)

The weight from input layer to hidden layer is

w11, @12, -+ -5 W1,12
a)m:{a)p,k}: (9)
w11,1, W11,25 - - -, 11,12

The weight from hidden layer to output layer is

1,1, W1,2, W1,3, W] 4
oo ={wgjy=1... ... ... ... (10)
12,1, W12,2, W12,3, W12.4
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The output is calculated as following

12 11
0 =F(Q_ (Y wpp — g — 6)
g=1 p=1
k=1,2,...,12; j=1,2,3,4) (11

where, O; is the actual j-th output of GA-BP neural network.

B. THE DETAILED DESIGN OF GENETIC ALGORITHM

1) CODING

In order to improve the precision and expand the search space,
we choose the real number coding. Because the structure of
BP neural network is 11-12-4, according to the formula [35],
the number of weights to be optimized is 11*124-12*4 = 180,
the number of threshold to be optimized is 12+4 = 16. So the
encoding length is 180 + 16 = 196.

2) FITNESS FUNCTION
The error function of the power grid investment risk model is

15 4
E=)"%"(yj— 0y} (12)

i=1 j=I

where, Ojj is the actual j-th output of the i-th sample of
GA-BP neural network; yj; is the expected j-th output of the
i-th sample of GA-BP neural network.

The role of the genetic algorithm is to find the best weights
and thresholds, and to minimize the value of the BP neural
network’s error function. Therefore, the reciprocal of the
error function of BP neural network is chosen as the fitness
function of the genetic algorithm [36].

1 1
=g =%5a (13

E
> 2 i — 0y

i=1j=1

3) GENETIC OPERATORS
In the process of using genetic algorithms to optimize weight
values, the most common genetic operators are used, namely
operator selection, crossover operator and mutation operator.
Using the control variable method, multiple training
and testing to obtain the parameters of the genetic algo-
rithm. The genetic algorithm selects the roulette selection
as the selection operator. The population size, crossover
probability, mutation probability and evaluation parameters
involved in genetic process are defined as: population size is
pop = 50, genetic algebra gen = 1000, crossover probabil-
ity Pc = 0.3, mutation probability Pm = 0.001, evaluation
parameter q = 0.01.

V. CASE STUDY
The data of power grid investment evaluation that have been
verified in four typical cities and towns in a province were
taken as examples to analyze. As shown in Table 3.

We take a ““10-fold cross-validation method™ for these
20 sets of data. The simulation experiments of the power

154832

TABLE 4. Comparison of BP neural network and GA-BP neural network.

BP Neural Network GA-BP Neural Network

Actual
Value Predictive Relative Predictive Relative
Value Error Value Error

1 0.313 0.321 2.24% 0.305 -2.56%
2 0.291 0.297 2.06% 0.296 1.72%
3 0.366 0.380 3.83% 0.356 -2.73%
4 0.291 0.310 6.53% 0.279 -4.12%
5 0.498 0.472 -5.22% 0.521 4.62%
6 0.478 0.421 -12.13% 0.490 2.51%
7 0.266 0.261 -2.26% 0.271 1.50%
8 0.558 0.601 7.53% 0.571 2.15%
9 0.466 0.450 -3.43% 0.472 1.29%
10 0.366 0.351 -4.37% 0.377 3.01%
11 0.301 0.294 -2.33% 0.310 2.99%
12 0.466 0.477 2.36% 0472 1.29%
13 0.433 0411 -5.31% 0.421 -3.00%
14 0.511 0.566 10.76% 0.501 -2.15%
15 0.377 0.360 -4.51% 0.391 3.45%
16 0.648 0.662 2.16% 0.639 -1.39%
17 0.134 0.139 3.58% 0.130 -2.99%
18 0.629 0.655 4.13% 0.620 -1.43%
19 0.232 0.227 -2.31% 0.236 1.72%
20 0.262 0.270 3.05% 0.254 -3.05%

TABLE 5. Overall error of BP neural network and GA-BP neural network.

GA-BP Neural
Network
2.48%

BP Neural Network

Relative Error 4.51%

grid investment risk evaluation model based on BP Neural
Network and the power grid investment risk evaluation model
based on GA-BP neural network are realized by Matlab
2016a.

Compare the results of the two sets of experiments with the
real results. The results are shown in Table 4.

The analysis of the results shows that there are several
serious errors in the results of the power grid investment
risk evaluation model based on BP neural network. However,
most of the errors are within 5%, and the overall effect is
better. The experimental results of the power grid investment
risk evaluation model based on GA-BP neural network have
little deviation from the actual value, and the relative errors
are kept within a small range (not more than 5%). The test
data shows that both BP neural network and GA-BP neural
network test results are in the same risk level as the actual
value, and have good accuracy. However, the GA-BP neural
network based evaluation model has better accuracy than the
simple BP neural network evaluation model.

By analyzing the test results of GA-BP neural network
and BP neural network, the overall error average value is
obtained. As shown in Table 5.
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TABLE 6. Comparison of BP neural network and GA-BP neural network.

A B C

BP GA-BP BP GA-BP BP GA-BP
1 10.11%  -6.47% 6.59% 1.75% -4.55% 1.99%
2 6.67% -2.99%  -1.66% 4.62% -3.87%  -1.21%
3 -6.79% 3.85% -1.57% 3.80% 1.34% 11.37%
4 6.74% -3.98% 3.37% -1.48%  1093%  -1.58%
5 -1.87% 1.20% 2.39% -3.64%  -5.66% 1.60%
6 -2.13% 1.33% -1.78% 1.08% 5.04% 8.43%
7 3.63% -2.19% 6.63% -3.72% 3.49% -1.87%
8 -2.711% 5.24% 15.31% 1.98% -2.34% 1.99%
9 3.54% 3.67% 3.03% -1.25%  -1.57% 1.40%
10 5.15% -3.00%  -2.35% 2.40% 2.39% 4.02%
11 -6.15% 1.91% 5.85% -2.84% 2.94% 1.75%
12 -1.90% 2.18% 2.70% -1.64% 3.52% -1.02%
13 -1.96% 1.60% -3.15% 4.21% 3.15% 5.59%
14 -235%  -554%  -1.73% 1.96% -1.33% 1.15%
15 -1.03% 2.83% -3.18% 2.00% -1.55% 3.52%
16  2.01% -1.04%  -3.02%  -4.19% 1.60% 5.93%
17 1.48% -2.41% 3.74% 8.86% 2.10% -1.29%
18 1.27% -4.31% 2.96% -2.11% 2.10% -3.82%
19 1.91% -3.01% 1.50% 9.56% -3.29% 6.58%
20 -4.76% 3.35% -3.28% 6.82% 1.05% -1.82%

It can be seen from the test results in Table 6 that BP neural
network and GA-BP neural network have good accuracy,
and BP neural network optimized by genetic algorithm has
better performance. The experimental results show that for
the multi-dimensional factor problem, the accuracy of the
power grid investment risk evaluation model based on GA-BP
neural network is greatly improved compared with the exist-
ing method, and the predicted volatility is also controlled.

The test results of the risk evaluation values of each sub-
risk of power grid investment are shown in Table 6, including:
policy risk A, economic development risk B and power grid
development form risk C.

It can be seen from Table 6 that the test results of BP neural
network and GA-BP neural network have some fluctuations,
but the test results are in the same risk interval as the real val-
ues. At the same time, it can be observed that the power grid
investment risk is not simply derived from the combination
of policy risk, economic development risk and power grid
development form risk, and there is a coupling relationship
among the three sub-risks.

VI. CONCLUSION

A new method of power grid investment risk evaluation is
proposed through incorporating the strength of BP neural
networks modeling and global optimization capabilities on
genetic algorithm. The grid investment risk evaluation model
based on GA-BP neural network adapts to the characteris-
tics of power grid investment, including multi-dimensional,
strong nonlinear, high uncertainty and strong interaction. The
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model can be effectively applicable for evaluating the risk
of power grid investment, with accuracy and convergence.
Comparison of the results with the BP neural network and
historical data obtained by expert scoring shows that GA-BP
is an accurate, feasible and effective alternative. For the
evaluation of multi-dimensional power grid investment risk,
GA-BP has high accuracy, and the evaluation results have
good stability without large fluctuations. This method can
be applied to power grid risk evaluations of different regions
and times by changing the input data. In addition, this paper
not only evaluates the investment risk of the power grid, but
also evaluates the risk of policy risk, economic development
risk and power grid development form, which reflects the
coupling effect between each sub-risk.

At the same time, the model has certain limitations: 1) the
accuracy of the evaluation needs to be further improved;
2) the specific relationship between the impact factor and the
power grid investment risk cannot be described. Therefore,
future work will consider optimizing the genetic algorithm
and adopting a variation on the crossover probability and
the mutation probability. Then, based on the power grid
investment risk assessment, the independence and coupling
of various risk factors are explored, and dimension reduction
and decoupling are carried out to simplify the risk analysis.
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