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ABSTRACT This paper is concerned with the `∞-gain analysis problem of discrete-time positive singular
systems with time-varying delays. By introducing an auxiliary system, a necessary and sufficient positivity
condition is proposed for systems. Then, by using of the positivity and linearity, we investigate the monotonic
and asymptotic property of the system with time-varying delays. Then, by resorting to the comparing
system with constant delays, an explicit expression of the `∞-gain of discrete-time singular systems with
time-varying delays is given in terms of system matrices. The result shows that `∞-gain of discrete-time
positive singular systems with bounded time-varying delays is insensitive to the magnitude of delays.

INDEX TERMS Positive systems, singular systems, time-delay, `∞-gain.

I. INTRODUCTION
Singular systems, also called generalized state-space sys-
tems, implicit systems, or descriptor systems, are widely
employed in different practical engineering systems, such
as aircraft control systems, chemical engineering systems
and electrical circuit systems [1], [2]. Compared with its
counterparts of standard state-space systems, singular system
models may provide more precise descriptions of dynamic
systems [3], [4]. Practical systems whose state variables take
nonnegative values naturally appears in different fields of
application ranging from biology and pharmacokinetics [5],
to economy and chemistry [6], which are usually referred
to as positive systems. For positive singular systems, there
are already some results dealing with the fundamental issues
as a testimony to the vitality of this area. Some pioneering
works on the positivity and stability for continuous-time and
discrete-time positive singular systems were proposed in [7]
and [8]. It should be emphasized that both works are based on
such a common assumption, but it is unnecessary for positive
singular systems which was demonstrated in [9].

Since time-delay is often a source of instability and
encountered in various engineering systems, the analysis of
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time-delay positive systems has drawn considerable atten-
tion. By proving that stability condition is unrelated to the
magnitude of time-delay, the asymptotic stability of pos-
itive systems with constant time-delay was first studied
in [10]. Inspired by this result, a necessary and sufficient
stability condition of the discrete-time positive systems with
time-delay was presented in [11]. These results were fur-
ther extended to cases with bounded time-varying delays
in [12] and [13] and the `∞ and L∞ gains for positive systems
with bounded time-varying delays are analysed in [14].

In many situations, the performance of dynamic systems
is portrayed by their input-output relations. For general
dynamic systems, the most popular performance measures
are the passivity performance and bounded real perfor-
mance. While it is reasonable to focus on the energy for
general dynamic systems, the `∞-norm accounts for the
maximal quantity and is more suitable for positive sys-
tem rather than `2-norm representing the square of the
energy. For instance, in animal reproduction models, one
usually focuses on inspecting the maximal population of
the animals in a particular region with a certain amount
of food and number of predators. Besides these practical
considerations, the positivity property brings a number of
input-output features to positive systems based on the inte-
gral constraints instead of quadratic integral constraints.
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By investigating the monotonic non-decreasing property of
positive systems, this result was extended to the investigation
of the L∞-gain and `∞-gain for the bounded time-varying
delay cases in [14]. Then, under certain assumptions on the
delays, the conclusion was shown to be still valid in [15]
for both discrete-time and continuous-time positive systems
with unbounded time-varying delays. Research on the perfor-
mance measure of positive singular systems is scarce as it is
really a new topic. The LMI characterization of the bounded
real lemma was studied for positive singular systems in [16]
by using the Separating Hyperplane Theorem. The `∞-gain
analysis is rather complicated for the positive singular sys-
tems and it remains an unsolved problem for discrete-time
positive singular systems with time-varying delays.

In this work, we establish the positivity conditions without
any unnecessary assumption compared with the previously
reported results. Therefore, our results have wider applica-
bility for the analysis of positivity. By revealing the rela-
tionship between constant delay systems and time-varying
delay cases, an explicit expression of `∞-gain is proposed for
the discrete-time positive singular systems with time-varying
delay. This paper is organized as follows. Some preliminaries
are presented in Section II. Positivity analysis of discrete-time
positive singular time-delay system are given in Section III.
The `∞-gain of discrete-time positive singular system with
bounded time-varying delay is also analysed in Section III.
A numerical simulation to prove the theory in this paper is
posed in Section IV. In the end, we will conclude the paper
in Section V.
Notation: The notation used throughout the paper is stan-

dard. A real matrix A ∈ Rn×n with all of its entries
non-negative is called non-negative matrix and is denoted by
A � 0 and A ∈ R̄n×n

+ . For two matrices A, B ∈ Rm×n, A � B
means that A − B is a non-negative matrix, or equivalently,
aij ≥ bij for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Matri-
ces are assumed to be compatible for algebraic operations
if their dimensions are not explicitly stated. The∞-norm of
matrix A ∈ Rm×n is the maximal absolute row sum, that is,
‖ A ‖∞= max1≤i≤m

∑n
j=1

∣∣[A]ij∣∣. The∞-norm of a column
vector x ∈ Rn is ‖x‖∞ = max1≤i≤n |xi|, which coincides
with the ∞-norm of a matrix. For a vector-valued function
w : R̄+ 7→ Rn, the `∞-norm of a sequence of vector
{w(k)}∞k=0 is given by ‖ w ‖`∞= supk∈N ‖ w(k) ‖∞. The
`∞-gain of system (1) is defined as sup‖w‖`∞=1 ‖ y ‖`∞.

II. PRELIMINARIES
A discrete-time singular system with bounded time-varying
delays is introduced as follows:

Ex(k + 1) = Ax(k)+ Adx(k − d(k))+ Bw(k)
y(k) = Cx(k)
x(s) = φ(s), s = −d,−d + 1, . . . , 0

(1)

where x(k) ∈ Rnx is the state vector, w(k) ∈ Rnw and y(k) ∈
Rny are the input and output signals, respectively; Delays
d(k) are assumed to be bounded, that is, 1 ≤ d ≤ d(k) ≤ d ;

Matrices A, Ad , B, C are known constant real matrices with
appropriate dimensions. The matrix E ∈ Rnx×nx is supposed
to be singular, that is, rank(E) = r < nx; φ(k) is the
admissible initial condition. Then, some basic definitions
and lemmas related to singular time-delay systems are given,
which are necessary for the later analysis.
Definition 1 [17]:

(i) The pair (E,A) is said to be regular if det(zE − A)
is not identically zero.

(ii) The pair (E,A) is said to be causal if deg{det(zE −
A)} = rank(E).

Definition 2 [18]: For any matrix E ∈ Rn×n, a unique
corresponding matrix ED always exists, called the Drazin
inverse of E , satisfying

EED = EDE, EDEED = ED, EDEv+1 = Ev,

where v is the smallest nonnegative integer such that
rank(Ev) = rank(Ev+1) and denoted by v = ind(E).
Lemma 1 [19]: If the pair (E,A) is regular with E,A ∈

Rnx×nx , we always can find η ∈ R such that the inverse of
ηE − A exists. It follows that the matrices

Ê = (ηE − A)−1E, Â = (ηE − A)−1A

commute.
Due to the singularity of the derivative matrix E , sys-

tem (1) is not intuitive to investigate its positivity. Therefore,
we introduce the following technical propositions, which will
be employed in the proof of main result.
Proposition 1: Assume that (E,A) is regular and causal.

Then, let x1(k) = Mx(k) and x2(k) = (I −M )x(k) withM =
ÊDÊ and we have x1(k) and x2(k) satisfying

x1(k + 1) = A1x1(k)+ Ad1x(k − d(k))+ B1w(t),
0 = −x2(k)+ Ad2x(k − d(k))+ B2w(t),
y(k) = C(x1(k)+ x2(k)).

(2)

for k ∈ N, where

A1 = ÊDÂ, Ad1 = ÊDÂd , B1 = ÊDB̂,

B2 = (M − I )ÂDB̂, Ad2 = (M − I )ÂDÂd ,

Ê = (ηE − A)−1E, Â = (ηE − A)−1A,

Âd = (ηE − A)−1Ad , B̂ = (ηE − A)−1B.

Proof:By following a similar manner of the proof in [20,
Lemma 5], one can obtain Proposition 1. �
Lemma 2: The following statements always hold true.

(i) (M )2 = M .
(ii) MA1 = A1M = A1, MAd1 = Ad1.
(iii) Mx1(k) = x1(k), (I −M )x2(k) = x2(k), k ∈ N.
(iv) x(k) = x1(k)+ x2(k), k ∈ N.
Proof: It is obtained directly from the definition of the

Drazin inverse and Lemma 1. �
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III. `∞-GAIN ANALYSIS
First, we introduce the definition for the positivity of sys-
tem (1) similar to [21, Definition 3.1].
Definition 3: System (1) is said to be positive system if for

any initial value φ(s) � 0, s = −d,−d + 1, . . . , 0, and all
input w(k) � 0, ∀k ∈ N, the state trajectory x(k) � 0 and the
output y(k) � 0, ∀ k ∈ N.
Lemma 3: [22] Let W1, W2 be matrices with appropriate

dimensions. The following statements are equivalent:

(i) W1x � 0 implies that W2x � 0,
(ii) there exists X � 0 satisfying the equation W2 =

XW1.

The following lemmas and theorems give characterisations
of positivity and stability for discrete-time singular system
with time-varying delay. First, we will analyse the sufficient
and necessary conditions for positivity of system (1).
Theorem 1: Suppose that (E,A) is regular and causal.

With the initial conditions φ(s) � 0, for s = −d, . . . , 0,
the following statements are equivalent:

(i) System (1) is a positive system for any nonnegative
initial condition.

(ii) System (2) is a positive system for any nonnegative
initial condition.

(iii) If Ad2 � 0, B2 � 0, C � 0 and there exists H � 0
such that 

A1 = HM ,
Ad1 − HAd2 � 0,
B1 − HB2 � 0.

(3)

Proof: (i)⇒(iii): Suppose that the system is posi-
tive for k ∈ N and d(k) ≡ d . For any υ ∈ Rn,
x(0) = Mυ + Ad2x(−d) + B2w(0) � 0 and for
x(0), x(−1), . . . , x(−d) � 0, we have

M Ad2 0 B2 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I




υ

x(−d)
x(1− d)
w(0)
w(1)

 � 0

implies that x(1) = A1υ+Ad1x(−d)+Ad2x(1−d)+B1w(0)+
B2w(1) � 0, which amounts to

A1 Ad1 Ad2 B1 B2
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I




υ

x(−d)
x(1− d)
w(0)
w(1)

 � 0.

Then, Lemma 3 ensures the existence of a matrix

H =


H Hd Hd−1 Hw1 Hw2
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 � 0

such that
A1 Ad1 Ad2 B1 B2
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

=H

M Ad2 0 B2 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


or equivalently, 

A1 = HM ,
Ad1 = HAd2 + Hd ,
B1 = HB2 + Hw1,
Ad2 = Hd−1,
B2 = Hw2.

Since all the matrices H , Hd and Hd−1 are nonnegative,
statement (iii) of Theorem 1 readily follows.

(iii)⇒(i): It will be proved that x1(k), x2(k) and x(k)
are nonnegative for all k ≥ 1 by induction. Let φ(0) =
Mυ + Ad2φ(−d(0)) + B2w(0) � 0 and φ(s) � 0 for s =
−d̄, . . . ,−1 be given. By virtue of H � 0, Ad1 −HAd2 � 0,
B1 − HB2 � 0and A1M = A1, we have

x1(1) = A1Mυ + Ad1φ(−d(0))+ B1w(0)

= HM2υ + Ad1φ(−d(0))+ B1w(0)

� HMυ + HAd2φ(−d(0))+ HB2w(0)

= H (Mυ + Ad2φ(−d(0))+ B2w(0)) = Hφ(0) � 0.

Since Ad2 � 0 and 1 ≤ d(k) ≤ d̄ , it follows

x2(1) = Ad2φ(1− d(1))+ B2w(1) � 0.

And we have x(1) = x1(1) + x2(1) � 0. Assume now
that x1(k) = Ak1Mυ +

∑k−1
j=0 A

k−j−1
1 Ad1x(j − d(j)) +∑k−1

j=0 A
k−j−1
1 B1w(j) � 0 and x2(k) = Ad2x(k −

d(k)) + B2w(k) � 0 for k ∈ {1, . . . , i}, it follows
x(k) = x1(k)+ x2(k) � 0 for k ∈ {−d̄, . . . , i} as initial con-
dition φ(·) � 0. As w(k) � 0, we have

x2(i+ 1) = Ad2x(i+ 1− d(i+ 1))+ B2w(i+ 1) � 0.

AsH � 0, we aim to show x(i+1) � 0 by proving x1(i+1) �
Hx1(i).

x1(i+ 1) = Ai+11 υ+

i∑
j=0

Ai−j1 Ad1x(j−d(j))+
i∑

j=0

Ai−j1 B1w(j)

= A1(Ai1υ +
i−1∑
j=0

Ai−j−11 Ad1x(j− d(j))

+

i−1∑
j=0

Ai−j−11 B1w(j))+ Ad1x(i− d(i))+ B1w(i)

� HM (Ai1υ +
i−1∑
j=0

Ai−j−11 Ad1x(j− d(j))

+

i−1∑
j=0

Ai−j−11 B1w(j)).
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Noting that MA1 = A1, we have

x1(i+ 1) � H (Ai1υ +
i−1∑
i=0

Ai−j−11 Ad1x(j− d(j))

+

i−1∑
j=0

Ai−j−11 B1w(j))

= Hx1(i) � 0.

By induction, x1(k) � 0, x2(k) � 0 and x(k) � 0 for k ∈ N+.
(ii)⇒(i): With x1(k) � 0, x2(k) � 0 for k ∈ N+ and x(0) =

φ(0) � 0, it is evident that x(k) = x1(k) + x2(k) � 0 for
k ∈ N. �
Remark 1: It is easy to see that system (1) is nonnegative

if system (2) is nonnegative as x(k) = x1(k) + x2(k) but
the converse is not necessarily true. However, by Theorem 1,
we prove that the positivity properties of them are equivalent,
which is an interesting finding.

In the following paragraph, a sufficient condition for stabil-
ity of positive system (1) is deduced. We will propose some
useful lemmas in the beginning, and then give the proof of
stability condition.
Lemma 4 [23]: Suppose the pair (E,A) is regular, causal

and system (1) is positive; then system (1) with input w(k) =
0 is exponential stable if and only ifH−HAd2+Ad1+Ad2 is
a Schur matrix, or equivalently, there exists a column vector
p � 0, such that (H − HAd2 + Ad1 + Ad2 − I )p ≺ 0, where
H is given in (3).

In the following discussion, we investigate the `∞-gain
analysis of the positive singular system (1) with time-varying
delays. First, some assumptions on singular system (1) are
introduced.
Assumption 1: It is assumed that singular system (1) sat-

isfies the following conditions:

• System (1) is positive and exponential stable.
• The initial condition of system (1) is φ(s) = 0, s =
−d,−d + 1, . . . , 0.

Under Assumption 1, the `∞-gain of system (1) is defined
as the smallest α > 0 such that ‖y‖`∞ ≤ α‖w‖`∞ holds
for all input w ∈ `∞ and w(t) � 0 (t ≥ 0), or equiva-
lently, sup‖w‖`∞=1‖y‖`∞ . In order to simplify further analy-
sis, the following lemma is introduced which can be obtained
by resorting to the positivity and linearity of system (1).
Lemma 5: Suppose that w1(k) � w2(k) for all k ∈ N and

the initial condition is φ(s) = 0 (s = −d,−d + 1, . . . , 0).
Let y1(k) and y2(k) be the outputs of system (1) under the
inputs w1(k) and w2(k), resepectively. Then, it follows that
y1(k) � y2(k), k ∈ N.

In the light of Lemma 5, it suffices to investigate the
following system with a constant input w̄ = 1 instead of the
original nonnegative input signals satisfying ‖w‖`∞ = 1,

x1(k + 1) = A1x1(k)+ Ad1x(k − d(k))+ B1w̄
0 = −x2(k)+ Ad2x(k − d(k))+ B2w̄
y(k) = C(x1(k)+ x2(k))

(4)

A monotonic property of state trajectory of the positive sin-
gular system with delays is proposed in the following.
Lemma 6: Let d(k) ≡ d ∈ N+ (d ≤ d ≤ d),

the solutions x1(k) and x2(k) of system (4) are monotonically
non-decreasing with zero initial condition, that is, x1(k+1) �
x1(k) and x2(k + 1) � x2(k) and x(k + 1) � x(k).

Proof: With initial condition x1(0) = 0, x2(0) = 0 and
φ(s) ≡ 0, it follows that x1(1) = B1w̄ � x1(0) and x2(1) =
B2w̄ � x2(0). Suppose that x1(k) � x1(k − 1) and x2(k) �
x2(k − 1) hold for k ∈ {0, . . . , i} with i ∈ N, it follows that

x1(i+ 1)− x1(i) = A1(x1(i)− x1(i− 1))

+Ad1(x(i− d)− x(i− 1− d)) � 0,

x2(i+ 1)− x2(i) = Ad2(x(i− d)− x(i− 1− d)) � 0.

By induction and Statement (iv) of Lemma 2, x1(k + 1) �
x1(k), x2(k + 1) � x2(k) and x(k + 1) � x(k) are proved for
all k ∈ N. �

Subsequent to those preliminaries above, the `∞-gain anal-
ysis of singular system (4) with constant delays is presented.
Theorem 2: Let d(k) ≡ d ∈ N+ (d ≤ d ≤ d),

the `∞-gain of stable system (4) is sup‖w‖`∞=1‖y‖`∞ =
‖C(I − H − Ad1 + HAd2 − Ad2)−1(B1 − HB2 + B2)‖∞.

Proof: By Lemma 2 and Theorem 1, we have

x1(k + 1) = HMx1(k)+ Ad1x(k − d)+ B1w̄

= Hx1(k)+ Ad1x(k − d)+ B1w̄

= H (x(k)− x2(k))+ Ad1x(k − d)+ B1w̄.

As x2(k) = Ad2x(k − d)+ B2w̄, we have

x1(k + 1) = H (x(k)− Ad2x(k − d)− B2w̄)+ Ad1x(k − d)

+B1w̄

= Hx(k)+ (Ad1 − HAd2)x(k − d)

+ (B1 − HB2)w̄.

As x2(k + 1) = Ad2x(k + 1− d)+ B2w̄, it follows that

x(k + 1) = x1(k + 1)+ x2(k + 1)

= Hx(k)+(Ad1−HAd2)x(k−d)+ Ad2x(k+1−d)

+ (B1 − HB2 + B2)w̄. (5)

By Lemma 6, it follows

x(k+1) � (H+Ad1−HAd2+Ad2)x(k)+(B1−HB2+B2)w̄.

(6)

Now we prove that for k ∈ N, the state trajectory x(k)
satisfies that

x(k) �
k−1∑
j=0

(H + Ad1 − HAd2 + Ad2)j(B1 − HB2 + B2)w̄.

First, under the zero initial condition, it is shown that x(1) =
(B1 − HB2 + B2)w̄. Assume that

x(i) �
i−1∑
j=0

(H + Ad1 − HAd2 + Ad2)j(B1 − HB2 + B2)w̄
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holds for k = 1, 2, . . . , i, then, we have

x(i+ 1) � (H + Ad1−HAd2+Ad2)x(i)+(B1−HB2+B2)w̄

=

i∑
j=0

(H+Ad1−HAd2+Ad2)j(B1−HB2+B2)w̄.

By induction, one can conclude that

x(k)�
k−1∑
j=0

(H+Ad1−HAd2+Ad2)j(B1−HB2+B2)w̄

= (I − H − Ad1+HAd2−Ad2)−1(B1−HB2+B2)w̄

holds for k ∈ N, which implies that x(k) have upper bounds.
Then, we will show that

lim
k→+∞

x(k)= (I−H−Ad1+HAd2−Ad2)−1(B1−HB2+B2)w̄.

It is readily seen that x(k) has an upper bound; hence,
limk→+∞ x(k) exists. Letting k →+∞, it follows that

lim
k→+∞

x(k) = lim
k→+∞

(H + Ad1 − HAd2 + Ad2)x(k)

+ (B1 − HB2 + B2)w̄,

which leads to

lim
k→+∞

x(k)= (I−H−Ad1+HAd2−Ad2)−1(B1−HB2+B2)w̄,

as H − HAd2 + Ad1 + Ad2 is Schur. Then, it is readily seen
that

lim
k→+∞

y(k) = C(I − H − Ad1 + HAd2 − Ad2)−1

× (B1 − HB2 + B2)w̄

and `∞-gain of system (4) is exactly ‖C(I−H−Ad1+HAd2−
Ad2)−1(B1 − HB2 + B2)‖∞, which completes the proof.
Corollary 1: Suppose E − A− Ad is nonsingular. For any

d ∈ N, the `∞-gain of positive singular system (4) with
d(k) = d is supw`∞=1‖y‖`∞ = ‖C(E − A− Ad )

−1B‖∞.
Proof: Then, we will show that limk→+∞ x(k) = (E −

A−Ad )−1Bw̄ aswell whenE−A−Ad is nonsingular. From the
above proof of Theorem 2, it has been pointed out that x(k)
has an upper bound. By Lemma 6, x(k+1) � x(k), it is shown
that system (1) with w(k) = w̄ = 1 monotonically non-
decreasing; therefore, limk→+∞ x(k) must exist. By letting
k →+∞ on both side of Ex(k+1) = Ax(k)+Adx(k−d)+
Bw̄, we have limk→+∞ x(k) = (E − A − Ad )−1Bw̄. Then,
it is readily seen that limk→+∞ y(k) = C(E −A−Ad )−1Bw̄,
which illuminates that `∞-gain of system (4) is ‖C(E − A−
Ad )−1B‖∞, which finishes the proof. �
Before investigating the `∞-gain of positive singular sys-

tem with time-varying delays, two constant delay systems
with zero initial conditions are introduced corresponding to
the upper bound and lower bound of the delays.

x1(k + 1) = A1x1(k)+ Ad1x(k − d)+ B1w̄
0 = −x2(k)+ Ad2x(k − d)+ B2w̄
y(k) = Cx(k)

(7)

and 
x1(k + 1) = A1x1(k)+ Ad1x(k − d)+ B1w̄
0 = −x2(k)+ Ad2x(k − d)+ B2w̄
y(k) = Cx(k)

(8)

Then, we show that system (4) with time-varying delays is
bounded by the above two constant delay systems.
Lemma 7: Suppose that x1(k), x2(k), x1(k), x1(k) and y(k),

y(k) are the state trajectories and outputs of systems (7)
and (8). With d ≤ d(k) ≤ d , the state trajectories x1(k), x2(k)
and output y(k) of system (4) satisfy that x1(k) � x1(k) �
x1(k), x2(k) � x2(k) � x2(k), x(k) � x(k) � x(k) and
y(k) � y(k) � y(k) for all k ∈ N.

Proof: Define e1(k) , x1(k) − x1(k), e2(k) , x2(k) −
x2(k) and e(k) , x(k)−x(k) then the error system e1(k), e2(k)
satisfies{
e1(k + 1) = A1e1(k)+ Ad1(x(k − d)− x(k − d(k)))
0 = −e2(k)+ Ad2(x(k − d)− x(k − d(k)))

which can be rewritten as
e1(k + 1) = A1e1(k)+ Ad1e(k − d(k)
+Ad1(x(k − d)− x(k − d(k)))
0 = −e2(k)+ Ad1e(k − d(k))
+Ad2(x(k − d)− x(k − d(k)))

(9)

In virtue of Lemma 6, we have w(k) = x(k − d) − x(k −
d(k)) � 0, B1 = Ad1 and B2 = Ad2, which implies
that the error system is nonnegative. By regarding these two
additional items as nonnegative inputs, it follows that e1(k) �
0 and e2(k) � 0 with initial condition e(s) = 0 by the
positivity of system (9). Therefore, it can be concluded that
x1(k) � x1(k) and x2(k) � x2(k). Similarly, we can prove
that x1(k) � x1(k) and x2(k) � x2(k) in the same way, which
also implies that x(k) � x(k) � x(k). With C � 0, we obtain
that C(x1(k)+x2(k)) � C(x1(k)+x2(k)) � C(x1(k)+x2(k))
such that y(k) � y(k) � y(k) for all k ∈ N. �
The result of `∞-gain analysis of singular system (4) with

time-varying delays is proposed in following theorem.
Theorem 3: For any d(k) ∈ N+, d ≤ d(k) ≤ d

the `∞-gain of stable system (4) with time-varying delays
is sup‖w‖`∞=1‖y‖`∞ = ‖C(I − H − Ad1 + HAd2 −
Ad2)−1(B1 − HB2 + B2)‖∞.

Proof: By using of Lemma 7, we have that y
i
(k) ≤

yi(k) ≤ yi(k) for i = 1, . . . , p, where y(k), y(k), y(k) are
the outputs of systems (4), (7) and (8), respectively. It fol-
lows that supk∈Nmax1≤i≤p yi(k) ≤ supk∈Nmax1≤i≤p yi(k) ≤
supk∈Nmax1≤i≤p yi(k). By Theorem 2, we have

supk∈N max
1≤i≤p

y
i
(k)

= supk∈N max
1≤i≤p

yi(k)

= ‖C(I − H − Ad1 + HAd2 − Ad2)−1(B1 − HB2 + B2)‖∞.

Therefore, we can conclude that `∞-gain of singular sys-
tem (4) is ‖C(I−H−Ad1+HAd2−Ad2)−1(B1−HB2+B2)‖∞.
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Corollary 2: Suppose E − A− Ad is nonsingular. For any
d(k) ∈ N, d ≤ d(k) ≤ d the `∞-gain of stable system (4)
with time-varying delays is supw`∞=1‖y‖`∞ = ‖C(E − A −
Ad )−1B‖∞.

Proof: The result directly follows from Corollary 1,
Theorem 3, and Lemma 7.
Remark 2: Usually, Lyapnunvo-Krasovskii method is

employed to investigate the singular systemwith time-delays.
For the time-varying cases, these results sometime are conser-
vative. In this work, a different method based on the positivity
of system is proposed and shown good performance for
positive singular delay systems.

IV. ILLUSTRATIVE EXAMPLES
In this section, a numerical example is provided to show
the effectiveness of the obtained results. Consider the
discrete-time singular system (1) with time-varying delays
where

E =
[
0.80 −0.50
0.00 0.00

]
, A =

[
−0.80 2.00
−0.50 1.20

]
,

Ad =
[
−0.15 0.10
−0.10 −0.18

]
, B =

[
0.08 −0.12
−0.15 −0.60

]
,

C =
[

1.00 0.20
−0.10 1.00

]
.

First, by choosing η = 3, one can obtain that Ê = (ηE −
A)−1E and Â = (ηE−A)−1A commute, Âd = (ηE−A)−1Ad
and B̂ = (ηE − A)−1B. Then, it follows

Ê =
[
0.4593 −0.2871
0.1914 −0.1196

]
, Â =

[
0.3780 −0.8612
0.5742 −1.3589

]
,

Âd =
[
0.0813 0.3589
0.1172 0.2995

]
, B̂ =

[
0.2971 0.9359
0.2488 0.8900

]
.

Then, it is shown that the system is positive and stable by
Theorem 1 and Lemma 4 as

M = ÊDÊ =
[
1.3521 −0.8451
0.5634 −0.3521

]
,

A1 = ÊDÂ =
[
0.0762 −0.0476
0.0317 −0.0198

]
,

Ad1 = ÊDÂd =
[
0.0321 0.6832
0.0134 0.2847

]
,

Ad2 = (M − I )ÂDÂd =
[
0.0704 0.1268
0.1127 0.2028

]
,

B1 = ÊDB̂ =
[
0.5637 1.5111
0.2349 0.6296

]
,

B2 = (M − I )ÂDB̂ =
[
0.1056 0.4225
0.1690 0.6761

]
.

One can see thatM and A1 are not nonnegative but a positive

H =
[
0.0514 0.0117
0.0117 0.0282

]
can be found satisfying A1 = HM

and

Ad1 − HAd2 =
[
0.0272 0.6743
0.0094 0.2775

]
� 0,

FIGURE 1. Time-varying delay d (k).

FIGURE 2. Output trajectories of system with input w(k) = 1 and delay
d (k).

B1 − HB2 =
[
0.5563 1.4815
0.2289 0.6056

]
� 0.

which implies that the system (1) is positive. By Lemma 4,
system is asymptotically stable for any bounded delay d(k)
with p =

[
0.50 0.50

]T . Bounded time-varying delay d(k)
takes value from the set {1, 2, . . . , 10}with equal probability.
Given an input w(k) = 1, under zero initial condition,
the output trajectory of system is depicted in Figure 2, when
d(k) takes value as Figure 1. It can be observed that the
limit of the output trajectory is C(I − H − Ad1 + HAd2 −
Ad2)−1(B1 − HB2 + B2)1 =

[
9.6307 4.8781

]T , which
confirms the results in Theorem 3. It should be pointed out
that C(E − A − Ad )−1B1 =

[
9.6307 4.8781

]T because
E − A− Ad is nonsingular, which satisfies Corollary 2.

V. CONCLUSION
In this paper, the `-gain analysis problem is studied for
discrete-time positive singular systems with time-varying
delays. By using the Drazin inverse, the positivity criterion
is proposed for discrete-time singular time-delay systems
with disturbance. Then, an explicit expression of `-gain is
presented for systems with the constant delays. It is proved
that the trajectories of time-varying delay systems can be
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bounded by two systems corresponding to the upper bound
and lower bound delays. Based on this conclusion, we finally
propose the characterization of `-gain for discrete-time pos-
itive singular systems with time-varying delays. An example
is employed to illuminates the effectiveness of the obtained
results.
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