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ABSTRACT Nowadays, somatosensory devices were widely used for developing the rehabilitation systems
for limb-injured patients. However, professional evaluation was rarely studied in this field. In our study,
we presented a novel hybrid deep network combined long short-term memory (LSTM) network and
convolutional neural network (CNN) for rehabilitation evaluation referred to Brunnstrom Scale. In the
identification task of 3-class Brunnstrom stages (III, IV, V), the mean accuracy of our proposed model was
up to 80% (84.1%). The experimental result validated the reliability of our proposed evaluation method. And
the comparison result of three machine learning algorithms indicated that the superiority of our hybrid model

for Kinect-based 3D data analysis.

INDEX TERMS Rehabilitation evaluation, hybrid deep network, LSTM, CNN, Brunnstrom Scale.

I. INTRODUCTION

In many countries, spinal cord injury (SCI) is an extremely
pervasive health-care problem, causing death and acquired
physical disability [1]. SCIs lead to partial or full paralysis
and result in lasting loss of motor function because damaged
axons can not regenerate and the death of a considerable
quantity neurons occur in the injured spinal cord [2], [3].
People with such behavioral deficit experiences dramatic pain
in performing daily activities such as dressing, washing, and
eating. Relevant neuroplasticity studies have indicated that
SCI patients with physical deficiencies can be partially recov-
ered through proper physiotherapy rehabilitation [4], [5].
However, when patients perform therapy exercises at home,
they can not maximize the therapeutic benefits of activity-
based therapy due to lack of supervision and evaluation.
Besides, usually, rehabilitation assessment of BCI patients
adopts this combination of filling in scales and professional
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judgment of therapists [6]—[8]. The evaluation methods are
heavily depending upon the visual assessment of physical
therapists, according to international standards (e.g., The
International Standards for the Neurological Classification
of Spinal Cord Injury (ISNCSCI)). Meanwhile, the perfor-
mance may be not accurate enough for several reasons, one
of which is the subjectivity of these clinical observations and
evaluation. Moreover, large amounts of money are paid to
Physical Therapist (PT) or Occupational Therapist (OCT),
which increases the financial burden to families of patients.
It is against this background that new rehabilitation
approaches based on Virtual Reality (VR) are being devel-
oped and have been widely applied in the field of augmented
BCI rehabilitation in recent years because of the reduc-
tion of associated labor, providing repeatable rehabilitation
movement training, and accurate evaluation of rehabilitation
performance [9]. The critical technology of virtual reality-
based rehabilitation (VRBR) is to use sensor tools to capture
and quantify the movements of patients for monitoring their
progress precisely [10]. Burdea et al. (1997) were the first to
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FIGURE 1. The system paradigm of the Kinect-based rehabilitation evaluation software. The flow chart of the Kinect-based

evaluation process was given in this figure.

integrate VR technology into hand diagnosis and rehabilita-
tion [11]. During performing exercises modeled on the basis
of standard hand rehabilitation, patient movement state was
fed back using the Rutgers Master worn on the patient’s hand
in the experiment. And after that, VRBR was incorporate
into or was used to replace conventional rehabilitation. Some
studies add extra VRBR devices to obtain outcomes better
than traditional standard rehabilitation in many respects such
as promoting balance [12]-[14], improving walking ability
[15]-[17] and mobility [18], [19].

As the critical component within VRBR, motion cap-
ture (MoCap) via Microsoft Kinect sensor currently has
become increasingly popular in physical therapy and reha-
bilitation, because Kinect does not require users to wear any
marker compared with other sensors [20], [21]. The Kinect
sensor captures depth images as well as color images at a
high frame rate [22]. Color images taken by RGB camera are
used in facial and body recognition. The sensor was used for
measuring the distance of each joint point of the skeleton by
transmitting near-infrared light and calculating the distance
of bounced light propagation [23], [24].

Lots of researches have proved the feasibility of applying
the Kinect-based Virtual Reality system to upper limb reha-
bilitations. Chang et al. rehabilitated two adolescents with
cerebral palsy using a Kinect-based system. Results indicated
that the two participants significantly increased their upper-
limb mobility and improved exercise performance [25].
Hueso et al. introduced a customized Kinect-based VR sys-
tem which allows users to implement cognition and physical
rehabilitation therapies. Therapists are able to configure the
treatment remotely and send them to a personal computer
that belonged to patients. The system is used for collecting
motion information while patients performed rehabilitation
exercises [20].

Nowadays, artificial intelligence (AI) is used in nearly
every medical fields for improving the effectiveness of reha-
bilitation software [26]. For example, Weng et al. (2017)
applied four training algorithms (support vector machine
(SVM), gradient boosting methods, neural networks) on clin-
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ical samples collected from more than 370,000 patients free
from cardiovascular disease to predict first cardiovascular
event over 10-years. Models were evaluated by statistical
analysis (e.g., Area Under Curve (AUC), sensitivity, negative
predictive value (NPV)). The best-performing algorithm was
Neural network which has higher prediction accuracy com-
pared to the established algorithm (American College of Car-
diology guidelines) [27]. Rajkomar et al. constructed a deep
learning algorithm composed of three neural network model
architectures (LSTM, an attention-based model, and a neural
network with boosted time-based decision stumps). Then it
was validated the novel method using electronic health record
data from two US academic medical centers [28].

In this paper, we proposed a novel rehabilitation evaluation
system (RES) based on the Kinect sensor and employed deep-
learning networks combined LSTM with CNN models to
assess the patients. Specifically, with the aid of Kinect-based
skeleton tracking, while patients performed exercises, body
movement was recognized, and the 3D coordinates data were
recorded for further analysis. Furthermore, we trained the
hybrid model on 3D data to classify rehabilitation phases of
patients.

Il. MATERIALS AND METHODS

A. SYSTEM OVERVIEW

The system is composed of a desktop computer, a 3D Kinect
camera and a 40-inch display (Fig. 1). In the evaluation
process, it presents a video where an instructor to perform
correct actions designated by a professional therapist accord-
ing to Brunnstrom Scale: (1) Touching Homolateral Ear;
(2) Shoulder Extension 90 degrees; (3) Shoulder Extension
180 degrees; (4) Scapular Retraction; (5) Shoulder Adduc-
tion; (6) Shoulder Flexion 90 degrees; (7) Shoulder Flex-
ion 180 degrees; (8) Hand Rotation; and (9) Shoulder Back
Extension (see TABLE 1 for detailed explanations).

The rehabilitation system shows patients a series of stan-
dard movements on the screen in the using period. The patient
imitates the instructor’s actions on the screen to perform the
corresponding exercise. In this way, every patient completes
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TABLE 1. The detailed description of 9 action sequences designed by PT
according to BRUNNSTROM Scale assessment.

ID Action Description
Action 1 | Touching Shoulder raise, flexion and adduction from
Homolateral arm above
Ear
Action2 | Shoulder Arm outstretched in front of body with shoul-
Extension 90 | der at 90 degrees flexion, elbow extended to
degrees arm outstretched at side at 90 degrees abduc-
tion, elbows extended
Action 3 | Shoulder Arm outstretched in front of body with shoul-
Extension 180 | der at 180 degrees flexion, elbow extended
degrees to arm outstretched at side at 180 degrees
abduction, elbows extended
Action4 | Scapular Arms extended in front of body at 45 degrees
Retraction flexion, elbows extended - flexing elbows to
bring hands back towards body
Action 5 | Shoulder Shoulder flexion and adduction from arm
Adduction above head across midline of body towards
opposite knee with elbow extended
Action 6 | Shoulder Flex- | Shoulder flexion 90 degrees with elbow ex-
ion 90 degrees tended
Action7 | Shoulder Flex- | Shoulder flexion 180 degrees with elbow ex-
ion 180 degrees | tended
Action 8 | Hand Rotation Rotation of the hand with elbow at 90 degrees
flexion
Action 9 | Shoulder Back | Arm outstretched in back of body with shoul-
Extension der at 45 degrees flexion

all nine tasks described in Table 1. These tasks are designed
by a professional therapist with the purpose of rehabilitating
upper-limb mobility and frequently employed in SCI reha-
bilitation and diagnostics. Each task is repeated twice by
each participant. Meanwhile, the skeletal data captured by the
system via Kinect sensor to represent patient’s movements are
stored into the dataset. The result of the second time was used
for results evaluation.

B. ALGORITHM ARCHITECTURE

Our classification methods is a hybrid deep network
combined by two conventional algorithms, LSTM network
and CNN. The overall neural network architecture which
we construct for classification of rehabilitation is shown
in Fig. 2. It composes primarily of two different neural net-
work architectures, LSTM and CNN. Moreover, we use two
other neural networks, Support Vector Machine (SVM) and
Random Forest (RF) for comparison of classification perfor-
mance. All classifiers perform 3-class classification tasks in
our experiment.

1) LONG SHORT TERM MEMORY (LSTM)

LSTM is a noticeable variation of Recurrent Neural
Network (RNN) that was designed to overcome the short-
coming of conventional RNNs in the long-term dependence
problem [29]. The memory cell ¢;, which makes up LSTM
neural networks and can memory and forget context informa-
tion, is the major innovation in contrast to simple RNNs. The
LSTM cell updates its state information by controlling the
activation of the gates. Formally, the mathematic formulas of
the update of an LSTM unit are as follows,

ir = oi(Wyix; + Wpihy—1 + Weic—1 + by) ()
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FIGURE 2. The system paradigm of our Kinect-based rehabilitation
evaluation.

fo = o (Wypxy + Wyehy 1 + Werer 1 + by) 2

¢ = ficr—1 + iy0c(Wyexy + Whehy—1 + be) 3)
0r = 0o(WroXy + Wioht—1 + Weocr + bo) 4
hy = o;0p(cy) )

where i, f, 0, and c are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which have the
same size as the hidden state vector A (also acts as output)
storing all the useful information, and o is the element-wise
activation function [30]. The term W is the weight matrix
of different gates, with subscripts which indicate from-to
relationships (e.g., W,; being weight matrix for input x and
Wi, being weight matrix for hidden-input /), and b represents
bias vector [31].

2) CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional neural networks have made tremendous
progress in the field of image recognition [32]. CNN can be
regarded as a particular type of back-propagation network
neural. Compared to the standard neural network, CNN intro-
duces convolution and pooling operations to achieve shift and
deformation invariance. Its design concepts are mainly based
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on three ideas: local receptive fields, shared weights, and
spatial subsampling. Local receptive fields mean that a CNN
cell receives inputs from a subset of previous layer’s cells
located in a small neighborhood [33]. CNN runs a small size
window (also so-called convolution kernel) that is convolved
with a local region data over the input so that weights of
the network can extract features from the data. This way
in which one convolutional layer extracts the same feature
using the corresponding window at every position of input
data is referred to as shared weights [34]. Once an abstract
feature has been extracted, the global one becomes unimpor-
tance, as long as the relative relationship can be preserved.
Hence every convolutional layer is commonly followed by
pooling layer which carries out averaging and subsampling
operations, reducing feature dimension, avoiding overfit and
favorable for classification.

3) BATCH NORMALIZATION
Batch normalization (BN) is the most widely adopted
approach that improves the training speed of Deep neural
networks (DNNs) and stabilizes the distribution of inputs by
reducing internal covariate shift. Internal covariate shift is
a phenomenon that the parameter changes of the previous
layers cause the distribution changes of each layer inputs in
the training process. It makes training Deep neural networks
complicated.

Let an m size mini-batch B = {x|_,} be input, Xj
be the normalized values, and y; ., be the output of linear
transformations. The algorithm of BN is described as follows:

o Mean of feature in mini-batch:
1 m
pp < ) 6)
i=1
o Variance of feature in mini-batch:

1 m
ﬁe;;m—wf @)
=
« Normalize feature of samples:

X; — LB

R~ ——= (8)
N oré + €
o Linear scale and shift:
yi < YXi+ B =BN(x) )

where € is a hyper parameter to set in advance. On the
contrary, the parameters y and 8 are learned for optimizing.
The normalized values X has the expected value of 0 and the
variance of 1, and the scaled and shifted value y is passed to
the next layer.

4) HYBRID NETWORK OF LSTM AND CNN

The proposed neural network architecture for assessment of
patient rehabilitation phases is shown in Fig. 2. The whole
network is initialized with random parameters. The input
of the model is three-dimensional data of nine actions in
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cartesian coordinates. The learning rate is Se-4. The data of
one action is taken into a 25-unit LSTM in the first layer
of the network. The facilities are conducive to obtain the
sequences related information as optimal features. The out-
puts of each LSTM are concatenated and then are passed onto
a 1D convolutional layer, followed by Batch Normalization
which is used to prevent the overfitting problem from occur-
ring and makes training more stable for the parameter scale.
After the Batch Normalization, ReLU activation is used to
bring nonlinear components and also make the model have
high expressive power [35], [36]. The convolution operation
routinely followed by a max-pooling strategy, which applies
downsampling on each filter for subsample to reduce the
output dimensionality [37]. Finally, the output of the max-
pooling layer was flattened into a 1D vector, and the vector is
delivered to a softmax classifier through dense connections.

C. COMPARISON ALGORITHMS
1) SUPPORT VECTOR MACHINE
SVM is a common machine learning technique initially
designed to solve classification problems. Given the training
set S = {(x1,y1),...,(, vy}, where x; € R and yi €
{—1, +1}. The SVM model maps the vectors x; into higher
dimensional space by the kernel function & and attempts to
find an optimal separating hyperplane W’ @(x;) +b = 0 with
the maximal margin to distinguish two kinds of samples. The
SVM model can be formulated as follows [38]:
Loy
;n;lé 2w w+ ; &
st yiw' o) +b) = 1 - &
£ > 0. (10)

C > 0 is the penalty factor of the error term, which can trade
off training error and balance model complexity. In this paper,
we used the radial basis function (RBF) is used as the kernel
function and its formula is presented as following,
i — x|
202
Here, o2 is the the kernel parameter.

K (xi, x) = exp(— ) Y

2) RANDOM FOREST CLASSIFIER

Random forest classifier is an ensemble classification method
that the multiple decision trees are integrated. It uses bagging
to generate these decision trees, in which a random sampling
of the training dataset is applied to each tree [39]. Hence
predictions of these trees have low correlation thereby avoid
over-fitting. In addition, during the training phase, Random
forest classifier randomly selects a subset of features to grow
a decision tree. Then these trees predictions are aggregated to
provide a final prediction.

D. SUBJECTS AND EXPERIMENTAL SETTINGS
In our study, 23 subjects performed (14 males and 9 female,
aged from 43 to 56) were recruited by the doctors at Wuxi
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TABLE 2. The comparable classification results for three models. A 3-fold cross validation were used for evaluating the experimental performance.

Method CV1 (%) | CV2(%) | CV3 (%) | Mean Value (%)
SVM 57.1 333 66.7 55.7
RF 429 66.7 66.7 58.8
Hybrid model 85.7 83.3 83.3 84.1

Rehabilitation Hospital. After confirming the approval of
informed consent, they participated in further evaluation tasks
by Kinect-based system. Neither of the participants had pre-
vious experience with Kinect-based system. At last, 19 valid
data were recorded finally. Also, two veteran PTs were invited
to evaluate the Brunnstrom stage for each patient.

The acquired data of one subject contained 9 trials of
action sequences listed as Table 1. The subject needed to
complete the prescribed action in 20 seconds for a trial. In this
one, 26 x 3 x 250 joint points were collected by Kinect
sensor for further analysis. The doctors would assess the
3-class Brunnstrom stages (III IV V) for all patients after
the experiment. The numbers of three classes were 6, 6 and
7 respectively. 3-fold cross validation (CV) method was used
for evaluating the accuracy of three different models.

Ill. RESULTS

In our study, three classification models were used for
evaluating rehabilitation stages. Moreover, two indicators
were used for evaluating the classification results. (1) Accu-
racy rate (ACC): the percentage of successful selections of
Brunnstrom stages assessed by PTs. (2) Receiver operating
characteristic (ROC) curves: a plot of test sensitivity as the y
coordinate versus its 1-specificity or false positive rate as the
x coordinate.

A. CLASSIFICATION ACCURACY

Table 2 showed the comparison results of three classification
methods. Average CV ACCs indicated that the precisions of
all algorithms were higher than the random level of 3-class
classification (i.e., 33.3%). Moreover, our proposed hybrid
model was most excellent in the performance of Brunnstrom
stages assessment.

B. ROC CURVES

In Fig. 3, we listed the ROC curves of every class for three
models. Generally, the area under the curve of the hybrid
model was larger than those of other classifiers for each cate-
gory. Especially for Brunnstrom stage III, the true positive
rate of hybrid model reached the ideal value of 1. These
findings varied that the hybrid model was feasible for Kinect-
based movement data analysis in the field of rehabilitation
engineering.

IV. DISCUSSION

In our study, we proposed a novel combination model of
LSTM and CNN for rehabilitation assessment. The Kinect-
based camera was used for data acquisition. The experimental
result demonstrated that our hybrid model was significantly
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better than other classification methods. The probable reason
was correlated with the structure of deep neural network.
CNN was suitable for extracting local features in the 3D
space. And LSTM was able to solve time series tasks. Hence,
the features of non-stationary 3D coordinate series could be
effectively extracted by the hybrid models.

Another advantage of the hybrid model was its tolerability
against missing data. In our experiment, four partici-
pants (2 persons at Brunnstrom stage III, two persons at
Brunnstrom stage I'V) had not finished all action tasks caused
by extreme impairment of the upper limb. About forty per-
cents of motion data could not be collected for further analy-
sis. They were assigned to O for data preprocessing. Finally,
the ROC curves suggest that the hybrid model had higher
fault-tolerant capability than those of other classifiers. It was
demonstrated that the robustness of our proposed model was
reliable.

Previously, a lot of studies focused on the devel-
opment of relevant Kinect-based exercise and game
application [40], [41]. It was proved that these technologies
were reliable for movement rehabilitation. However, few
works presented somatosensory interactive -based systems
for professional rehabilitation evaluation [42], [43]. Though
the accuracy of their experimental result was higher than
90%. They didn’t provide reasonable pieces of evidence
corresponding to the professional measure paradigm. And our
designed evaluation system was developed by Brunnstrom
Scale. It was objective and credible for users. Furthermore,
we firstly performed multi-class classification for practical
application. It was useful for the patients under treatment.

The distribution of 3 classes was balanced. While the
experimental results showed that the under area of ROC
curves represented Brunnstrom stage V was larger than those
of other categories for each classification models. It was
implied that this category was easier to distinguish among
them. The result was in line with our expectations. The
patients diagnosed at the Brunnstrom stage V could perform
the daily movement of the upper limb without any assistance.
The self-care abilities of them were superior to those of the
disables diagnosed at the Brunnstrom stage IV and III. For
instance, Fig. 4 illustrated the action trajectories of Action
2 from 3-class Brunnstrom stages. Subject 3 took less time
to complete the single motion task. And the line of the third
patient was more regular than those of other subjects. It was
revealed that Brunnstrom stage V was easier to distinguish
from path tracking by Kinect-based sensors.

As introduced, our evaluation system was feasible for
precise measurement without any assistance by professional
doctors. It is confirmed that this device would be exploited
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FIGURE 3. The ROC curves of each class for three classification models.
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FIGURE 4. The action trajectories of Action 2 from 3-class Brunnstrom stages. The time consumptions were 11.32 s, 10.53 s and 5.16 s, respectively.

for the impaired subjects at home. Finally, we hope that this Moreover, our proposed hybrid model was a supervised
technology will be adapted to home-based rehabilitation for learning method. That meant that the robustness of the model
helping patients who lack professional treatment. was supposed to be checked for a mass of clinical trials.
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In the future, we will continue to perform the evaluation tests
for enough cases. And the stability of our assessment model
will be upgraded to the practical level.

V. CONCLUSION

In this paper, we presented a novel hybrid deep network com-
bined LSTM and CNN for rehabilitation assessment referred
to Brunnstrom Scale. The experimental result validated the
reliability of our proposed evaluation method. And the com-
parison result of three machine learning algorithms indicated
that the superiority of our hybrid model for Kinect-based 3D
data analysis.
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