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ABSTRACT Object tracking has been a hot computer vision topic for many years. Although great process
has been made, it still has large room to improve because of the complexity of the natural scene and
the multiple interference. In this work, we improve the object tracking performance in two ways. First,
a sequential scoring model is proposed to integrate the optical flow information of history video frames
into the feature map of current frame. Second, an attention model with optical flow information is used
for further improvement by differentiating the contribution of different positions in the template to the
final response map. On the other hand, the entire model are end-to-end trainable. We test the methods on
OTB (Object Tracking Benchmark) and VOT (Visual Object Tracking) tracking datasets. The experimental
results demonstrate that the improved tracking accuracy and robustness to occlusion, strenuous motion and
vanishing objects.

INDEX TERMS Object tracking, optical flow, attention model, Siamese network.

I. INTRODUCTION
Object tracking has long been a challenging and hot research
problem in computer vision, it requires knowledge and
methods in different fields such as image processing, pat-
tern recognition, artificial intelligence, deep learning, and
fuzzy theory. Object tracking has broad applications in areas
of visual navigation, traffic monitoring, military guidance,
astronomical observation and meteorological analysis [1].
To track the target in videos, the algorithm usually consists
of two models, appearance model and motion model. The
appearance model can be further divided into two categories,
i.e. generative model [2] and discriminant model [3]. The
generative model maintains a target template by learning its
features online and then search for the optimal image region
that best matches the template. The corresponding region is
the predicted position of the target. The discriminant model
considers the tracking process as a binary classification prob-
lem which extracts the features from the target and back-
ground to train a classifier, which is used to separate the target
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from the image background of video frames. Many tracking
algorithms have been developed to attack the problem, for
example, classic tracking methods such as Meanshift [4], [5],
Kalman Filter [6] and Particle Filter [7]; framework improve-
ment algorithms such as TLD (Track By Detection) [8] and
correlation filtering algorithms. Deep convolutional neural
networks have achieved dramatic progress and made tremen-
dous contributions to many important areas of computer
vision and machine learning, including image classification,
object detection, recognition, and semantic segmentation
[9]–[15]. In object tracking, Deep convolutional neural
networks have been successfully applied such as Deep-
SRDCF [16], CCOT [17] and ECO [18].

As one of the fundamental tracking frameworks, Correla-
tion Filter has become a research hot topic and received exten-
sive attention. Thismethod generates high response values for
the object and low response for the background. MOSSE fil-
ter is one of the earliest correlation basedmethods, which uses
an adaptive training strategy and realizes real-time and robust
tracking with variations in lighting, scale, pose, and non-
rigid deformations [19]. After that, a series of improvement
methods have been published. CSK [20] and KCF [21] were
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proposed by Oxford University researchers, which extract the
gradient histogram of the target based on ridge regression
and closed-form kernel solution. Starting from KCF, Mar-
tin Danelljan studied the contribution of colors in tracking
problem and proposed adaptive low-dimensional variant of
color attributes to improve the tracking performance [22].
Danelljan et al. investigated the problem of accurate and
robust scale estimation in a tracking-by-detection framework
and proposed a scale adaptive tracking approach by learning
separate discriminative correlation filters for translation and
scale estimation [23]. In order to deal with fast object motion
in tracking, the SRDCF [24] and CFLM [25] were proposed.
SRDCF ignores some overflowing pixels in samples and sets
the filter coefficient to 0, while CFLM uses larger scale
detection image blocks and smaller filters to increase the
sample ratio.

Since 2015 in-depth study of deep learning has given
rise to the fast development of various fields of computer
vision, including image recognition, object tracking etc. The
advantage of deep learning is its strong ability to learn large
spectrum of image features from low-level edges, corners and
intensities to high-level semantic representations. DLT [26]
is the first deep network framework to use offline training
and online fine-tuning, which has achieved good results in
the OTB dataset [27], but it only uses low-level features and
easily causes vague features. DeepSRDCF [16] improves the
tracking performance using high-level features, but the com-
putation time increases inevitably. In [18], Martin Danelljan
optimized the speed and real-time capability of Discrimina-
tive Correlation Filter (DCF) based methods by introducing
efficient factorized convolution operators and a conservative
model update strategy.Most of the tracking algorithms update
the weights of the convolution neural network (CNN) online
during the tracking, which is computationally intensive, mak-
ing it difficult to use in real-time applications. Luca Bertinetto
from Oxford University put forward a basic tracking frame-
work: SiamFC [28]–[30], which trains the model offline to
learn the similarity to the initial frame using available training
dataset and detects the target online by mutual convolution.
These methods have simple structures and strong portability.

Object tracking can be difficult when the tracking tar-
get is occluded by other unrelated objects, moving strenu-
ously or is vanished. Tracking algorithms should be robust
to these situations [31]. Template update strategy plays an
important role in target tracking. Usually, the template is
either fixed, updated statically or dynamically.Manymethods
fix the initial template frame during the tracking process,
which limits its contribution in the final response. In order
to solve these problems, in this work, we propose a novel
method to integrate the optical flow network and the attention
mechanism with SiamFC framework and achieve end-to-end
training. The framework is shown in Fig. 1. The optical flow
information of moving objects is an important representation
of object motions, which has high phase reliability and strong
robustness to illumination changes. And the attention model
works in a similar way to the attention mechanism of human

FIGURE 1. Framework of fusing optical flow frames with current frame
using sequential scoring model.

brains, which can automatically focus the attention on the
most informative object area.We use a sequential scoremodel
to assign weights to the past frames to indicate the correlation
of the frame withe the current frame. The weights are used
to combine the optical flow information of past frames with
the feature map of the current frame. Besides this, we use an
attention model on the template image to improve the feature
map, considering the fact the many.

We have tested the proposed method on OTB [27] and
VOT [32] benchmark dataset and achieved better results than
methods being compared. The contribution of this paper is
summarized as follows:

1) We design a novel sequential scoring model to aggre-
gate the current and warped optical flow feature maps
of past frames to increase the tracking stability.

2) We propose a novel optical flow attention model
according to the moving direction of optical flow of
the adjacent frame, to enhance the feature expression
capacity of the template frame.

3) We compare the effect of updating template frame
in different ways for tracking methods based on the
Siamese framework, which demonstrates that fixed
template method is the best way for this sort of
framework.

The rest of the paper is organized as follows. Section II
presents the related work. Section III explains the main
method of our work. Experiments and results are presented
in Section IV. And Section V concludes the paper.

II. RELATED WORK
A. SIAMFC TRACKER
In the past a few years, the deep learning algorithm has
become a dominantmethod of single target tracking due to the
excellent tracking accuracy. However, since most of the algo-
rithms update the network weights online during the tracking
process, the test speed becomes a major problem in real-time
applications. Luca Bertinetto from Oxford University put
forward a basic tracking framework, i.e., the fully convolution
Siamese network, which is a similarity based method with
an model trained offline with the initial frame and detects
target position online while tracking. This network SiamFC
is mainly trained on the ILSVRC15 video object detection
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dataset [33] and has achieved good results in the OTB and
VOT datasets. The Siamese network has been widely used
for face recognition, key point descriptions and character
matching.

The tracking problem is in essence a similarity learning
problem with respect to the object in initial frame. SiamFC
compares the similarity between template image in initial
frame and candidate image x in current frame by learning
the matching equation f (z, x) = g(ϕ(z), ϕ(x)), where ϕ() is a
feature extraction network. The target position is determined
by the highest scores. To make SiamFC to run fast, the feature
network of SiamFC is based on AlexNet [34] with the fully
connected layer being removed. The template image z and
candidate image x pass through the feature network to get the
corresponding feature maps of size 6×6×128 and 22×128
respectively. The two sets of feature maps are then convolved
to produce a response map which indicates the similarity
between the template and the candidate image.

B. OPTICAL FLOW FOR OBJECT TRACKING
Recently, optical flow of moving objects has been widely
used in computer vision field, for example, FlowNet [35] and
TVNet [36]. With the help of pyramid network, FlowNet is
the first network that utilize deep CNNS to predict the motion
information. of moving objects. In frame prediction, in order
to generate the middle or next frame, [37] proposed spatio-
temporal video autoencoder which takes a video frame as
input and estimate optical flow based on LSTMmemory state
and the current observation. In the field of pose estimation,
using optical flow across the several frames as temporal
context, [38] predicted the movement and gesture success-
fully in different wild datasets. Applying flow information
in FlowNet, DFF [39] and FGFA [40] eliminated the effect
of obscure objects due to fast motion and shape deformation
in the task of video detection. Last but not least, network-
based flow information has been used in [41] and achieved
convincing results. However, these sorely utilize the flow
feature off-the-shelf and are not trained end-to-end.

C. ATTENTION MODEL
Ignoring irrelevant visual information by intelligently explor-
ing the visual field, attention mechanism is defined as the
active direction of the mind to an object and successfully
applied in the machine translation and other natural lan-
guage processing tasks. For example, Wang eta. utilized a
residual attention network that consists of bottom-up top-
down feedforward structure to perform the image classifi-
cation task [42]. With a sptial attention deep net combined
with partial PSO (Particle Swarm Optimization), [43] Spa-
tial Attention Deep Net with Partial PSO for Hierarchical
Hybrid Hand Pose Estimation achieved better accuracy in
human pose prediction. A video captioning model named
Gaze Encoding Attention Network (GEAN) was proposed
to leverage gaze tracking information to provide the spa-
tial and temporal attention for sentence generation [44].
RASNet [45] put forward a general attention that learns

from offline datasets and residual attention model based on
hourglass network [46].

III. MAIN WORK
A. TVNET
Based on FlowNet [35] and FlowNet2.0 [47], TVNet was an
end-to-end trainable neural network, able to learn optical-
flow-like features from data. TVNet subsumed the optical
flow solver and imitated and unfolded the iterative process
of TV-L1 method [48] so that it can be used directly without
any extra learning. The basic optical flow equation of the
TV-L1 is written as:

min
u(x),x∈�

∑
x∈�

(|∇u1(x)| + |∇u2(x)|)+ λ|ρ(u(x))| (1)

where the |∇u1(x)| + |∇u2(x)| is the smooth condition
and ρ(u(x)) means the assumption of brightness constancy.
To solve this equation, it is transformed to convex optimiza-
tion problem by introducing an auxiliary variable v. The new
optimization problem becomes

min
{u,v}

∑
x∈�

(|∇u1| + |∇u2|)+
1
2θ
|u− v|2 + λ|ρ(v)| (2)

In order to obtain the minimum value of the Eqn. 2, the value
of u and v should be nearly equal. So we can optimize the
Eqn. 2 by fixing the value of u and v alternatively. When
fixing the value of v, the Eqn. 2 becomes:

min
{u,v}

∑
x∈�

(|∇u1| + |∇u2|)+
1
2θ
|u− v|2 (3)

When fixing the value of u, the Eqn. 2 is:

min
{u,v}

∑
x∈�

1
2θ
|u− v|2 + λ|ρ(v)| (4)

For more details about solving the above optimization prob-
lems, please refer to [48].

The central idea of the TVNet algorithm is to transform
the iterative process into a superposition of neural networks
based on the TV-L1 solution. On the one hand, if the number
of iterations is fixed in one loop, the iterative process in the
TV-L1 algorithm can be expanded into a fixed-size feed-
forward network. On the other hand, each iterative process
is continuous, which ensures that gradients can be back-
propagated through the layers, and thus the system is end-
to-end trainable.

B. AGGREGATION USING OPTICAL FLOW
In our methods, the past frames are fused with the current
frame to locate the moving object. For the frame fusion
model, the most critical operation is to warp the candidate
video frame into the target one. For an optical flow network,
the warp operation refers to merging optical flow information
obtained by the features of adjacent history frames through
the optical flow network into the current frame. We follow
the work of [41] to define the warp operation:

fj→i = W
(
fj,Mi→j

)
= W

(
fj,F

(
Ii, Ij

))
(5)
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where Ii is a video frame i, fj is the feature map of frame j,
and F(Ii, Ij) is an optical flow network, such as TV-L1, which
projects a location p in frame i to the location p+δp in current
frame i. So, fj→i denotes the feature maps warped from
previous frame j to current frame i. The warping operation
is implemented by the bilinear functions applied on all the
locations for each channel in the feature maps. The warping
in certain channel is formulated as:

f mj→i(p) =
∑
q

K (q, p+ δp)f mj (q) (6)

where the p =
(
px , py

)
is two-dimensional locations, δp =

F
(
Ii, Ij

)
(p) represents optical flow estimation value for each

coordinate point, and m indicates a channel in the feature
map, q = (qx , qy) enumerates all locations in the feature map.
From Eqn. 6, we can have

∂f mj→i(p)

∂f mj (q)
= K (q, p+ δp) (7)

From the Eqn. 7, we know that the backward propagation
method can be applied in the certain network with the optical
flow feature, which means the model can be trained end-to-
end. The warp operation integrates the information of the
previous frame into the current frame in the form of optical
flow information, providing various information about the
target object, such as different angles, illumination intensity
and degree of deformation.

C. SEQUENTIAL SCORING MODEL
In order to effectively fuse the optical flow information of
past frames with the current feature map, the weights for
history frames are needed to indicate the importance of
aggregated frames at each location. For this purpose, we put
forward a sequential scoring model to obtain the weights.
We adopt the idea of squeeze-and-excitation network [49] to
design the sequential scoringmodel, which learns the weights
according to the loss function through the network. The
sequential scoring model is divided into two network blocks
for extracting and expanding respectively, as shown in Fig. 2.
The extracting network consists of the global average (Eqn. 8)
and the global maximum pooling operation (Eqn. 9).

GS−GA (qT ) =
1

W × H

W∑
x=1

H∑
y=1

qT
(
qx , qy

)
(8)

where the W and H means the width and the height of the
feature map and the qT indicates the candidate history frames.

GS−GM (qT ) = Max
(
qT
(
qx , qy

))
(9)

The above two pooling processes output two T-dimensions
vectors respectively so that we can obtain two sets of weights
through the shared expanded network block. The expanding
network block is defined as follow:

Wex (GS−GA,GS−GM ) = σ (C2δ (C1 (GS−GA,GS−GM )))

(10)

FIGURE 2. System diagram of sequential scoring model.

where the C1 is the fully-connected network with output
dimension is T/r , where r is a scaling parameter that can
reduces or increases the number of candidate frames accord-
ing to a certain ratio, hence decreasing the computational
cost, δ is the ReLU activation layer, C2 is another fully-
connected network with the output dimension the same as
the input dimension, and finally σ is the sigmoid function.
The final output Wex has the dimension of T × h × w,
which contains the weight for each position in the input
candidate frames. Aswe can seeWex is learned from the fully-
connected and activation layers, which can be trained end-to-
end. The input to the sequential score model shown in Fig. 2
is the candidate frames.

D. AGGREGATION BETWEEN DIFFERENT FRAMES
With the sequential score model, we can obtain the weight
matrix Wex , the warped optical flow frames are aggregated
by the weighted summation as

f i =
t∑

i=t−T

wj→ifj→i (11)

where the wj→i is the weight of each spatial locations and
features of the optical flow frame, and fj→i is the warped
optical flow frame. The final f i is the detection frame used
for objection detection, which fuses the information of last
T frames. Fig. 1 shows an example when T = 3. The
instance frame and the last three frames are passed through
the TVNet to calculate the optical flow, i.e. Flow1, Flow2 and
Flow3 respectively. The optical flow frames are cropped to
size of 22 × 22 to match the size of the feature map from
the current frame. Then, the warp operation is performed on
current feature map and each of the optical flow frame. After
this, sequential scoring model takes in all the information to
get the weight matrixWex for each of the three frames. In the
end, the final detection frame is obtained by the weighted sum
of the warped optical flow frames as defined in Eqn. 11. The
overall algorithm SiamFlow is shown in Algorithm 1.

E. OPTICAL FLOW ATTENTION MODEL
When performing the convolution operation between the tem-
plate frame and detection frame, the contribution of different
areas in the template frame is the same, which limits the
discriminating power of the algorithm. To solve this problem,
an attention model is often used to pay more ‘‘attention’’ to
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Algorithm 1 SiamFlow

1 Basic knowledge:
2 crop(. . .): cropping images for network input
3 W (. . .): the optical flow result merges with the current
frame

4 ε(. . .): the mapped feature map
5 GS−GA: global average pooling; GS−GM : Global
maximum pooling

6 C(. . .): the convolution of a template frame with the
current frame

7 P(. . .): find the peak point in the response graph
Input: I1, . . . , In, b1
Output: b2,..., bn
D1,T1← crop

(
Io1 , b1

)
d1, t1← N feature (D1,T1)
for i← 2, . . . , n do
for j = max(1, i− k) to (i+ k) do
fj→i = W

(
fj,Flow

(
di, dj

))
f ej→i, f

e
i = ε

(
fj→i, fi

)
wj→i = GS−GM

(
GS−GA

(
f ej→i, f

e
i

))
end for
di =

∑t
i=t−T wj→ifj→i

ri = C
(
ti, d i

)
bi = P (ri)

end for

FIGURE 3. Effect of using attention model. Left figure: No attention
model used.

the informative areas in the image. Fig. 3 shows the effect of
using attention model. Using attention model, the interested
target will have more weight and have more influence on the
final output. In order to increase the attention of target posi-
tion, we design the attention model by learning the appear-
ance and motion information of target. In object tracking,
the object location is obtained by the correlation operation
f (z, x) = ϕ(z)∗ϕ(X) + b. At pixel level, the correlation
operation can be written as

fx ′,y′ =
m−1∑
i=0

n−1∑
j=0

d−1∑
c=0

ϕi,j,c(z)ϕx ′+i,y′+j,c(x)+ b (12)

where x ′, y′ are the location index in the response map, i, j, c
are width, height, channel index in template image. In order to
get different attention to each position of the template frame,

FIGURE 4. Attention models.

FIGURE 5. Residue block. BN is batch normalization, Relu is the Relu
activation and K the filter size.

we add the weight γ to each template ‘‘pixel’’. Thus we have

fx ′,y′ =
m−1∑
i=0

n−1∑
j=0

d−1∑
c=0

γi,j,cϕi,j,c(z)ϕx ′+i,y′+j,c(x)+ b (13)

So, the correlation operation can be written as f (z, x) = (γ �
ϕ(z))∗ϕ(x)+b, where� represents the element-wisemultipli-
cation and the weight γ is the weights given by the attention
module. As shown in Fig. 4, our attention model is mainly
composed of three parts, i.e. normalized attention module,
Hourglass module [46], and optical flow module. Hourglass
module consists of residual blocks, shown in Fig. 5, which are
useful to extract deep level feature of the target. More details
about the normalize attention model and hourglass attention
model can be found in [45]. The overall attention model is

ω = λ1ωn + λ2ωh + λ3ωf (14)

where λ1,2,3 are scalar weights, ωn, ωh and ωf are the above
three attention modules respectively. And the optical flow
module ωf is defined as

ωf =

√
x2 + y2 (15)

The weight of each pixel location is the norm of the
corresponding optical flow vector.

F. ONLINE TRACKING
1) SYSTEM DESCRIPTION AND TRAINING
The input images are passed through trained feature extrac-
tion network and optical flow network. Then the feature maps
in previous frames are warped to the current one according
to flow information. Warped feature maps as well as the
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TABLE 1. Results of different template updating strategy on OTB-50.

current frame’s are input to the sequential scoring model to
compute the weights for each frame. The detection frame is
the weighted sum of the past frames by Eqn. 11. The estimate
of the current target state is obtained by finding the maximum
response in the score map of the detection frame.

After off-line training as described in Section III,
the learned network is used to perform online tracking.
During the training process, we train the feature net, TV-Net
and sequential scoring model one by one. After training the
adapted AlexNet in SiamFC framework on ILSVRC15 [33],
we fix the feature network and train the TV-Net. And then
fix the feature network and TV-Net, train the sequential
scoring model that is used for combining different detected
frames.

2) THE ANALYSIS OF THE TEMPLATE UPDATE
Our proposed SiamFlow and tracking algorithms based on
the Siamese framework convolve the current frame with the
template to get the response map, which is used to deter-
mine the object location by finding the maximum. Therefore,
the accuracy of such methods largely depends on the template
quality. Some algorithms always set the first frame as the
template frame, such as CMT [50] and SiamFC. This strategy
preserves the original appearance of the object during the
tracking process, but it is hard to deal with cases of object
deformation and rotation.

On the other hand, some algorithms update the
template statically or dynamically. Statical way updates the
template at fixed intervals, while dynamical way updates
the template when it is needed. Updating template stati-
cally suffers from the problem when the tracker loses the
object or the object is occluded or temporarily disappears.
Dynamical way may overcome these problems smartly, for
example, by calculating the Euclidean distance between the
tracking result and the template [51].

To study the effect of template update strategy, we use
OTB-50 dataset to conduct tests with different way of tem-
plate updating. Table 1 shows the tracking accuracy and
overlap ratio of SiamFlow. It can be seen fixing the initial
frame as template all the time is the best way for SiamFlow.
This is because the initial frame retains all the information
of the target appearance. Updating template may introduce
background interference, which will decrease the tracking
performance. In the following tests, we fix the first frame as
the template and do not update during tracking.

IV. EXPERIMENT
We have tested the proposed SiamFlow using OTB and VOT
datasets.

A. RESULTS ON OTB
OTB50 or OTB2013 [27] contains 50 fully annotated
sequences that are collected from commonly used tracking
sequences. OTB100 or OTB2015 [52] is the extension of
OTB2013 and contains 100 video sequences. Some new
sequences are more difficult to track. The evaluation is based
precision plot and success plot. The precision plot shows
the percentage of frames with respect to the center distance
in pixels between the tracking result and ground truth. The
success plot shows the percentage of successful frames with
respect to the overlap ratio between the tracking result and
ground truth. The area under curve (AUC) of each success
plot is used to rank the tracking algorithm.

Fig. 6 shows the comparison results on OTB-50, OTB-100
and OTB-CVPR13 datasets. From the figure, we can see
that SaimFlow is ranked at top 2 on OTB-50 and OTB-
CVPR13, and top 3 on OTB-100. Specifically, when com-
pared to SaimFC, SiamFlow has far exceeded the SiamFC in
accuracy and success rate, whichmeans adding a trained opti-
cal flow network and sequential scoring model can improve
the robustness of the Siamese framework. SiamFlow is also
significantly better than DeepSRDCF and other deep net-
work methods. If under the same network complexity and
amount of training data, the improvement will be even
larger. CCOT, a correlation filter based method, ranks at
top 3 on OTB-50 and OTB-CVPR13 datasets and top 2 on
OTB-100, which is very close to that of SiamFlow. Overall,
SiamFlow is better than CCOT in the three. In the three
tests, MDNet [53] achieves the best performance among the
methods being compared, especially on OTB-50. However,
MDNet establishes a multi-domain network based on specific
video sequence, online fine tunes part of its parameters and
uses a trained classifier to perform the tracking. This makes
the method prone to over-fitting and difficult to migrate to
other datasets without retraining. To verify this, we further
conduct experiments on VOT-2016 and VOT-2017 datasets.

B. RESULTS ON VOT
TheVisual Object Tracking (VOT) challenges arewell known
competitions in tracking community, which have held several
times from 2013. In this subsection, we compare SiamFlow
with entries in VOT2016 and VOT2017 [54].

1) RESULTS ON VOT 2016
Fig. 7 compares the overlap ratio of different algorithms
when testing VOT-2016 videos of different lengths. The
X-axis of Fig. 7 is the video length. The methods are ranked
by the evaluation score using video sequences shorter than
200 frames, which is the dash line in the figure. We can see
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TABLE 2. Tracking results on VOT-2016 dataset.

FIGURE 6. Performance comparison on OTB-50 (upper), OTB-100 (middle)
and OTB-CVPR13 (lower) datasets.

that the expected overlap rate of the SiamFlow algorithm is
significantly higher than other compared methods.

Table 2 compares the performance of these methods on
VOT-2016. From the table, the overlap rate of the SiamFlow
algorithm is 0.5571, second to SSAT (0.57), the failure rate is
lowest, significantly less than that of others. The overall met-
ric is 0.3644, which is the best among thesemethods. The FPS
of SiamFlow is 33.65, less than that of CCOT, but SiamFlow
is sufficient to work in real-time tracking scenarios.

FIGURE 7. Overlap rate comparison on VOT2016 dataset.

2) RESULTS ON VOT 2017
Compared with VOT-2016, VOT-2017 adds some video
sequences with complex backgrounds and tiny objects.
Except for the baseline experiment, VOT-2017 adds real-
time experiments, in which if the tracker does not return the
tracking result within 40ms for each frame, the toolkit will
not wait for the tracker.

FIGURE 8. Baseline results (left) and real-time results (right) on
VOT-2017 dataset.

Fig. 8 shows the results of baseline and real-time tests on
VOT-2017 dataset. It can be seen from the two figures that
SiamFlow has the best average expected overlap ratio.
Especially, in the real-time experiment, SiamFlow is
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TABLE 3. FPS (frame rate per second) comparison on VOT-2017 videos.

TABLE 4. Results comparison on VOT-2017 dataset.

significant better than other methods, including SiamFC and
SiamDCF, which is also based on Siamese framework.

Table 3 shows the FPS on some of videos of VOT-2017.
It shows that the FPS of SiamFC and SiamFlow is much
higher than that of other deep learning methods such as
ECO and CFCF. Because we add the optical flow network
and sequence scoring model based on SiamFC, SiamFlow
is slower than SiamFC. However, it is still much faster than
other methods.

Table 4 shows the test results on VOT-2017. As shown in
the table, SaimFlow has the best overlap rate, its failure rate is
18.8776, less than the best one CCOT (17.3674). But in terms
of the overall metric, SaimFlow ranks at top 1 with the score
of 0.3021, which is significant better than other methods. And
the FPS is 29.3197, second to the best one SiamFC (31.889).

C. ABLATION ANALYSIS
In this section, we conduct two experiments to study how
the algorithm configuration affects the tracking performance.

The first test with OTB-50 dataset is to analyze the effect
of the optical flow network and sequential scoring model.
Table 5 shows the corresponding results. From the table,
we can conclude that trained optical flow and sequential
scoring model improve the tracking accuracy and success
rate, and using fixed optical flow plus sequential scoring
model or trained optical flow alone gives much worse results.

The second test is to investigate the impact of attention
model on the Siamese tracking network. The experiment is
done on datasets of OTB-50, OTB-100 and OTB-CVPR13.
In Fig. 4 and Eqn. 14, we use the weighted sum of three
attention modules. In Table 6, we compare the results of
different combination of these attention models. We can see
that in the first row, the performance is theworst, which shows
using attention model enhances the ability of recognizing the
object on the template. Secondly, when it comes to different
individual attention model, hourglass attention model is the
best in the table, due to its complex network structure and
deep optimization of the residual blocks. Thirdly, comparing
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TABLE 5. Results of different algorithm module configurations on OTB-50.

TABLE 6. Result of using different combination of attention models. HA: Hourglass attention model, NA: Normalize attention model, FA: Optical flow
attention model.

the performance of single models and that of combined mod-
els, combined models shows advantages over single models.
Specifically, optical flow attention model plus hourglass
attention model achieves the best performance on all three
tests.

V. CONCLUSION
This paper proposes SiamFlow based on SiamFC to improve
the tracking performance in two ways. First, the optical flow
information of past video frames by the optical flow network
are warped into the feature map of the current frame. The
warped feature map are then combined using the weights
given by the sequential scoring model to get the detection
frame, in which the object is to be located. Second, we apply
the attention modules on the template to further improve
the tracking effect. Specifically, the attention model is the
weighted sum of normalized, hourglass and optical flow
attention modules. Experiments on OTB and VOT datasets
have shown that combining optical flow information of his-
tory frames and attention models improves the tracking per-
formance. As part of future work, to further improve the per-
formance and robustness of object tracking, we are exploring
new methods such as geometrical algebra as it can be used in
higher dimensional image representation [55], [56].
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