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ABSTRACT Sleep is a key marker of health, as it can either be a cause or a consequence. It is traditionally
studied in clinical environments using dedicated medical devices. Recent technological developments, e.g.,
in sensing and data analysis, have led to new approaches for sleep monitoring and assessment, which are
attracting increasing attention in the emerging domain of personalized smart healthcare. Nevertheless, a high-
level overview of technology-enabled research on sleep that can inform related communities of the latest
developments is lacking. In this paper, we present a comprehensive review to examine the current status of
various aspects of technology-based sleep research. We first characterize sleep behavior and key areas of
sleep assessment, and we introduce a general review of the methodologies used in this domain. We review
the major technological methods and trends associated with sleep monitoring, data collection and sleep
behavior analysis, from which strengths and weaknesses are highlighted. Finally, we also discuss challenges
and promising directions for future research.

INDEX TERMS Sleep behavior analysis, home environment, wearables, polysomnography, actigraphy,
sleep stage classification, sleep positions, sleep disorders, disease recognition, data mining, machine learn-
ing, deep learning, sleep monitoring, sleep parameters.

I. INTRODUCTION
Sleep influences people’s lives but still remains mysterious in
many ways. It is a recovery mechanism in which heart rate
and breathing are slowed, approaching a state of paralysis
of the body, while the brain processes experiences from the
day and relaxes. Sleep is necessary for life, although the
evolutionary reasons for this process have not yet been fully
explored. Sleep status can be assessed using physical or
physiological parameters, such as respiration rate, heart rate,
temperature and body movement [1]. Based on the features
extracted from these parameters, sleep behavior can be deter-
mined in terms of sleep time, duration, latency, arousal, wake
after sleep onset (WASO) and sleep efficiency (SE) [2].

Sleep behavior is traditionally studied in clinical environ-
ments and is still the commonly accepted method for sleep
assessments. Polysomnography (PSG) is the main medical
gold standard used for sleep disorder classification, such as
sleep-related breathing disorders [2]. This system calculates
SE, sleep latency, arousal index, sleep stages and other sleep-
disorder-related factors from the measurement data. In addi-
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tion to PSG, another important tool is the noninvasive actig-
raphy, which measures acceleration to extract information
from movement-related changes [1]. These technologies are
mainly used by clinicians and have certain restrictions. The
restrictions for PSG include short-term sleep monitoring and
expensive equipment. Furthermore, it is well known that a
first-night effect is present during laboratory recordings, and
at least two consecutive nights of data collection are neces-
sary, especially for patients with insomnia [3]. For actigraphy,
the available sleep information is restricted based on the
collected movement data. Medical research is interested in
automating processes to provide faster and earlier diagnoses
of sleep disorders and exploring night behavior.

Computational methods are trending and able to address
more complex problems. These include the diagnosis of sleep
disorders, investigation of the areas that are influenced by
sleep and recurrent sleep patterns. Moreover, IoT devices are
advancing, creating new opportunities and attracting increas-
ing attention in home-based sleep assessments. Home-based
monitoring allows self-assessment and self-management of
sleep status on a day-to-day basis within a person’s natu-
ral home environment. The devices used in this field vary,
e.g., smartwatches, radio signals or Doppler radar devices.
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The collected data are analyzed and assessed by applying
data mining and machine learning techniques to extract key
sleep parameters and indicators. Home-based sleep assess-
ments with sensor technology can not only help individuals
assess and manage their sleep but also help researchers find
connections and correlations between, e.g., day and night
behaviors [4].

Many studies have investigated the use of various tech-
nologies for sleep monitoring and assessment, as well as the
influence factors of sleep. Although substantial progress has
been achieved, challenges and gaps remain in terms of (1)
the accuracy and validity of the proposed methods towards
gold standards and (2) correlations between sleep and daily
behavior. Review papers regarding sleep mainly concentrate
on the medical viewpoint using medical devices [2], [5], [6],
excluding the interesting computational component, espe-
cially in home applications. The signals used in sleep analysis
are discussed in [1], but over the past years, technologies have
advanced, and new devices and areas have been developed.
This includes automatic sleep disorder detection and new
developments in techniques such as deep learning. Never-
theless, a comprehensive literature review that can inform
researchers and practitioners of the state-of-the-art in this
emerging research field and highlight research opportunities
and directions is lacking.

This paper is structured as follows: Section II characterizes
common sleep behavior considering movement, stable states,
abnormal behavior, and how they relate to sleep disorders.
In section III, sleep monitoring and data collection are dis-
cussed, introducing important sleep parameters and devices
from medical and research perspectives. The focus is on
section IV, which reviews computational methods for sleep
behavior analysis in the fields of sleep stage classification,
sleep position recognition, and disease investigation.

II. SLEEP BEHAVIOR CHARACTERIZATION
Sleep behavior can basically be divided into movement and
stable states. Movement contains information about sleep and
wake episodes fromwhich sleep stages can be extracted. Con-
versely, stable states mainly describe sleep positions during
periods without movement. Accordingly, normal and abnor-
mal behaviors can be characterized, possibly leading to the
diagnosis of sleep disorders and chronic diseases.

A. MOVEMENT BEHAVIOR
Sleep is a relaxed state that still contains self-induced
movements, mainly to prevent pressure ulcers [7]. These
self-induced movements are defined as movement states that
create behavior over time. Movement is the main information
source for most sensors. An exception is PSG, which is based
on a combination of motion and non-motion information.

Movement behavior can be used to distinguish sleep from
wake episodes [8]–[11]. Based on this information, objective
sleep features can be extracted, e.g., sleep continuity [12],
efficiency [11], and time [13]. Combinations of motion
and non-motion information lead to sleep motion behavior,

which can be further correlated to sleep stages. Sleep stages
describe different levels of sleep, provide hints about patient
health and are one of the major aspects considered during a
PSG visit.

Many disorders exhibit correlations with specific anoma-
lies in sleep cycles or amount of time in specific sleep
stages. Normally, sleep stages are measured and defined over
brain-wave data but are considered difficult to classify and
therefore need trained technicians to be distinguished [1].
Abnormal movement during sleep helps to diagnose cer-
tain diseases. This includes movement from the eyes, chin,
limbs, chest wall, and upper abdomen [5]. Based on irreg-
ular movements, sleep-related movement disorders can be
diagnosed, such as periodic limb movement disorder, restless
legs syndrome, and sleep-related bruxism [5]. Furthermore,
irregular movements can help to diagnose disorders, such
as rapid eye movement (REM) disorders or sleep apnea.
Sleep apnea can be measured by respiration effort over
abnormal abdomen movement during apneas [5]. Abnormal
wake-sleep behavior during the day is used to diagnose
circadian rhythm sleep-wake disorders [5]. This knowledge
can potentially help investigate the severeness of insomnia
based on the wake and sleep periods during the night. From
movement behavior, various information can be obtained, but
it can still be extended by investigating the periods with no
motion.

B. STABLE STATE BEHAVIOR
Stable states investigate the periods in rest with nomovement.
These stable states are mainly related to sleep positions. Sleep
postures are independent from sleep stages [14]; therefore,
they provide additional insights into sleep behavior [15].

During periods without movement, four basic sleep pos-
tures can be distinguished, i.e., supine, prone, right, and left
lateral. Sleep position tracking is predominately motivated
by the prevention of pressure ulcers [15]–[17] or based on
the influence on sleep apnea [15], [18]. For sleep apnea,
sleeping on the back, i.e., supine position, relates to a higher
apnea/hypoapnea index (AHI) compared to laying on the
side [18]. Moreover, sleep parameters such as sleep quality
are influenced by different sleep positions [19].

Research mainly concentrates on monitoring the four basic
sleep postures, but postures with a higher granularity, includ-
ing leg positions, are also of interest [15]. Sensors in this
field can be (1) applied in or on the bed [16], [17], [20]–[22],
(2) wearables [19], [23] or (3) imaging devices [24]. These
approaches will be discussed in more detail later.

C. SLEEP AND HEALTH CORRELATIONS
Sleep behavior is manifested in established sleep parame-
ters. These parameters have proven useful in investigating
abnormal sleep behavior. Consequently, abnormal behavior
can classify sleep disorders and is related to certain chronic
diseases [25].

Certain sleep patterns are used to define sleep disorders
and have already been investigated for sleep apnea [26] and
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FIGURE 1. Application area of sensors in the medical field for (a) polysomnography and (b) actigraph device. Figures adapted from [44]. (c) Placement of
nonwearable sensors in home environments. Figure of bed adapted from [45].

insomnia [27]. The diagnosis of sleep apnea relies on sensors
in a sleep clinic, whereas the diagnosis of insomnia is often
based on subjective sleep questionnaires [2]. Sleep apnea is
diagnosed using AHI, which represents the apnea and hypop-
nea events per hour [28]; see table 3. An AHI of less than 5 is
interpreted as healthy, whereas an AHI between 5 and 15 is
classified as mild obstructive sleep apnea, an AHI between
15 to 30 is classified as moderate sleep apnea, and an AHI
higher than 30 is classified as severe sleep apnea [25]. For
insomnia, the Insomnia Severity Index and Bergen Insomnia
Scale can be used for the assessment [2]. Medical history and
physical exams can be used in combination to quickly and
accurately make diagnoses, such as explored for sleep apnea
diagnosis in [25]. Sleep disorders are generally related to poor
sleep quality. They are common in the population and add
costs to health care and the economic system [1]. A chronic
lack of sleep can lead to impulsive behavior, depression,
and chronic illnesses. However, when people rest well, their
well-being benefits, and they can better handle pressure and
stress [29]. Additionally, sleep quality has a high impact on
physical and mental well-being [30]. Therefore, monitoring
social and sleep behaviors can help the early diagnosis of,
e.g., major depressive disorder [31].

Furthermore, sleep behavior is related to chronic dis-
eases. The diagnoses of these diseases are generally based
on (1) invasive methods, e.g., blood sugar screening;
(2) clinical history, including symptoms, and risk factors;
or (3) sensor-based data, e.g., with blood pressure mea-
surements [25]. Current research investigates early disease
detection by marker-based clinical analysis or sensor-based
behavioral analysis [25]. Sensor-based analysis uses data
mining on sensory data, such as actigraphy, to investigate
Alzheimer’s disease [32], Parkinson’s disease [33], diabetes,
hypertension, and chronic kidney disease (CKD) [25], [27].

III. SLEEP MONITORING AND MEASUREMENTS
In this section, home-based technologies, medical devices for
sleep assessment, and sleep parameters are discussed.

A. SLEEP MONITORING IN THE MEDICAL DOMAIN
The gold standards for assessing sleep disorders and issues
from a medical expert’s perspective are PSG and actigraphy.

1) POLYSOMNOGRAPHY
PSG is a method that collects sensory data from devices
applied to the human body and within the environment.
The wearable devices that can be used in a PSG setting
are electroencephalogram (EEG), electrooculogram (EOG),
electromyogram (EMG), electrocardiogram (ECG), pulse
oximetry, respiratory monitors, capnography, transcutaneous
monitors, thermometers, esophageal tests, nasal and oral air-
flow sensors, gastroesophageal monitors, and blood pressure
monitors [2], [34]. The application area of these specific
sensors is shown in fig. 1a. The nonwearable sensors that are
applied in the environment are microphones, video cameras,
and light intensity sensors [2].

PSG monitors brain and heart signals and movement. This
method is predominately used for assessing sleep disorders
such as sleep apnea and restless legs syndrome. Factors such
as sleep stages, SE, sleep latency, and arousal index can be
extracted from the data [35]. To extract knowledge from the
data, scoring methods are applied. The clinical gold standards
for sleep scoring with PSG are the Rechtschaffen and Kales
(R&K) method [4], [36] and an alternative method presented
by the American Academy of Sleep Medicine (AASM) [37].
The scoring is generally based on 30-second epochs [35].
Originally, six sleep stages [36] were assessed, wake, REM,
S1, S2, S3, and S4, whereas AASM [37] provides five stages:
wake, REM, N1, N2, and N3. In general, R&K stages can
be interpreted as AASM stages by combining S3 and S4 as
N3. In table 1, a description of the sleep stages and difference
between the guidelines are presented.

The higher number of body-attached sensors has the draw-
back of falsified sleep behavior, which does not represent
the natural habit. This leads to the advice that at least two
consecutive nights of data collection should be performed [3].
Another issue is that the method is expensive due to the labo-
ratory setting and the fact that an observer is needed to check
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TABLE 1. Sleep stages for AASM [37] and R&K [36].

the functioning of the applied devices during the night [7].
Research on PSG is currently focusing on how to reduce
the number of sensors while automatically recognizing the
main sleep behavior measurements. This leads to studies with
single-channel EEG in sleep stage classification [40]–[42],
which can more easily be applied at home.

2) ACTIGRAPH UNIT
Actigraph devices are able to measure activities during
a 24-hour time period and are therefore also used in sleep
assessments. The device is widely accepted for objective
sleep quality measurements. An actigraph is a wearable
device attached to the nondominant wrist, providing infor-
mation about sleep-wake patterns during the night [7]. The
device can be used at home, which has the advantage of
interfering less with natural sleeping behavior.

Actigraph monitors are mainly based on accelerometer
data but can also include gyroscopes and magnetometers.
Ambient light is generally collected to help in wake-sleep
recognition. Furthermore, personal inputs can be given that
tell the device when the sleeping period starts. The usual
assessment consists of seven consecutive days to obtain a
representative picture of the patient’s sleep. This can also
be considered the recommended amount of days [43]. This
method is an unsupervised wearable approach for sleep anal-
ysis. The application area of the sensor is shown in fig. 1b.
Current research is concentrating on extracting knowledge
from the already processed data coming from medically
approved devices such as ActiGraph or Actiwatch. These
systems provide activity levels with wake and sleep labels.
Activity levels provide the intensity of movement within a
usual 30-second interval.

B. HOME-BASED SLEEP MONITORING
Sleep monitoring at home is generally accomplished through
wearable or nonwearable devices.

1) WEARABLE TECHNOLOGY
Wearable devices are attached to the human body. Small sen-
sors are typically attached to one of the following areas: wrist,
chest, ankles or hip. The advantage of these sensors is their
low cost and easy application at home. Data are gathered from

sensors such as 3-axis accelerometers, thermostats or pho-
toplethysmography (PPG). Knowledge is generally obtained
by applying data mining techniques for sleep position detec-
tion [15], [23], [46], sleep stage classification [4], [9], [11],
[47], heart rate [29] and respiration rate [46] analysis, and
body temperature monitoring [29], [48].

Sleep position detection is usually investigated using either
accelerometers [15], [46] or wearable wireless devices [23]
on the chest or ankles. In general, sleep stage classification
uses either only 3-axis accelerometers [9], [11], [47] or in
combination with, e.g., chest strap on wrist and ankle [4];
alternatively, such classification can use PPG [8], [49]. Other
sensors include thermometers that measure body temperature
to extract sleep and wakefulness [48]. Research also applies
commercial wearables that are available on the market, typ-
ically smartwatches, e.g., for sleep behavior analysis, deter-
mining that automated self-management tools reduce burdens
and increase efficiency [50]. Various devices are available
and have already been analyzed in terms of performance and
accuracy [13], [35], [51]–[55] and user perception [35], [56].
The devices considered in the performance investigations
are Actiwatch, ActiGraph GT3X+, FitBit Flex/One, FitBit
Charge 2, FitBit Alta HR, Misfit Shine, Basis Health Tracker,
Withings Pulse O2, GENEactiv, Jawbone Up3 [13], [35],
[51], [55]–[60], ResMed S+ [54], EarlySense [53], Smart
Eye Masks [61] and Microsoft Band I [34]. A summary of
the Bland-Altmann mean difference and error percentage is
shown in table 2, excluding values that are not significant
(α = 0.05). The output shows that most of the sleep devices
overestimate the total sleep time (TST), where Actigraph
GT3X+ (4 min) provided the most relevant output compared
to the Z-machine [13] and FitBit Charge 2 (-9 min) compared
to PSG [55] considering healthy participants. For SE mea-
surements, Actiwatch (4.8%) performed with the best accu-
racy [60] for healthy individuals, and FitBit Alta HR (2%)
performed the best for individuals with specific diseases. Fit-
Bit Charge 2 (24.5 min) represents WASOmost accurate [59]
for healthy individuals, whereas Actiwatch (−21.6 min) [60]
is the most accurate for participants with medical conditions.
FitBit Charge 2 (4 min) can represent sleep onset latency
the best [55] for healthy individuals, whereas FitBit Flex
(2.4 min) [60] does so for individuals with medical condi-
tions. The differences between these investigations are also
dependent on the participants included, which means that
for healthy individuals and those with medical conditions,
agreement changes [62]. ForMisfit Shine and Basis, light and
deep sleep can be distinguished, and a comparison reveals that
Basis performs more accurately thanMisfit Shine [52]. Addi-
tionally, accelerometer data extraction is over- and under-
estimating certain sleep parameters compared to PSG [12].
Ravichandran et al. [35] reviewed different sleep-sensing
devices and their performance in relation to the opinions
of experts and end users. They investigated Misfit Shine,
Jawbone UP3, FitBit One, and FitBit HR. Overall, experts
are concerned that sleep quality information is inaccurately
transported to end users. Design recommendations based on
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TABLE 2. Wearables validated against PSG if not otherwise indicated
with Z-machine (Z). The Bland-Altmann-Mean-Difference is given in
percentage (%B) or minutes (m).

the level of automation, understandable visualization, and
emotional influence factors were investigated in [56] con-
sidering Polar Loop, Jawbone Up3, Misfit Shine, and FitBit
Flex.

2) NONWEARABLE TECHNOLOGY
Nonwearable devices are not attached to the human body and
therefore are the least interfering sleep assessment method,
not disturbing the person’s regular sleeping habits. In general,
techniques are based on either single devices, e.g., Kinect
sensors, or multiple devices, e.g., integrated in smart beds.
Movement investigations use data collected from sleep track-
ers. There are already applications on the market for sleep
self-management with smart devices, providing insights into
users’ sleep.

Nonwearable sensors are widely applied, such as load
cells, force sensors, air cushions, pressure pads, water-filled
vinyl tubes [7], smartphones [31], [63], Shimmer sen-
sors [10], Doppler radar signals [64], [65] also with
sound signals [65], [66], pressure sensors [16], [17], [17],
[20]–[22], [67], and radio signals [68]. Air cushions under the
bed collect data such as respiration rate, heart rate, and body
movement to estimate sleep stages. Equally, a water-filled
tube under a pillow can be used to record these three features.
Additionally, pressure pads can be used to evaluate the heart
and breathing rates and even snoring, body movements, and
sleep apnea events [7]. However, load cells are employed to
detect movement and sleep-wake patterns and estimate deep
sleep stages. Pressure sensors integrated in mats, beds or bed-
sheets typically report good performance in detecting body
locations and positions in the bed [15]–[17], [17], [20]–[22],
[67], and even sleep stages can be extracted [23]. However,

imaging devices are also used to detect sleep postures, such
as Kinect sensors [24] and depth cameras [30], [69]. In sleep-
wake and sleep stage recognition, Shimmer sensors on the
bed [10], Doppler radar [64], and sound signals [65], [66]
were investigated.

Sleep trackers that are applied within the environment
include smartphones, smart mats or whole beds. Smartphone
applications are the most easily accessible for users and
therefore an inexpensive method for sleep tracking. Smart-
phonesmonitor behavior during sleep, including noise, audio,
ambient light, and movement [63], where less mobility and
phone usage relate to better sleep [31]. A large number
of applications attempt to provide insights into daily sleep
cycles, SE, and duration [70], [71]. Additionally, some appli-
cations provide the opportunity to self-report moods and daily
habits [70].

Smart mats are a good source of information, are easily
applicable, and provide higher accuracy. There are various
devices on the market that use smart mat technology to col-
lect movement, heart rate, and respiration rate [7]. Different
sensors can be integrated into smart beds, such as force,
piezoelectric, and pressure sensors [7]. Others also combine
this technology with environmental sensors [7]. Based on
these data, specific sleep-related information, e.g., bed exits,
and sleep statistics, such as sleep quality and movement [7],
can be provided to the users, which is useful in, e.g., pain
management and fall prevention [7]. The locations of non-
wearable devices inside a sleeping environment are depicted
in fig. 1c.

C. DISCUSSION AND SUGGESTIONS ON SLEEP
MONITORING
There are advantages and disadvantages for all sensors that
must be carefully considered based on the area of exploration.

Actigraph units and PSG are used for different areas
of investigation. PSG provides the highest accuracy but is
expensive, can only be performed in a supervised labora-
tory setting, and interrupts the person’s sleep. PSG requires
two days of data collection and applies more than three
sensors. In comparison, home-based actigraphy needs at
least 7 days of collection and only one sensor, resulting in
low costs, not intervening with the natural sleeping habit,
and providing intermediate accuracy. Nonwearable devices
applied in the environment at home are the least inter-
fering method but have less accurate outcomes, e.g., for
smartphones [72], and are often immobile compared to
wearables.

Although imaging can generate good position recognition
outcomes, it leads to privacy concerns and cannot accurately
recognize movements through blankets [15], [24]. In sleep
position recognition, nonwearable devices generally cannot
distinguish supine and prone positions. In contrast, a wear-
able approach provides a mobile solution with limited privacy
issues and is able to distinguish between multiple people
in one bed. However, it still relies on body-worn sensors,
which can create discomfort [15]. Sleep stage recognition
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depends on more advanced technology measuring EEG data.
Currently, research is advancing wearable technologies such
as actigraphy to be easier to apply at home. Details can be
found in IV. Self-management becomes much more acces-
sible for users at home. Thus, current research suggests dif-
ferent devices depending on the sleep factors of interest; for
details, refer to table 2. The easiest devices to start with are
smartwatches, as they have a reasonable accuracy compared
to smartphone applications and are more accessible than
smart beds. Although numerous ready-to-use applications
are available with different collection processes and outputs,
open issues such as accuracy and validity remain. When
choosing the ideal wearable device for investigation, it is
suggested to consider the target group, as this can influence
the accuracy of wearable devices [62]. Another usual general-
ization problem comes with validating small datasets, which
does not allow overall conclusions such as in [31].

D. MEASURED SLEEP PARAMETERS
The main features describing sleep are respiration rate, heart
rate, temperature, body movement [1] and brain waves [2].
Considering various hypotheses, different features are impor-
tant and are weighted more strongly than others. Depend-
ing on the aim, objective or subjective measurements are
explored, which present different insights into the sleep of
individuals; for details, refer to table 3.

1) OBJECTIVE SLEEP MEASUREMENTS
Objective sleep parameters are concluded from sensor data.
These parameters include sleep stages, disturbances, sleep
regularity, SE, duration, latency, arousals, spindles, and many
more. For example, sleep stages are investigated by heart
or respiration rate using the knowledge of existing relations
between them [73], whereas skin temperature can be used for
estimating disturbances [48]. Sleep continuity is based on the
percentage of TST in each sleep stage, SE, and the arousal
index [12]. Sleep quality, regularity, sleepiness level, and
chronotype are considered new insight indicators investigated
with wearable devices compared to traditional parameters,
such as time falling asleep, number of awakes, and sleep dura-
tion [74]. Explicitly, sleep regularity measures the affinity
between sleeping periods from consecutive days [74], [75].

2) SUBJECTIVE SLEEP MEASUREMENTS
Subjective sleep parameters are typically assessed by sleep
questionnaires that extract information from users by asking
questions to assess sleep issues [2]. These sleep parameters
include, e.g., nightmares, bedtime, and rise time; see table 3
for details [74]. The extracted factors can be assessed with
different techniques, such as the SATED assessment [35],
Consensus Sleep Diary, Pittsburgh sleep quality index, Mini
Sleep Questionnaire, Epworth Sleepiness Scale, Insom-
nia Severity Test, and Sleep Disorders Questionnaire [5].
We refer to the work of Ibáñez et al. [5] for a thorough review
of subjective methods.

TABLE 3. Subjective and objective sleep parameters adapted from [2],
[74]–[80].

3) DISCUSSION ON SLEEP PARAMETERS
Objective methods monitor and measure individuals’ sleep
behavior in a specific setting, e.g., PSG in a hospital. In com-
parison, subjective sleep analysis has the advantage that
experts are not necessary and are not location dependent, but
the disadvantage of inaccuracy remains [74]. These methods
are occasionally difficult to compare, as definitions are not
consistent in objective and subjective feature calculations.
In table 3, features and their formulas are presented. Some of
the formulas are for PSG and can be translated to actigraphy;
others are developed specifically for actigraph data.

IV. COMPUTATIONAL ANALYSIS METHODS
The main methods for sleep behavior analysis are data
mining techniques, such as artificial intelligence, and
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statistical analysis. Statistical analysis is a well-developed
method, whereas artificial intelligence has recently become
more popular in the fields of health and medicine. It has
proven to be a good performing method for analyzing more
difficult scientific problems, such as sleep behavior and dis-
ease detection. Various techniques are available and per-
form best for specific sleep problems. Prominent methods
are random forests (RFs), decision trees (DTs), support vec-
tor machines (SVMs), k-nearest neighbors (kNNs), hidden
Markov models (HMMs), Bayesian classifiers (BCs), neural
networks (NNs), and deep learning methods. Specifically,
deep learning can be described as an NN with more than
three layers. Methods such as recurrent NN (RNN), e.g., long
short-term memory network (LSTM) and convolutional NN
(CNN), are adapted in sleep research.

Wewill discuss computational sleep behavior analysis with
a focus on machine learning approaches for the main prob-
lems, such as sleep stage, sleep position, and sleep disorder
investigations.

A. CHARACTERISTICS OF COMPUTATIONAL METHODS
The applied computational methods in sleep research must
be chosen carefully as they influence the expected results,
limitations and discussions.

DTs extract rules to split data into subsets represented in a
tree structure [81]. RFs are a collection of multiple DTs that
can counteract the issue of DTs easily overfitting the training
dataset due to the law of large numbers [82]. SVMs represent
data in a higher-dimensional feature space to separate classes
by hyperplanes, which makes SVMs slow to train on large
datasets as they solve a quadratic problem where the number
of variables is equivalent to the quantity of training data [83],
[84]. The performance is sensitive to the choice of the ker-
nel and parameters [83]. KNNs use the k-nearest neighbors
within a metric space to decide to which class new data points
belong. The model calculates the distance (commonly the
Euclidean distance) to every neighbor for each prediction step
and performs slowly when many predictions are made [85].
HMMs are based on Markov chains, where the current state
depends on the previous states, to represent transitions and
observations [86]. Naive BCs, which assume that features
are independent of each other following the Bayes’ theo-
rem, are a very simple approach that require little training
data [87], [88]. NNs are based on layers of artificial neurons.
Functions are applied to the layer inputs, and the outputs are
sent to the next layer. The training process is based on weight-
ing, from which predictions can be made even for incom-
plete information. NNs need long training times because
of the large number of parameters that are best determined
empirically and are difficult to interpret for humans [88].
NNs with more than three layers are considered to be deep
learning methods and are extensively used currently due to
the good performance and the advantage that even without
preprocessing, good features can be generated from raw data.
However, it is not possible to see which features are important
or how the outcome is produced, and a large quantity of

training data is necessary, resulting in high computational
cost. In sleep research, time-series data are often collected;
therefore, specific methods, such as LSTM, are designed to
incorporate the time aspect. However, in certain cases (e.g.,
sleep position detection) good outcomes can still be achieved
if the time component is ignored.

Descriptive statistics, e.g., principal component analy-
sis (PCA) [89], draw conclusions based on the data itself,
whereas inferential statistics, e.g., logistic regression (LR),
draw conclusions based on samples from the population.
Classic LR is often used to analyze accelerometer data as
LR is easy to interpret but is subject to limitations. LR is
usually unsuitable for learning complex patterns from noisy
accelerometer data; therefore, higher-level features are often
extracted, which requires expertise and is potentially time
consuming. Furthermore, these methods do not use task
labels for feature construction and therefore cannot learn
task-specific features [78].

B. VALIDATION OF SLEEP ANALYSIS METHODS
Most technologies and approaches, such as home-based sen-
sors and single-channel EEG, are tested against the gold stan-
dard PSG. Researchers should be aware that the interscorer
agreement of human-scored parameters does not have a per-
fect agreement but rather 82.6% [90]. This can result in a bias
towards a rater’s style if only one person scores sleep data.
It also means that discussions need to take this into account.
Seldom, data from actigraph units are used for validation [10].
The most often applied performance measures in computer
science are accuracy, recall (=sensitivity), specificity, preci-
sion, and Cohen’s kappa (κ). Thesemeasures are also used for
validation purposes in sleep behavior analysis. Occasionally,
the receiver operating characteristic (ROC) curve, area under
the curve (AUC) or F1 score is given.

Accuracy is the percentage of predictions that a specific
classifier correctly makes. Sensitivity describes the capability
of the classifier to recognize true positives, and specificity
indicates that it does not generate a false negative [26].
Specificity is defined over the number of false positives (FPs)
and true negatives (TNs), whereas precision is the positive
predictive value [42]. The F1 score based on precision and
recall can be calculated with macro- and micro-averaging
methods. The multiclass F1 score is based on the weighted
individual class scores. The macro F1 score is uniformly
weighted, whereas the micro F1 score is measured by cal-
culating the overall number of false negatives (FNs), true
positives (TPs), and FPs [42]. Accuracy and precision (recall)
are not able to completely describe the situation in mul-
ticlass classification. Additionally, for imbalanced classes,
accuracy can be misleading; therefore, precision and recall
are of importance, for example, represented by the F1 score.
Regardless, the drawback is that the F1 score has no good
intuitive explanation [91]. Therefore, Cohen’s kappa statistic
was introduced for imbalanced and multiclass classifications.
Cohen’s kappa statistic compares the classifier performance
to random guessing [91], measuring the agreement between
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annotators for categorical items statistically [92]. An ROC
curve represents a classifier’s performance at different classi-
fication thresholds in a graph, providing a global estimation
of the classification ability [26]. It is based on the precision
and FP rate (1-specificity). The larger the AUC is, the better
the classification performs [26]. For multiclass problems,
multiple numbers of graphs are needed.

Note that validation is performed with (1) k-fold
cross-validation (k-CV); (2) leave-one-out cross-validation
(LOOCV), which is favorable; or (3) one specific data
split, from which no general conclusions can be drawn. All
measurements are not always provided; therefore, it is not
always possible to directly compare the results of different
methods. Generally, user-independent classification is ideal,
i.e., users who are trained on should not be tested on or
else the generalizability of the method cannot be guaranteed.
This can be realized in methods (1) and (2) but needs to be
addressed to ensure that the results are trustworthy.

C. SLEEP STAGE CLASSIFICATION
The main goals in sleep stage classification are to (1) auto-
mate the process that is normally performed by trained tech-
nicians and to (2) make home-based assessment possible.
Validation is usually performed against trained human classi-
fication, which is not always the best because human clas-
sification includes known variability. This is based on the
fact that technicians classify specific epochs differently [93],
[94]. It is especially important to consider the performance on
healthy subjects and subjects with medical conditions. In the
following paragraphs, approaches using sensory monitoring
at home and in the medical domain are discussed. The dif-
ferent technologies and their performances and details can be
found in table 4 for home-based sensory data and in table 5
for medical devices, focusing on single-channel approaches
such as EEG and ECG as these can potentially be applied at
home. The values are recalculated from the confusion matrix
or by averaging the given outcome parameters.

1) HOME-BASED SLEEP STAGE ANALYSIS
Wearable and nonwearable devices are investigated for sleep
stage classification.

a: FIVE-STAGE CLASSIFICATION
An ideal approach would be able to distinguish 6 or 5 sleep
stages depending on the chosen guideline. Currently, research
is mainly focusing on the 5 AASM stages. In [4], MSR
accelerometer data from the wrist and ankle and Zephyr Bio-
Harness 32 data from the chest were collected in a sleep lab
from 26 individuals to investigate sleep stages in comparison
to PSG measurements. The data were analyzed using RF
and deep learning. Deep learning was used for unsupervised
feature learning, followed by a deep belief network (DPN)
built from stacked restricted Boltzmann machines. The DBN
approach achieved a 10-fold CV accuracy of 77.6% for
accelerometer data only. The RF method, which fused the
data sources of the chest strap and accelerometers, classified

80.7% correctly. A commercial Microsoft Band I sensor was
used in [34] to collect heart rate and actigraph recordings
from 39 healthy subjects. They proposed a method using
multilevel feature learning and an RNN. LOOCV resulted in
a precision of 64.5%, recall of 65%, and F1 score of 60.5%
in the comprehensive group, where resting and nonresting
sleep were included. The performance of the RNN approach
is affected by the dataset size, which with 37k epochs is
likely too small. We will see later that EEG home systems
are themost promising as sleep stages were originally defined
over brain waves. Using sensors in a home environment that
interfere less with sleeping habits are showing good results
for using accelerometer data and a chest strap with an RF
method. The limitations in 5-stage classification are that (1)
only healthy participants are considered and (2) the validation
datasets are relatively small, especially for deep learning.
Overall good outcomes over all classes can be seen when
comparing Cohen’s kappa.

b: FOUR-STAGE CLASSIFICATION
Because it is difficult to distinguish N1 and N2, the stages are
occasionally fused to light sleep and compared to deep sleep
(N3) [96]. This results in 4 stages: wake, REM, light, and
deep sleep. In [96], continuous positive air pressure (CPAP)
flow signals from 400 subjects were analyzed to detect sleep
stages. High-level features were extracted with CNN and
RNN, which were further used in a conditional random field
(CRF). An accuracy of 74.1% was reached, but only with a
weak Cohen’s kappa of 0.57.We can conclude that the dataset
is highly imbalanced and cannot detect minority classes suf-
ficiently based on only one split for training and testing.
Likewise, radio waves can be analyzed by combining CNN
and RNN [68]. This approach reached a moderate Cohen’s
kappa of 0.70 with up to 79.8% accuracy for 25 healthy
subjects that participated, but investigated only one data split.
Ultimately, the advantages of both main deep learning meth-
ods were used. Specifically, the CNN was able to separate
wake and REM stages, whereas RNN could separate deep and
light sleep [68]. Instead, accelerometer data were collected
in [47] from the nondominant hand for 36 individuals. They
analyzed different classifiers and performed feature selection,
concluding that RC performs the best. The results showed an
accuracy of 80% for light sleep and 90% for wake, REM,
and deep sleep for 10-CV. The subjects’ health status was
not provided, but the study is most likely based on healthy
participants. In contrast to machine learning approaches,
equation threshold-based approaches are also investigated,
such as in [95], by recording data for 100 participants from a
wrist-worn device that includes a 3-axis accelerometer and
a reflective photoelectric volume pulse sensor. The system
reached an accuracy of approximately 68.5%, which is gen-
erally lower compared to other accelerometer approaches but
is validated on a larger database. The commercial ResMed
S+ device based on an ultra-low-power radio-frequency
sensor was analyzed in [54]. Respiration amplitude, fre-
quency, and body movement were extracted from the signal.
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TABLE 4. Home-based sleep stage classification in 30-second intervals following AASM [37]; validated against PSG except [10] against Actiwatch and [61]
against a wrist-worn device. Certain performances were recalculated from confusion matrices.

The validation was performed with 3 technicians using a
majority voting for an overall score. 38 adults were assessed,
with an accuracy of 70% compared to an accuracy of 82%
for general scorers. In contrast, the Early Sense sensor based
on piezoelectric sensors reached only 64.5% accuracy with a
weak Cohen’s kappa of 0.54 [53], but included 63 subjects
with medical conditions.

An RC approach for accelerometers appears to be promis-
ing for four stages with an average 87.5% accuracy [47], but a
nonwearable device and deep learning method such as in [68]
comes with certain advantages but only 80% accuracy for
healthy participants.

c: THREE-STAGE CLASSIFICATION
Correspondingly, researchers simplify the problem to wake,
REM and N-REM stages. In [65], a sound and Doppler radar
sensor were combined to detect sleep-wake episodes fol-
lowed by NREM-REM classification. Different features for
each problem were used, reaching an accuracy of 64.4% with
RF for 24 patients with sleep disorders. Each step included a
personal-adjustment structure, based on a threshold coming
from ordering the likelihood ratios from the RF classifica-
tion. In [66], audio signals from microphones of 250 par-
ticipants were analyzed with a one-layer NN, obtaining
87.3% accuracy. Moreover, Smart EyeMasks were applied to
determine REM and NREM sleep from photoreflectors and

accelerometers for 7 healthy subjects [61]. RF was used,
reaching 80% accuracy for 10-CV. In contrast, optical
wrist-worn devices were utilized in [49] by applying a trained
DT, reaching an overall accuracy of 81.35%. These take
into account PPG and a 3-axis accelerometer data from
15 participants.

Although it is difficult to compare different data sources,
it appears that for 3 stages, audio signals in combination with
NN perform well, including subjects with a medical con-
dition, but providing outcomes of only one training-testing
case.

d: TWO-STAGE CLASSIFICATION
Wake-sleep classification is often the first step towards finer
granularity sleep stage classification. This classification can
be performed with PPG [8], accelerometers [9], actigraph
units [11], and Shimmer sensors on the bed [10]. In [8],
sleep-wake stages for 10 patients with sleep apnea were
classified by kNN and SVM using a PPG from which
heart rate variability and PPG features were extracted. The
kNN approach achieved an accuracy of 77.35% for 10-CV
for HRV, PPG, and feature selection with a small dataset
of 8k including participants with sleep disorders. Twenty-
two elderly individuals participated in a study to collect
accelerometer data. These data were analyzed using a CNN.
The CNN approach was compared to a standard sleep-wake
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classification approach, increasing the specificity from 54%
to 68%while decreasing the sensitivity from 82% to 80% [9].
In [10], five Shimmer sensors were applied on the bed of 3
individuals and validated against a Philips Actiwatch. Under-
sampling and oversampling were used to prepare the data for
RF methods. The overfitting issue was therefore addressed,
achieving results with a sensitivity of 93% and specificity
of 86%. Alternatively, a rule-based approach was proposed
by Kuo et al. [11] using an actigraph, reaching an accuracy
of 92.16%, specificity of 71.3% and sensitivity of 95.02%.
They tested the system with 81 subjects, divided in terms
of poor and good SE. Four different rules were introduced
frommovement density and density thresholds. A descriptive
analysis was performed in [97]. For this purpose, camera
recordings were analyzed and validated against actigraphy
and PSG. Frame difference and motion history were used
to classify motion, which is an indicator of wake episodes.
Data from 10 subjects reached 92.13% accuracy for the
video-based system in comparison to Actiwatch with 91.24%
accuracy. Threshold-based actigraph sleep-wake classifica-
tion is a powerful method, suggesting the necessity to dis-
tinguish between subjects with poor and good SE [11].

2) SLEEP STAGE ANALYSIS IN THE MEDICAL DOMAIN
In this section, the focus lies in the automation of sleep stage
classification towards home usage with single-channel EEG
data. The preprocessing of highly sensitive data is important
as artifacts, e.g., from movement, are present, and a large
amount of information is available.

a: SIX-STAGE CLASSIFICATION
Attempts to automate sleep stage scoring were performed
in 1996 [93], where an NN model with an uncertainty index
was presented that was able to classify 6 sleep stages using
EEG, EMG, and EOG. Sixty participants were included:
20 suffering from depression, 20 suffering from insomnia
and 20 healthy participants. The results showed accuracies
of 84.5% for healthy subjects, 81.5% for subjects with depres-
sion, and 81% for subjects with insomnia. These approaches
have the limitations of collecting data from various sen-
sor sources and are therefore mainly useful in a hospital
environment, whereas single-channel EEG approaches could
be easier to use at home in the future. Researchers using
single-channel EEG data often use the Physionet Sleep EDF
database with 8 subjects for validation.With this, an accuracy
of 88.62% for empirical mode decomposition with adap-
tive boosting and DT [99] can be reached, whereas iterative
filtering with RF can reach an accuracy of 90.02% [100],
complex-valued nonlinear features and complex-valued neu-
ral network (CVANN) can reach 91.57% [40], and decom-
posed two-subband tunable Q-wavelet transformwith DT can
reach 92.43% [92].

In this setting, NN [40] performs with almost perfect
agreement considering Cohen’s kappa. We can conclude that
preprocessing appears to be a very important aspect to make a
single-channel EEG approach perform well. The limitations

lie in the size of the data sample with 15k epochs from
only 8 subjects, including 4 healthy and 4 participants with
mild difficulty falling asleep not diagnosed with sleeping
disorders.

b: FIVE-STAGE CLASSIFICATION
The 5-stage classification typically follows the AASM guide-
lines and is most commonly performed. For single-channel
EEG coming from the Sleep-EDF data, (1) 8 subjects
with 15k epochs or (2) 20 subjects with 42k epochs
are investigated. Approach (1) can reach 87.2% accu-
racy with Elman-RNN using only 6k epochs [101],
90.11% with DT [99], 91.13% with iterative filtering with
RF [100], 93.69% with DT [92], and 93.84% accuracy using
CVANN [40]. Approach (2) performs for 20-CV with an
accuracy of 82% with CNN-LSTM [102] and 83.5% with
CNN on a smartphone [103]. The data sample of 20 sub-
jects only contains healthy individuals; therefore, it is nec-
essary to further investigate patients suffering from sleep
disorders. In [41], 41 healthy participants and 42 partici-
pants with insomnia were investigated, reaching an overall
accuracy of 77% by applying DNN-HMM. Twenty-eight
subjects with sleep apnea were considered in [104], reach-
ing 95.88% accuracy for SVM. A total of 5728 patients
from the Sleep Heart Health Study (SHHS) were investi-
gated in [42], and applying a CNN resulted in an accuracy
of 87% but not performing CV. In [42], better results could
be reached for the Sleep-EDF dataset, which is potentially
caused by the small number of technicians that participated.
This makes the system learn a specific rater’s style, which
causes difficulties in generalization. Similar accuracy could
be reached by Malafeev et al. [105] with a CNN-LSTM
including 18 healthy patients, 23 patients with narcolepsy and
5 patients with hypersomnia.

For single-channel usage, SVM (16k epochs, 28 partici-
pants) [104] and CNN (5k, 5728 participants) [42] tested on
a dataset with a larger number of participants affected with
sleep disorders presented promising results, and CVANN
(15k, 8 participants) [40] performed well on a dataset with
a small numbers of participants.

Overall, the N1 stage is often difficult to distinguish [102].
This leads to models that concentrate on this issue, such as
in [106]. Filtered single-channel EEG signals from 13 partic-
ipants of the Sleep-EDF database were investigated by SVM,
leading to an accuracy of 92.5% in distinguishing N1 and
wake stages. Many approaches for sleep stage classification
rely on features and preprocessing data, while others use
raw data, such as in Malafeev et al. [105]. If no CV is per-
formed, the results must be considered with caution, such as
in [42], [99].

c: FOUR-STAGE CLASSIFICATION
To simplify the problem, researchers fuse stages to wake,
REM, light (N1, N2), and deep sleep (N3). Approaches
with single-lead ECG and CNN achieved 75.4% accuracy
when including 16 subjects with sleep issues, 65.6% for
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FIGURE 2. Performance comparison for sleep stage approaches in the
medical domain that perform CV.

994 subjects with sleep disorders, and 65.9% for 5793 sub-
jects including breathing issues [98]. The investigations
in [98] have low Cohen’s kappa values and reasonably high
accuracy. This result is likely caused by an imbalance in the
investigated datasets for different sleep stages, which overes-
timates the accuracy, whereas Cohen’s kappa represents the
performance above the baseline of random guessing and is
therefore more suitable for imbalanced data; for details, refer
to section IV-B.

In contrast, single-channel EEG from the Sleep-EDF
database results in 91.2% accuracy with DT [99], 91.5% with
DT [92] and 92.29% with iterative filtering with RF [100].
Overall, RF [100] performs the best but has the limitation of
involving only 8 participants.

d: THREE-STAGE CLASSIFICATION
Further simplification leads to 3 stages: wake, REM, and
NREM (N1, N2, and N3). In this case, a one-channel EEG
investigation fromSleep-EDF reached an accuracy of 93.55%
with DT [99], 93.9%with DT [92], and 94.6%with RF [100].
Including participants with medical conditions, such as from
184 observations, using NNs reached 89.9% accuracy [38].
Extending the system with EEG, EOG, and Flow reached
89.6% accuracy for healthy individuals and those with rest-
less legs syndrome and sleep apnea [38]. In contrast, ECG
data applying a CNN reached an accuracy of 75.3% for SHHS
and 81.6% for 16 subjects with sleep issues [98].

Figure 2 summarizes the performance on specific datasets
that used comparable CV. We can see an overall trend
for deep learning approaches performing worse on smaller
datasets such as RNN in Sleep-EDF with 8 participants.
Six sleep stages for a higher number of participants are not
explored. Hence, two aims are targeted: how well can the
guideline-based sleep stages (5 or 6 stages) be detected and
which stages can be merged (reducing sleep stages). Fewer
investigated sleep stages results in higher accuracy. Overall,
newer methods such as deep learning are typically used more
often for larger datasets. The trend shows that more data

results in worse performance, except for simpler models such
as SVM and NN (compared to deep learning approaches).

3) DISCUSSION AND SUGGESTIONS ON SLEEP STAGE
ANALYSIS
There are two main areas in sleep stage recognition that
target either home-based analysis or sleep stage analysis in
the medical domain. Both approaches have individual issues
that need to be addressed in the future.

Overall, most methods for home-based assessment have
issues with (1) imbalanced data, (2) being unable to correctly
classify more complex stages, (3) the limitation of datasets
including only healthy participants and only a small number
of those and (4) generalizability, caused by non-standardized
user-independent classification. It is clear that classifying
sleep from wake data is performing well with accelerom-
eters, as movement is the main factor to distinguish these.
More complex sleep stages typically require more informa-
tion, which can be addressed by combining multiple sensors
with accelerometers currently tested only on healthy subjects.
When reducing the number of sensors, sound is able to dis-
tinguish three stages, even for participants with sleep disor-
ders. Wearable devices appear to be promising for healthy
subjects and are most commonly applied, but nonwearables
are promising for subjects with a medical condition. The
overall trend indicates that larger datasets and more diverse
datasets degrade the performance, which can be caused by (1)
differences in sleep stage detection for people suffering from
a medical condition and (2) inconsistency of, e.g., movement
during the night for different healthy individuals. The advan-
tage of deep learning methods in larger datasets is compliant
with the known necessity for larger training sets, as shown
in fig. 2 and table 5. Patterns are more easily distinguished for
sleep disorder participants when the datasets are larger. This
follows, e.g., from the performance ofNNs in fig. 2, where the
performance is compared for different dataset sizes for which
the number of sleep disorder patients can be found in table 5
(see [38]). The validation method, if mentioned, is rarely CV
and is therefore not objective in terms of user-independent
classification and representation of influences from the train-
ing data. Overall, movement data have limitations when
higher granular sleep stages are involved. Simple models
currently appear to be more promising than more complex
deep learning approaches, which can also be influenced by
the quantity of data, such as in [34]. Comparative studies
are rarely performed, which is an issue when determining
the ideal sensor for home assessment or the ideal machine
learning approach.

For sleep stage analysis in the medical domain, challenges
remain for (1) the generalization of the model to the general
population affected by diseases and (2) dealing with imbal-
anced classes. This effect can be seen as methods have lower
performance on larger and more diverse datasets. This effect
is also influenced by the imbalance of the Sleep-EDF dataset
containing 8 participants with a majority class of wake, which
introduces a model bias and therefore positively influences
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TABLE 5. Sleep stage classification comparison for single-channel EEG and one from single ECG [98]. Stage classification in 30-second epochs except
for [87]. Performances were recalculated from confusion matrices.

the performance. Overall, it appears that single-channel EEG
is sufficient to obtain sleep stages; however, the application at
home is a future step. In general, online detection is desirable
because this can be useful for boosting slow-wave sleep,
transcranial stimulation, and acoustic stimulation [94]. In
fig. 2, deep learning approaches perform less well for larger
datasets, but comparative studies towards simpler models
on the same datasets are lacking. The trend of using deep
learning methods on larger datasets is in accordance with
the known influence of small datasets on the methods; see
RNN,which uses only 6k epochs. Therefore, the performance
advantages and disadvantages of deep learning cannot be
observed and discussed in detail. For smaller datasets, deep
learning approaches perform less well, most likely influenced
by the need for more training data compared to approaches
such as RF and bagging. Six sleep stages are investigated
only for smaller datasets, likely because of the newer guide-
lines following five sleep stages [37]. It is easier to clas-
sify fewer sleep stages, as sleep stages that are difficult to
distinguish from each other are usually combined. However,
the imbalance of different classes positively influences the

outcomes as wake is the majority class. Overall, CV and
LOOCV are the most commonly used validation methods,
which guarantees an objective performance representation
in the medical domain. When the only performance metric
in an imbalanced dataset is accuracy, the outcomes must be
interpreted with caution, as the imbalance often present in
these studies influences the accuracy.

D. SLEEP POSITION RECOGNITION
Sleep position recognition generally detects the basic four
sleep positions: supine, prone, right, and left lateral [15].
Recently, higher granularity positions have been increas-
ingly investigated. For some approaches, e.g., image-based
approaches, the number of detected positionsmust be reduced
based on the limitations of the method. This normally
involves excluding the prone position or combining the prone
position with the supine position [16], [17], [21], [22], [30],
[113]–[116]. Others consider more complex positions, such
as right fetus [17], [67], right yearner [17], right log [67], left
fetus [17], [67], left log [67], left yearner [17], supine [17],
[67] and prone [67]. Different arm [16], [111] and leg [15]
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TABLE 6. Sleep position monitoring systems. Ground truth is, if mentioned, based on videos, except for [107], which is based on a smartwatch.

positions, as well as angles [21], [23], are considered higher
granularity positions. These positions can relate to cer-
tain issues, such as inducing back pain [15]. Furthermore,
positions can be extended by an unknown state, normally
the sitting/standing position, such as in [30], [110], [112],
explaining, e.g., bed exits.

In this section, outcomes are distinguished bywearable and
nonwearable devices, as sensors in themedical field are rarely
used, such as in [108], [109]. A summary can be found in
table 6, where different methodologies and their results are
listed.

1) SLEEP POSITION ANALYSIS USING WEARABLES
Wearables are often investigated because these devices are
easily applicable and provide high accuracy for posture detec-
tion. Some systems have almost perfect performance for
detecting sleep positions but normally show issues related
to the number of participants involved and user-independent
detection.

In general, single sensors can detect basic sleep positions
well. Shinar et al. [108] used an ECG device, achieving a
specificity of 93% and sensitivity of 79% with a k-means
iterative algorithm. In [109], respiration impedance signals
are measured from 16 individuals and achieved a 99.7%
accuracy for 10-CV.

Extending approaches with additional wearable devices
can achieve similar outcomes for an even higher number of
positions, such as in [15], with 99.8% for LVQ personalized
per individual with repeated CV on 6 individuals. Other
multiple wearable approaches reached an accuracy of 88.5%
with RF [110], 83.6% for a general LVQ approach using
LOOCV for 6 individuals [15], and 92.2% with kNN for
10 subjects [111]. Barsocchi [23] studied the feasibility of
a transmitter and receivers in the sleeping environment to
distinguish four main positions, also considering a lateral
incline of 30% [15]. They could reach 100% accuracy by
using at least two sensors and kNN.

The best matching rates could be achieved in [23], which
has the limitation of a very small sample of two participants.
In [15], similar high performance is achieved with individ-
ual trained models, which makes generalizing the system
more difficult but can distinguish higher granularity positions
including leg movement, whereas [111] includes hand move-
ment in the higher granularity position investigation.

The next step is the real-world application, which has
been considered in different research studies. Smartwatches,
for example, can be applied, such as in [107], where RF
performed the best with a TP rate of 91.8% for 16 partic-
ipants and objective LOOCV. The most promising models
include an accelerometer placed on the chest, reaching an
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accuracy of 99.5% with LDA for 7 individuals [46], and
even rule-based approaches can reach 99.2% accuracy for
13 subjects [112] including an unknown state. Six positions
could be recognized with an accuracy of 97.74% with LVQ,
having the drawback of a small data sample of 2 participants
and multiple sensors attached.

Overall, participant numbers are low when validating the
approaches, and many approaches fail to state the used vali-
dation method.

2) SLEEP POSITION ANALYSIS USING NONWEARABLES
Nonwearables usually need more complex methods for anal-
ysis because they often produce images that need to be clas-
sified.

Three sleep posture classifications are very common
because distinguishing the prone posture from the supine
posture is difficult. Consequently, Hsia et al. [22] exploited
pressure at the upper part of the bed to investigate three
postures, focusing on the influences coming from hand pos-
tures and laying angle with a BC. The result showed a
low accuracy of 78.7% for 2 individuals and was influ-
enced by the laying angle. Pressure mats are commonly
applied for detection, reaching up to 98.4% accuracy with
GMM-kNN for 9 individuals [21] and RF for 2 subjects
and no CV [116]. Other investigations have used PCA-SVM,
resulting in 94.1% accuracy [115], 89.9% with NN-BN for
one person [114] and 82.7% with RBM-DNN for 13 indi-
viduals [113]. Hence, simple data analysis models already
appear promising. More complex approaches, e.g., hydraulic
bed transducers, were used under a mattress to distinguish
the four main sleep postures from 58 participants by using
an NN [117], also including the prone position. This led to
an accuracy of 72%, which is low compared to the approach
with pressure distribution and logistic regression (LG) with
an accuracy of 90.2%, which only included 3 participants
and no CV [20]. Yousefi et al. [17] utilized a pressure mat
to detect five different positions, including supine, yearner,
and fetus, from six subjects. The posture detection was based
on a three-step algorithm using normalization, eigenspace
projection, and a kNN classifier. The average accuracy of this
detection reached 97.7%. A mobile, easy applicable solution
was investigated in [67]. In this case, a pressure-sensitive bed-
sheet was used to monitor six sleeping positions, including
supine, prone, log, and fetus, by sparse classifiers with Min-
imum Class Residual (MCR), reaching an accuracy of 83%
for 14 subjects [67]. To obtain amore detailed picture, camera
devices for 3-D measurements can be used and have reached
an accuracy of 92.5% using SVM on 3 individuals [69]. Pres-
sure mats can be used to detect higher granularity positions,
e.g., Pouyan et al. [16] classified eight different bed postures
excluding prone. The proposed algorithm creates a pressure
image that is processed using size and shift-invariant images.
Classification was performed by computing the Hamming
distance between the signature images and the presented sam-
ple. The results showed an accuracy of 97.1% for 20 subjects.
Multiple angles of the three positions could be detected by

FIGURE 3. Performance comparison for sleep position approaches that
perform CV.

Ostadabbas et al. [21]. They detected 13 sleeping positions
from 9 individuals with a GMM-based clustering approach,
reaching an accuracy of 91.6%.

Real-world applications considering whole nights of data
are rarely investigated. However, existing investigations
include Kinect devices [24], 3D-Asus Xtion cameras [30],
and pressure bedsheets [67]. Kinect sensor data were col-
lected to distinguish five sleep positions from 20 stu-
dents [24], and no blankets were used [15]. A single depth
camera was able to distinguish supine, left, right, and empty
positions. They included 78 patients and obtained results
of 94.9% accuracy with a CNN [30]. For multiple positions,
collecting pressure-sensitive data from a bedsheet over three
nights from three people were used, resulting in 86.5% pre-
cision and 84.7% recall [67].

To obtain a fast and easy visualization of the current sleep
position investigation state, we incorporated fig. 3, which
compares all CV investigations. Mainly nonwearable devices
are used for three position investigations, whereas wearables
are used to target the basic four or more granularity positions.
Overall simple models such as kNN, SVM and LVQ with no
temporal component appear to be appropriate for the inves-
tigation in comparison to more complex approaches such as
NN and DNN. Little research has been done on real-world
applications.

3) DISCUSSION AND SUGGESTIONS ON SLEEP POSITION
ANALYSIS
Sleep position analysis can be performed for wearable and
nonwearable devices in a laboratory or real-world setting.

Overall, wearable accelerometers, particularly on the
chest, can reach high accuracy with already simple machine
learning models. Alternatively, respiration monitoring also
appears to be a promising approach. Although research
has investigated different data sources and technologies,
an energy-efficient, robust solution that is able to accurately
detect finer granularity positions and that is adaptable to
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individual needs is still lacking. Furthermore, validation on
larger data samples is necessary. Wearable devices are com-
monly used when tracking sleep positions, but as these are
worn on the body, discomfort can be present; therefore,
improving usability and comfort is of interest [15].

One alternative is the usage of nonwearables; in this con-
text, pressure mats are commonly applied and reach high
accuracy with the limitation of distinguishing prone from
supine, which was partly overcome in [20], [67]. Most recent
investigations have attempted to investigate 3D images,
which raises privacy concerns.

Figure 3 shows that nonwearable devices cannot accurately
distinguish the prone from supine position, as shown by
the NN approach, which reaches 72% accuracy. Therefore,
three-position approaches are investigated. By contrast, wear-
ables perform better for more complex positions. Overall,
real-world applications are rarely reported but are indeed
important, as a real-world application in [15] showed that
fewer positions are captured from the participants. Overall
simple models appear to be appropriate for the investigation,
in comparison to more complex approaches. These complex
approaches use NN or deep learning and are more influenced
by the quantity of training data. A small number of par-
ticipants is usually investigated, which comes with a draw-
back as consistency in sleep postures between individuals
cannot be assumed. Many research studies fail to report the
validation method used, which makes comparison difficult.
Furthermore, many studies report performance from one split
of the data, which is not an objective representation of the
investigated population, as mentioned previously.

Research needs to target real-world applications, providing
reproducible results that are able to enhance recognition rates
for finer-grained positions. Furthermore, user-independent
validation needs to become a standard to guarantee generaliz-
ability. In the future, other sensor sources will become avail-
able and can potentially target more advanced investigations.

E. INVESTIGATION OF SLEEP DISORDERS AND DISEASES
Abnormal sleep behavior was originally classified by sleep
experts and further used to diagnose individuals’ health status
in terms of sleep disorders. Recently, behavior has been inves-
tigated in automatic decision making for (1) sleep disorders
such as sleep apnea [25]–[27], [118], [119] and insomnia [27]
and (2) specific chronic diseases such as diabetes, hyper-
tension, CKD [25], [27], Alzheimer’s [32], and Parkinson’s
disease [33]. Established sleep parameters can be used to help
investigate disorders and abnormal sleep behavior. The field
of using computational behavior analysis in helping diagnose
certain diseases is not extensively explored. In this survey,
we present approaches that are interesting in our opinion.

1) SLEEP APNEA INVESTIGATION
a: SLEEP APNEA DETECTION
Javaid et al. [119] investigated a nonwearable Impulse Radio
Ultra-Wide Band Radar panel under the mattress for the

detection of sleep apnea events from radar signals. The ana-
lyzed dataset consists of 25 hours of data from 4 subjects with
apnea. The overall match against PSG reached an accuracy
of 70% for 5-CV with a linear discriminant classifier (LDA)
on extracted statistical features. In [27] and [25], sleep apnea
stages were investigated by comparing sleep apnea towards
unaffected participants with a wearable actigraph, separating
mild stages in [25]. Both studies investigated the HCHS
study [120] with 1887 individuals. In [25], 170 individu-
als are included for the investigation of sleep apnea. The
results for two classes showed an accuracy of 68% with a
CNN [27] and 81% (six times 10-CV) [25] with an LSTM on
a balanced dataset. An alternative for sleep apnea-hypopnea
syndrome diagnosis was investigated with a home-based
oximetry sensor in [121]. A dataset of 320 subjects (one
night each) was analyzed with different machine learning
algorithms, such as LDA, LG, Bayesian multilayer percep-
tron, and AdaBoost with one split of 60% for training and
40% for testing. AdaBoost with LDA performed the best
depending on the AHI: for 5 (92.9%), 10 (87.4%), and
30 (78.7%). Chung et al. [122] reached the closest diag-
nostic ability to the machine learning approach, achieving
better accuracy of 93.7% for an AHI of 30, but including
only surgical (one night of 475 patients) and not regular
patients. In [26], two sleep apnea types were analyzed for
83 patients by applying SVM on 125 sets of ECG records,
extracting 24 features. This approach reached an accuracy
of 92.85% for LOOCV. An optimization problem on kernels
led to the conclusion that the polynomial kernel with degree
of 3 provides the best results. The research was limited to
patients with no history of cardiovascular disease and central
sleep apnea. The model could be useful for determining the
CPAP therapy by analyzing the change in probabilities in the
outcome [26].

It is difficult to compare the approaches as the used data
sources and investigated classes are different. Nevertheless,
nonwearable devices can recognize sleep apnea events with
an accuracy of 70%, but they are outperformed by wearable
sensors such as ECG, oximetry and actigraph sensors.

b: SLEEP APNEA TREATMENT
CPAP devices are utilized for treating patients suffering from
sleep apnea by providing pressure to help them through
apnea episodes. In [118], an approach was investigated to
detect patients who were likely to discontinue the therapy.
CPAP and electronic health records from 3588 patients were
used. Feature selection was performed, and oversampling
the dataset counteracted the imbalanced distribution. Dif-
ferent techniques were applied, such as linear regression,
LR, DT, and SVM, whereby RF and boosting trees such as
XGBoost considerably improved the results. Deep learning
for time series classification did not present good perfor-
mance, mainly due to the lack of data. The results showed that
XGBoost reaches the best F1 score including health records
with 85% for 10-CV, which is an improvement compared to
the current state-of-the-art.
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2) CHRONIC DISEASE INVESTIGATIONS
Chronic diseases affect individuals’ lives but also intro-
duce sleep behavior changes [25]. These changes are inves-
tigated to obtain indications for early and later stages of
diseases.

Sleep behavior changes were investigated in [27] and [25],
where actigraph data were considered from a broad popu-
lation to detect insomnia [27], diabetes, hypertension, and
CKD [25]. In [27], a CNNwas applied, introducing a method
for embedding activities. In contrast, in [25], an LSTM was
investigated, considering the major limitation of an imbal-
anced dataset in [27]. Therefore, a balanced dataset was
adopted for training, reaching accuracies for 6 times 10-CV
of 72.5%, 62%, and 76.7% for diabetes, hypertension, and
CKD, respectively [25]. In [25], 475 individuals affected by
hypertension, 325 by diabetes and 60 by CKD are inves-
tigated, all with the same number of healthy subjects and
6 nights of data for each person. In [27], the outcomes were
69% for hypertension and 44% for diabetes, including indi-
viduals with 7 nights of data. The accuracy for hypertension
extraction was higher in [27], but precision and recall values
could be improved in [25]. This is an important step in
obtaining reproducible outcomes.

Early disease detection is relevant for the diagnosis
of Alzheimer’s and Parkinson’s diseases, which relate to
sleep [32], [33]. Early stages of Alzheimer’s disease already
affect sleep behavior based on the relation of β-amyloid
(Aβ) with sleep quantity and quality manifested in actigraph
data [25], [32]. Sleep behavior also shows relationships for
patients with Parkinson’s disease investigated using actigraph
data [25], [33]. Early disease detection could thrive from
these newly elucidated relationships.

3) SUGGESTIONS FOR DISORDER AND DISEASE
INVESTIGATIONS
In general, it is necessary to investigate and use the exist-
ing knowledge of relationships between sleep and certain
diseases because this knowledge can enhance and promote
self-management and help diagnose diseases at an early stage.
Automating sleep disorder diagnoses such as sleep apnea
with daily technologies could provide an easy and inexpen-
sive assessment.

With the increasing usage of deep learning technolo-
gies that are able to handle larger amounts of data for
individual classifications, chronic diseases can be investi-
gated from sleep data. Based on the existing basis of sen-
sor accuracy and availability, the diagnosis of diseases and
disorders is a promising future investigation area with the
potential to make early diagnoses possible and accessible at
home.

In the investigations presented here, a greater number of
individuals are usually involved. When the validation method
is stated, CV is applied, which provides an objective method.
We decided to present the accuracy metric in this section
for consistency, as most investigations used balanced data or
failed to present other measurements.

V. CHALLENGES AND FUTURE TRENDS
In recent decades, sleep behavior analysis has advanced
considerably by introducing new devices and computational
methods; nevertheless, there are still certain limitations and
challenges thatmust be addressed by the research community.
Common challenges are (1) the inclusion of sleep behavior
differences coming from healthy and sick populations into
methodologies; (2) including medical knowledge in terms of
sleep structure, relations and influence factors; (3) improving
current technologies for home usage; (4) validating on larger
andmore diverse datasets; (5) addressing imbalanced datasets
and their issues; and (6) providing adequate comparative
outcomes and standards.

In sleep behaviour analysis, there is a need to distinguish
healthy subjects from subjects with a medical condition.
However, current research targets mainly healthy individ-
uals when analyzing sleep. When subjects with a medi-
cal condition are included and investigated, the overall per-
formance is usually lower. This aspect can be addressed
by either training models separately for different user
groups or including new features in the training process.
These new features should either include knowledge of the
user’s condition or represent behavioral differences more
accurately.

Medical research on sleep behavior has been performed
over the past decades, and knowledge of the relations and
structure has been established. This knowledge can be an
advantage when constructing a computational sleep behav-
ior analysis, e.g., the relation with health factors and the
time aspect of sleep changes throughout the night. Includ-
ing the time aspect while assessing sleep aspects can likely
improve the performance but has not been investigated exten-
sively. Current research mainly concentrates on automat-
ing human scoring tasks on well-known problems such as
sleep stage classification. This has some drawbacks because
machines have the potential to classify stages better than
humans. Human-labeled data are known to be scored dif-
ferently between sleep experts and cannot reach a 100%
match [105]. Specifically, this interscorer agreement follow-
ing the AASM rules is only approximately 82.6% [90]. One
way to bring new insights into sleep behavior analysis that is
not based on classic features is pattern recognition and unsu-
pervised approaches to describe sleep differently. Emerging
approaches for sleep assessment are investigating new fea-
tures, such as the sleep regularity index [75]. The regularity
of sleep [75] represents the trend of consecutive nights, which
is a step towards long-term visualization and helps to draw
more specific conclusions. Furthermore, the automatic detec-
tion of shorter underlying structures using machine learning
techniques is emerging, such as for K-complexes [123] and
sleep spindle detection [123], [124]. Eventually, research will
extract this information from sensor sources other than EEG,
which are easier to apply at home.

Improving technologies for home usage include address-
ing potential discomfort and integration into existing smart
devices. Sensors and technologies will develop towards
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wearable sensors that are integrated into clothing and
single-channel EEG devices that are easily applicable.
Another direction includes nonwearables, which can be
seamlessly integrated into the environment, and the used
methodologies will be further explored as nonwearables are
currently less accurate. In certain areas such as sleep stage
detection, research must be conducted to accurately detect
higher levels of sleep stages within a natural home environ-
ment.

In the future, the issue of small datasets could be overcome
by user contributions, i.e., crowdsourcing sleep data to con-
tribute to sleep research. Consumer wearables will progres-
sively adopt to facilitate users sharing their sleep tracking
data with researchers and could be enhanced by users’ per-
sonal information, e.g., gender, age, and medical conditions.
Hence, larger studies can be conducted, and inconsistencies
and inherent noise can be overcome to a certain extent.
More divers datasets allow to address the issue of imbalance
by considering the inconsistency during training. Therefore,
a balanced dataset should be created for training purposes
to counteract the bias towards the majority class. It is not
yet standard for papers to provide the validation method
used, but it is made clear throughout this paper that repeated
cross-validation and user-independent validation are critical.
Repeated cross-validation provides a reliable outcome for the
population investigated. Usually, a generalized approach is
targeted; therefore, users who are trained on cannot be tested
on, else the performance ability of the method is falsified.
No standard performance measure exists, but overall accu-
racy is commonly used. However, in the case of imbalanced
data, further measurements, such as recall and precision,
are needed. Therefore, we recommend standardization of
the performance metrics used in sleep behavior analysis to
guarantee comparative studies. Comparative studies must be
performed to investigate methods of the same datasets to
benchmark available approaches and to be able to assess the
most promising methods.

It is already known that there are many correlations
between sleep and daily life, as well as specific chronic
diseases, which are not used extensively. Research is being
performed to explore features that provide hints about spe-
cific diseases. These features can be measured continuously
with sensor technology at home. Combining this with the
known relations could help diagnose diseases in an early
stage [25], [27]. The reason for this interest is that peo-
ple normally learn about issues quite late, which does not
allow preventative approaches. Computational analyses could
provide insights into sleep data that are not obtainable by
currently used methods and therefore target educating and
showing users their sleep habits [35], preferably at home.
Overall, sleep is very subjective and individual [35]; there-
fore, individuality should be addressed and transported to
developed systems. This will lead to fusing different sleep
elements from objective, subjective, and environmental [29]
perspectives into an automatic approach for sleep assessment
and self-management. Another attempt is to fuse known

relations, such as the knowledge from physical activity into
sleep research, which can actually improve results, such as
in [78].

VI. CONCLUSION
In this paper, we provide a systematic, comprehensive review
on the state-of-the-art in research and practices in compu-
tational sleep behavior analyses. We specifically focus on
the latest developments in sleep monitoring, modeling, and
computational analysis methods for sleep assessments using
sensor technologies, which can be used by the general public
at home and are easier, quicker, and inexpensive. This sur-
vey offers in-depth knowledge and insights into this increas-
ingly important research field to effectively guide the reader
through vast amounts of literature. We have also highlighted
the challenges and future research trends that will inform,
inspire, and guide researchers, technology developers, and
healthcare practitioners in research, innovation, and service
provision. This is a rapidly growing, dynamically changing
research area. Whereas previous research has mainly been
undertaken to exploit and automate human expert knowl-
edge, one apparent trend is to apply data-driven techniques to
investigate data from various perspectives rather than human
labeling only, inferring and discovering new insights directly.
It is also expected that, with the prevalence and maturity of
daily technologies and the availability of cloud-based compu-
tational power, the gap between clinic-based and home-based
sleep assessments will vanish in the very near future.Whereas
this will require close collaborations and knowledge sharing
among healthcare professionals, research experts and users,
it opens up opportunities that will potentially lead to trans-
formations in future healthcare.
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