
Received September 12, 2019, accepted September 23, 2019, date of publication September 30, 2019,
date of current version October 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944764

A Real-Time Dependable Flash Storage System
ALISTAIR A. MCEWAN AND MUHAMMAD ZIYA KOMSUL
School of Engineering, The University of Leicester, Leicester LE1 7RH, U.K.

Corresponding author: Alistair A. McEwan (alistair.mcewan@le.ac.uk)

This work was supported by the University of Leicester, U.K.

ABSTRACT One of the limitations of flash memory in real-time and high dependability systems is its need
for garbage collection, resulting in performance degradation due to non-deterministic response times. Recent
work has presentedRAID architectures for solid state storage systems. These RAID architectures increase the
dependability from a data storage perspective but they do not provide application level dependability when
real-time response times are required. In this study we present a garbage collection aware Flash Translation
Layer that offers guaranteed access time to a solid state RAID array by managing incoming requests and
preventing them from being blocked by ongoing garbage collection. We present a novel serial technique with
a dynamic page allocation mechanism that eliminates non-deterministic behaviours of the garbage collectors
in the array. The result is real-time access guarantees that maintain the data dependability enhancements
using a run time parity migration technique. The mechanisms are evaluated using a trace driven simulator
and a number of synthetic and realistic traces. Simulation results indicate that the garbage collection aware
techniques offer improved upper bound response times for I/O requests of up to 73% compared to an existing
mechanism, without disturbing the data dependability at the storage level. Traces dominated by random
writes exhibit similarly significant enhancements.

INDEX TERMS Data storage systems, flash memories, fault tolerance, flash translation layer, garbage
collection, real-time systems, SSD RAID.

I. INTRODUCTION
Flash memory (solid state memory, also referred to as SSD) is
effectively ubiquitous in embedded devices, and even increas-
ingly so in standard computing environments, because of the
properties it enjoys including higher performance and access
bandwidth, low power consumption, shock resistance, and
increasingly smaller physical size. Storage capacity of solid
state memory has increased massively over the past decade
from a few megabits, to gigabits and to terabits, while the
price per unit continues to decrease dramatically.

Despite these very positive properties, solid state memory
also has some intrinsic drawbacks. There are two distinct
types of flashmemory commonly used—NOR, andNAND—
the names refer directly to the microelectronic construction
of the circuits that implement the memory. NOR memory
benefits from fast random reads but suffers from very slow
read and erase operations. These properties mean that it is
typically used for holding relatively non-volatile data such
as code for execution in an embedded system. On the other
hand, NAND memory enjoys faster write operations and
higher density of data storage. These properties mean that it
is typically used for data storage in much the same way one

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

would consider a traditional file system and traditional file
storage. In this paper, we consider NAND flash.

Although the properties of NAND solid state storage make
it suitable for traditional file and data storage applications,
it also has some disadvantages that need to be taken into
consideration. This includes a bounded lifetime—or specif-
ically, a bounded number of times that areas of the memory
can be erased (in preparation for rewriting) before it becomes
unreliable. Unlike traditional magnetic storage devices (com-
monly referred to as hard disk drives, or HDD) the lifes-
pan of each cell in a given chip depends on the number of
erase/write operations that are carried out as the physical
nature of this operation slowly wears out a cell until it reaches
wear out state where it cannot be relied on to report data
stored correctly. The number of erase/write operations that a
given cell can take depends on a number of factors including
manufacturing quality and usage patterns. While these will
differ between manufacturers and devices, it is usually a
figure known a priori for a given device thereby giving the
user some understanding of the lifetime of the device before
data may become unreliable or lost.

Error Correction Codes (ECC) [1] are checksum based
techniques used to help maintain data integrity and improve
lifespan of a given device. While these help in ensuring data
is reliably reported up to a certain threshold (bit error limit)

142974 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-6660-3192
https://orcid.org/0000-0003-2143-2438

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

that can be determined by a checksum calculation, they offer
no assistance in a device that is failing beyond the thresh-
old of the checksum calculation, or has failed completely.
Wear levelling algorithms are also employed to help prolong
device lifespan. These algorithms typically ensure that data is
written in an even pattern across a device—meaning that life-
consuming erase operations also follow an evenly scattered
pattern and the device will wear out evenly rather than suffer
disproportionate performance degradation due to the overuse
of one given section or area.

Advances in increasing storage density on devices include
Multi Level Cell (MLC) and Triple Level Cell (TLC).
While these are effective ways of fabricating chips that offer
increased storage density and decreased device cost over de
facto Single Level Cell (SLC) devices, they also come with
the burden of reduced life expectancy and storage depend-
ability. Moreover, ECC techniques are not in themselves
sufficient to ameliorate the problems resulting from wear out
of MLC devices. Consequently, caution is advised with use
of these devices in systems or application domains require
integrity of data and data updates.

Conventionally, Redundant Array of Independent Disk
(RAID) systems have been widely used to provide data pro-
tection against chip-level failure and to improve integrity of
storage such as in [2] using RAID–4 and RAID–5 parity
based techniques—employing a reserved element of the array
to store parity data. When a multibit error that can not be
recovered using ECC occurs, correct data can be recalculated
at chip, block, or page level.

However, RAID can not be directly applied to SSD arrays
because of the risk of wearing out individual devices in
the array simultaneously [3]. Reference [4] addresses this
problem using a novel RAID architecture that enhances reli-
ability by protecting against component failures using a load
imbalancing technique. This technique prevents the simul-
taneous wearing out of components by distributing parity
data unevenly across all devices in the array. This enhances
reliability, but ignores the deterministic response time
requirements of hard real-time systems—primarily due to
uncoordinated garbage collection.

RAID offers significant improvement to storage level
dependability but does not meet the (sometimes strict)
application level dependability of real-time systems where
guaranteed response times may be required—due to the
erase-before-write requirement where exiting data cannot be
overwritten before being erased. When storage is requested
for new data, free locations are allocated. Any old data is
marked as invalid, and the pages occupied by this invalid
data are eventually reclaimed by a garbage collector so they
can be freed. The act of garbage collection incurs a sig-
nificant performance overhead because it involves moving
valid pages in selected blocks into free blocks before erasure
can happen. Moreover garbage collection is usually triggered
when there is an idle period—however it is challenging to
predict when these will happen in I/O workload streams
and indeed some write workloads with significant burst

characteristics do not generally have sufficient idle time for
garbage collection.

In this paper, we introduce an efficient and dependable
garbage collection mechanism into our RAID architecture.
The garbage collector provides guaranteed response time for
I/O by preventing blockage due to an ongoing garbage collec-
tion operation. We show that our mechanism achieves higher
bandwidth and lower worst case execution time (WCET)
either by dynamically reallocating the target chip or by using
redundant data to service incoming requests. In summary,
the contribution of this paper is:
• Garbage collection aware Flash Translation Layer (FTL)
operations that are integrated into an FTL, enabling real-
time response times even during active garbage collec-
tion processes;

• Garbage collection techniques for SSD RAID that
explicitly consider the wear out problem in the context
of real-time and dependability;

• A serialized garbage collection technique that amelio-
rates issues arising from multiple garbage collectors
acting on multiple elements in an SSD array;

• An on-line parity migration mechanism that preserves
ageing ratios, whilst maintaining dependability levels
and deterministic response times;

• Experimental results, taken using the SSD simulator [5],
with results demonstrating a significant improvement in
average and maximum response times for synthetic and
realistic workloads.

The paper is organized as follows: in Section II we present
background information, the motivation for our research,
and related work. Section III presents our garbage collection
aware FTL and operations. Section IV presents the serialized
garbage collection approach. The support for on-line parity
migration is presented in Section V. Experimental results are
presented and discussed in Section VI, and Section VII sum-
marises our conclusions and areas of future investigations.

II. BACKGROUND
An area of flash memory consists of a set of blocks, where
each block consists of a number of pages as shown in Fig. 1.
A page contains two areas—a data area (for storing reg-
ular data) and an Out Of Band (OOB) area for metadata
such as error correction codes (EEC), logical block address
(LBA), logical page address (LPA), and page status (valid,
invalid or free). The size of the data area varies between 512-
2048 bytes while size for OOBvary between 16-64 bytes. The
data stored in a page is referred to as a stripe. This general
structure is captured informally in Data Structure 2. Data
types used in this definition are given in Data Structure 1.
A definition of the additional meta data in the device level
register is not given as it is not used directly in this paper.

Unlike magnetic disks and volatile memories such as
DRAM, flash memory requires erase-before-write. That is to
say, blocks cannot be overwritten and must be erased before
they can be re-used. Granularity of erase and read/write oper-
ations are different—erase operations are performed at block

VOLUME 7, 2019 142975

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

Data structure 1 Data Types Supporting an SSD Definition
1: Bit : 0|1
2: GarbageCollection : active|inactive
3: PageStatus : valid |invalid |free
4: LBA : N
5: LPA : N
6: ECC : Bit

Data structure 2 Basic Structure of an SSD
1: Register : GarbageCollection× DeviceMetaData
2: Data : (N 7→ Bit)
3: OOB : (ECC × LBA× LPA× PageStatus)
4: Page : (Data× OOB)
5: Block : N 7→ Page
6: SSD_Device : (N 7→ Block)× Register

FIGURE 1. Internal structure of flash memory (SSD).

level but read and write operations at page level. A flash page
can be in one of three different states: valid, invalid, or free.
If there is no data written into a page it is marked free, a write
operation to a free page changes its state to valid, and if that
data subsequently needs updating it is written elsewhere in a
new valid page and the original marked invalid.

To write data from an input register to a physical page
takes typically 200–700µsec. However, erase operations are
rather slower than a write operation and take in the order
of 1.5–3msec. Read latency from a physical page location
to a register is much faster than either, being in the order of
20–50µsec. These differences in timing are why flash mem-
ories do not typically employ an update-in-place operation
and instead use the invalid page approach. To record changes
and mapping between logical and physical addresses (as the
physical address of a specific item of data can migrate during
its lifetime due to invalid page migration) an address mapping
table is kept—often stored in an SRAM memory.

The physical nature of the storage action means that each
cell can tolerate a bounded number of erase operations before
it wears out and reporting becomes unreliable—typically
between ten and one hundred thousand erases. If a given
cell is erased more regularly than neighbouring cells, it may
become a rate determining step resulting in a whole page
becoming unusable. Wear levelling techniques are employed

to ensure that the writing—and consequently erasure—of
data wears out the whole real estate in as even a manner as
possible so as to avoid hot spots of unreliability [1].

A primary function of the FTL is to allow a device to be
used as a normal block device by abstracting from internal
structure. Part of this is the periodic reclamation of invalid
pages for reuse via a process known as garbage collection.

Fig. 2 illustrates a basic garbage collection operation. The
garbage collector first selects a victim block based on a most
needy algorithm that selects the block that has the most
number of dirty (invalid) pages. It then copies all valid pages
from the victim block to an empty (free) block and updates
indexing information in the address mapping table. Once all
valid pages are copied, the entire victim block is erased and
the pages in the victim block are free for re-use [6].

FIGURE 2. Moving data and erasing a victim block.

Garbage collection has a negative impact on the perfor-
mance and lifetime of the memory. For instance if garbage
collection overlaps with an instruction request from the host,
the instruction must wait until garbage collection completes,
causing unwanted latency and bottlenecks.Moreover because
the erase operation consumes lifespan of the selected cell,
blocks must be chosen carefully in order to minimize unnec-
essary erase operations but maximize available space.

Previous studies report that the number of garbage col-
lections is highly affected by workload type. For instance,
random writes and updates in small sizes increase the need
significantly [7]. These types of workloads slow down clean-
ing because of the increased number of valid pages copied [8].
This study focusses on applications with high amount of
random and small size write operations as this is the workload
patterns that our dependability mechanisms target.

A. RAID AND DEPENDABILITY
RAID protects against data loss in the case of a single com-
ponent failure. Blocks of data are spread across multiple
devices, one of which is used to store a parity checksum
calculation. When an individual device fails, lost data can be
calculated and a replacement reconstructed. RAID-4 stores
all parity data on a single device, while RAID-5 distributes
parity across the array. These schemesworkwell formagnetic

142976 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

disks which suffer non-deterministic hardware failure rather
than solid state memory which suffers wear out failure.

RAID-5, for instance, can be implemented with multiple
SSD devices as shown in Fig. 3, with some of the FTL
operations promoted to the RAID level.When the host system
requests data storage, the data in question (for instance, X)
is initially stored in a buffer internal to the RAID array. The
RAID controller then breaks this down into n− 1 stripes (X1,
X2, X3, X4) where n is the number of devices in the array.
An additional parity stripe (XP) is generated by XOR-ing the
data stripe units. Stripes may be either block level or page
level depending on system configuration—in this paper we
typically assume page level stripes. Each stripe (including the
parity) is allocated a physical device to which it is written.
Parity blocks are distributed evenly across different devices
as shown by additional example stripes Y and Z . The reasons
for this are twofold—as a change in any data will certainly
require a rewrite of parity the load is distributed across the
system; and the amount of data recalculations (as opposed to
parity calculations) is distributed and thus speeds up device
replacement. However these are only beneficial in a magnetic
disk environment and neither of these reasons ameliorate the
problems of wear out failure in solid state devices.

FIGURE 3. Example RAID-5 structure with data stripes.

A basic informal definition of the structure of an SSD
array assumed in this paper is given in Data Structure 3. The
array (Devices) is a sequence of individual devices. A request
queue holds incoming requests to read from, or write to,
the array. A mapping table maps physical block addresses
(PBA) and physical page addresses (PPA) to their logical
counterparts. A global array notes the garbage collection
status—active or inactive—of each of the individual devices.

Data structure 3 Basic Structure of an SSD RAID Array
1: Request : read |write
2: PBA : N
3: PPA : N
4: Devices : N 7→ SSD_Device
5: RequestQueue : N 7→ (Request × Data)
6: GC_Array : N 7→ B
7: MappingTable : (N 7→ PBA)× (N 7→ LBA)

In the interests of clarity, this definition does not include
elements for RAID-level FTL features not covered directly
in this paper such as wear levelling and dependability.

Two distinct types of write operations are used in RAID
arrays. If data is written across all devices in the array then it
is know as a full stripe write or sequential write; thus stripe
X in Fig. 3 is a full stripe write. However, if the number of
stripes does not span the array then it is known as a small
random write, or random write for short; thus stripes Y and Z
in Fig. 3 are random writes. Random writes may be used for
complete data items, or when an update to data (that does not
affect the whole array) takes place. For instance if an update
to the data in stripe Y1 was requested the RAID controller
would execute the following steps:

1) Read Y2 and Y3;
2) Calculate the new parity YP using the new Y1 and the

stored Y2 and Y3;
3) Write the new data Y1 to the same device, and write the

new parity YP to the same device.
This process is described informally in Algorithm 1. This

presentation, as with other algorithms given in this paper,
is kept informal so as not to restrict the system to a given
specification or architecture, but instead to broadly describe
the algorithms in a form amenable to code development.
The input to the algorithm is the data including the stripe to
be updated Yx(which will have been taken from the request
queue), themapping table to allow the physical locations to be
found, and the device array itself. The output of the algorithm
is the updated device array. This simple algorithm does not
take into account wear levelling, as new data is written to the
same devices as the original data resided on.

Algorithm 1 Simple Random Update for RAID Array
Require: YX : (N× Page),MappingTable,Devices
Ensure: Devices
1: Retrieve all other Y stripes using MappingTable from
Devices

2: Calculate new parity YP using new stripe YX and all other
stripes Y

3: Write the updated stripe element YX to the original SSD
and invalidate the original stripe

4: Write the parity stripe YP to the original SSD and invali-
date the original parity stripe

5: return

Performance of the array suffers in the presence of small
randomwrites combined with garbage collection. RAID con-
trollers normally spread data stripe units evenly across the
array. However, if there is an ongoing garbage collection
operation in an SSD, the garbage collector blocks the data
stripe units to be written to that SSD until garbage collection
has completed. For example, if there is an ongoing operation
on SSD1while data Z arrives in Fig. 3, thewriting of stripe Z1
is delayed until garbage collection has completed while the
rest of stripe units for Z can be written immediately.

VOLUME 7, 2019 142977

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

B. RELATED WORK
RAID-5 typically spreads data and parity evenly across the
array. In an SSD environment, when flash memory wears
out it leads to the same increased bit error rates on multiple
elements at the same time [9]. Diff-RAID [3] addressed this
problem. Firstly parity stripes are distributed unevenly across
the array and secondly, parity is redistributed when a device
is replaced. Other examples considering the wear levelling
problem include [10], where wear levelling is optimised to
extend the lifespan of consumer products, and [11] which
employs a block migration technique to protect blocks known
to be at risk of high bit error rate. Reference [4] presents
a RAID based SSD storage architecture which significantly
improves dependability by using an uneven parity distribution
and redistribution technique to manage the reliability levels
of each element in the array, and this is further built on in
[12], [13]. An approach to calculating reliability dynamics of
an array with respect to parity distribution using continuous
timeMarkov chains is given in [14], with results showing that
approaches built on [3] exhibit improvements over RAID-5.
Although these techniques enhance dependability, they do
not meet requirements of real-time systems where guaranteed
access time is a necessity. They are also limited in that device
replacement is an off-line activity—the use of the array must
be suspended while devices are replaced.

Several techniques have been proposed to exploit the inter-
nal parallelism of flash based storage, such as [5], [15]. The
primary goal of these works is to increase I/O bandwidth
with multi channel architectures, enabling the interleaving of
data over multiple flash chips. Reference [16] augments this
with a hot-cold data identification technique that improves
endurance of the system. However, these techniques do not
provide mechanisms to protect data in case of failure, or guar-
antee the upper bound of I/O access latency.

The implementation of a flash management framework
in synthesizable Verilog is presented in [17]. It presents a
number of techniques including dynamic scheduling, out-of-
order execution, and multi chip parallelism to enhance the
performance of flash management operations. An extended
version of the framework is presented in [18] with further
consideration of real-time issues at both hardware and soft-
ware levels. This framework is used in [19], [20] to develop an
on-line device replacement technique that uses hot swapping
and thereby eliminates issues associated with taking the away
off-line for device replacement.

A number of techniques have been proposed to address
the parity update problem for write operations, such
as [21]–[24]. Reference [22] uses non-volatile memory
(NVRAM) to cache parity to reduce the frequency of parity
update operations. Reference [21] presents a RAID-5 SSD
architecture with a partial parity technique which reduces
parity calculation overhead, and this is further built on in [23].
Elastic parity management techniques that reduce the amount
of write traffic resulting in a consequential reduction in
garbage collection, are presented in [25]. Reference [24]
investigates the effect of the garbage collector over multiple

devices in a RAID architecture. To reduce performance vari-
ability, the garbage collector is coordinated such that clean-
ing is triggered on each device simultaneously. However,
none of these studies fully address the performance of non-
determinism with respect to time when the garbage collector
activates.

Various techniques and system architectures have been
produced to provide predictable performance and thereby
overcome non-deterministic response times. Real-time
aspects are first studied in [26], which presents a garbage
collector that aims at real-time performance by using a sep-
arate thread for each garbage collector task. Reference [27]
presents a real-time FTL (called GFTL) that guarantees an
upper bound for I/O operations. GFTL adopts a partial block
cleaning policy that utilizes extra free blocks to reduce the
upper bound of write operations. Reference [8] presents
a real-time FTL (called RFTL) that employs a distributed
garbage collection policy. Preemptible garbage collection is
explored in [28] such that garbage collection can be sus-
pended at certain pre-emption points, and further studied in
[29], [30] although these studies focus on pre-emption at
device level and do not abstract from individual devices at a
global level.While they offer more bounded responses for I/O
in the presence of active garbage collection, non-determinism
with respect to time is only addressed at chip level, and
not on a RAID configuration. Moreover, they only partly
mitigate the overhead of garbage collection as the cost of the
most expensive part (erase) is not eliminated. Some real-time
aspects have been considered in, for instance, [31] at the FTL
level, but these exploit application specific characteristics and
are not intended for general purpose storage. Reference [32]
considers this the context of the asymmetry of read and write
operations. While the results show improvements in best case
access times, they do not offer the guarantee needed for hard
real-time systems, and are vulnerable to interference from
garbage collection.

In summary, there is no single complete solution that com-
bines the dependability requirements of SSD RAID, com-
bined with real-time access guarantees, suitable for general
purpose storage on enterprise scale. For such a solution to
be general purpose and scalable, it needs to be incorporated
at FTL level so as to not impose—or implicitly rely on—
application level requirements or system configuration.

The contribution of this paper is the presentation of an FTL
architecture for SSD RAID arrays, called Garbage Collection
Aware Flash Translation Layer (GAFTL) that supports real-
time access, improves worst case execution time and I/O
performance, and maintains support for the wear levelling
problem for dependability. The primary method by which
this is achieved is a novel array level garbage collection
management mechanism. However, garbage collection man-
agement is in itself shown to be insufficient for two reasons.
Firstly, it requires consideration of read, write, and erase
traffic in order to remove impact on real-time at a fine level of
granularity. Secondly, it is shown to have a negative impact
on reliability. In order to ameliorate these issues two further

142978 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

techniques are required—onewhichmanages traffic access to
the array more closely, and one which reverses the impact on
reliability. It is the combination of these three techniques that
enable a fully holistic general purpose solution at FTL level.

III. FTL OPERATIONS AND GARBAGE COLLECTION
AWARENESS
In this section we introduce and example the write, update,
and read operations of the Garbage Collection Aware Flash
Translation Layer and explain how they interact both with
the garbage collection control mechanism, and with ongoing
garbage collection. Section III-A explores real-time random
writes, random updates in Section III-B, the base case solu-
tion for sequential writes in Section III-C, and read operations
in Section III-D.

A. RANDOM WRITES
The nature of a random write request is such that it is guaran-
teed that there will always be at least one array element (SSD)
that will not be involved in the write operation. In this section
we present a technique whereby this feature is exploited
to eliminate the overhead of interrupting garbage collection
processes when undertaking random writes.

The technique is based on page-level stripes. Given a write
request from a host system, a RAID controller breaks the
data into page stripes, generates parity, and determines the
target SSDs. GAFTL then allocates a free physical page
location for each stripe unit. Two levels of mapping to access
physical location of the data aremaintained. Firstly, the RAID
controller keeps a stripe mapping table—the link between the
logical address of the request and dedicated SSDs—retaining
the SSD identifiers that store the data and parity units of a
stripe. Secondly, GAFTL records an address mapping table
between the logical address and physical location, using a
page level address mapping table.

Stripe mapping tables–including SSD allocations–are
dynamically created in a non-linear fashion, unlike existing
RAID techniques where they are typically allocated in a
linear, round robin way regardless of the internal status of
the SSDs in the array. Allocations take into consideration any
ongoing garbage collection in the array. Address mapping
tables are stored in an SRAM memory (where a separate
SRAM is used for each flash chip), and NVRAM is used for
further metadata storage including the valid, invalid, or free
status of all pages on a given SSD.

The generic algorithm for this is given in Algorithm 2.
Input to this algorithm is the array of stripes to be written
Y—it is assumed that the RAID controller has already created
this from the full write request from the host. The invariant
property that this array is of the correct size for a randomwrite
is also assumed. Furthermore, the invariant property of the
garbage collection mechanism presented later in this paper
that only one device may be engaged in garbage collection at
a time is also assumed. Output of this algorithm is the updated
MappingTable, and the updated Devices. Random writes are
categorized into two main groups: new write operations, and

Algorithm 2 GAFTL Random Writes
Require: Y : N 7→ PAGE , GC_Array,MappingTable
Ensure: Devices,MappingTable
1: Generate YP using Y
2: Add YP to Y
3: for i=0 to #Y do
4: Determine a target SSDT (using the age-aware tech-

nique in [4], [12]) for stripe Yi
5: Determine a physical page location
6: end for
7: for i=0 to #Y do
8: if GC_Array(SSDT) = false then
9: Write Yi as intended

10: else
11: Re-allocate Yi to the unused SSD
12: Determine a new physical page location
13: Write Yi
14: end if
15: end for
16: Update MappingTable
17: return

update operations. A new random write refers to a write
performed across a free stripe in the array, while an update
operation is one which targets fully or partially filled strips
with new partial data.

Fig. 4 examples how a normal random write operation for
an FTL that is not garbage collection aware works, and Fig. 5
examples the same normal random write for GAFTL, both
with respect to time. Two different random write scenarios
are depicted. The first write request, data X , arrives where
there is a single ongoing garbage collection. The second
write request, data Y , arrives and overlaps with two ongoing
garbage collection processes. For both of these, we abstract
from which stripes are data and parity as this is not relevant.

FIGURE 4. Garbage collection unaware mechanism.

In the first case in Fig. 4 the operation to write data X
consists of 3 stripe units (X1, X2, and X3) to be written to
an array with 5 elements. The response time to complete
this write is rather expensive because of the stripe targeting
SSD 4 (X3) as there is a current ongoing garbage collection
process. This stripe unit—known as the overlapped stripe

VOLUME 7, 2019 142979

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

FIGURE 5. Garbage collection aware mechanism.

unit—is the rate determining step of the operation and the
expense is a direct consequence of the lack of communication
between the FTL and the RAID controller. This contrasts
with the same operation executed on the garbage collection
aware mechanism of Fig. 5—the overlapped stripe unit is
dynamically reallocated to a free stripe on SSD 5, meaning
that it may be written immediately.

Random writes by definition use up to n-1 stripe units in
the array (where n represents the number of elements in the
array) and consequently dynamic reallocation can only be
guaranteed to speed up the writing process if there is a single
active garbage collector at any given moment.

This is highlighted in the second case, where a request to
write data Y is delayed in Fig. 4 by two garbage collection
processes overlapping with stripes Y1 and Y4 on SSD 2 and 5
respectively. Clearly, only one of these can be reallocated to
a free SSD—and this is shown with Y1 being reallocated to
SSD 1 in Fig. 5. Moreover, the garbage collection process on
SSD 5 is forced to delay to an idle time in the future when the
garbage collection on SSD 2 has completed—meaning that
the writing of Y4 can commence in parallel with the other
stripes, and response time is significantly improved.

B. RANDOM UPDATES
Unlike new random writes, any random update operation on
a stripe leads to a new parity recalculation. Random updates
may target partially or fully filled logical stripes. GAFTL
behaves differently for both cases.

Firstly, a real-time random update for a partial stripe oper-
ation is presented. Fig. 6 illustrates the process when the
host sends a random update request to stripe unit X1 and X2.
GAFTL first checks whether or not the target SSDs for the
update operation have an active garbage collection operation.
In this example, the target device for X2 (SSD 3) does have
an active process. Consequently the mechanism allocates
a garbage collection inactive SSD for the update request
X ′2 instead of waiting for the garbage collection to finish.
To assign an SSD for the overlapped stripe unit, the controller
checks the stripe mapping table to find an appropriate SSD
which does not contain anymember of the stripe and the usual
update operation is then started. The controller reads X3 to
calculate new parity X ′P. Then it writes the new data X ′2 to

FIGURE 6. Random update for a partial stripe.

SSD 1, the new data X ′1 to SSD 2 and an updated parity X ′P
to SSD 5 while invalidating X1, X2 and XP. Finally, the stripe
mapping table is updated accordingly.

To invalidate the overlapped stripe unit without accessing
its physical page location, the page status table (stored in
NvRAM) is used. Existing FTL techniques usually store
status information of a page in its metadata area. To invalidate
a page, physical access to the metadata area is required.
However GAFTL stores the page status component of the
metadata in NvSRAM—thus physical access to the invali-
dated page is not required.

In this architecture, NvSRAM is partitioned into n sections
(where n is the number of SSDs). Two bits in NvSRAM are
reserved for each page in the array. The least significant bit
represents whether a particular page is a valid or invalid, and
the most significant bit indicates if it is free to use or not. The
status of X2 is illustrated before and after the update operation
in table Table 1. The update operation for a partial stripe can
be employed without any performance overhead.

TABLE 1. Page status table update for random update.

Secondly, a random update operation over a full stripe is
exampled in Fig. 7. A scenario is considered where one of
the target SSDs of the update request is engaged in garbage

FIGURE 7. Random update for a full stripe.

142980 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

collection. Moreover, there is no available chip to relocate the
overlapped stripe unit as all SSDs in the array already store a
member of the stripe. To overcome this, the overlapped stripe
behaves as a new random write.

In Fig. 7 garbage collection is active on SSD 3 when the
update request arrives. Stripe data X ′2 and the updated parity
can be stored on SSD 2 and 5, respectively. As SSD 3 is
blocked by ongoing garbage collection, the controller allo-
cates a new SSD to X ′3. Moreover, the overlapped stripe
unit (X ′3) is treated as a different random write because one
SSD cannot retain more than a single stripe unit for a logical
stripe. X ′3 is subsequently placed on SSD 1 and its associ-
ated parity is updated accordingly on a different stripe. This
operation causes an extra write operation (X ′′P) and results in
the performance overhead of an update operation. However,
compared to a long garbage collection process which includes
an erase operation, this has significantly lower impact on
system performance and WCET.

The general version of this algorithm is given in
Algorithm 3. Input to this algorithm is the stripe to be
updated YX , where X identifies the device on which that
stripe resides—it is assumed in this presentation of the algo-
rithm that this has already been read from theMappingTable.
As with random writes, invariant properties about garbage
collection are assumed. The output of this algorithm is the
updated MappingTable and the updated array of Devices. In
the interests of succinctness, this presentation of the algo-
rithm assumes that it is not the device containing the parity
that has active garbage collection, although the algorithm
could be trivially extended to take this into consideration.

Algorithm 3 GAFTL Random Updates
Require: YX : PAGE , GC_Array,MappingTable
Ensure: Devices, MappingTable
1: Calculate new parity XP
2: if GC_Array(SSDX) = true then
3: if partial stripe then
4: Check page status table for a stripe free device T
5: else
6: Determine a target SSDT (using the age-aware tech-

nique in [4], [12]) for stripe YX
7: end if
8: end if
9: Write YT as intended, invalidating original data

10: Update parity XP and invalidate original
11: Update page status table
12: return

C. SEQUENTIAL WRITES
Until now, it has been assumed that a given workload only
consists of random writes. A sequential write to an SSD
array updates the whole stripe to prevent creating a wear
imbalance and thus reducing the reliability of the system.
Parity blocks wear at the same rate as data blocks in the case
of sequential writes. However, random writes have the ability

to imbalance write traffic across the SSD elements in the
array. This provides an opportunity to differentiate the age
of the SSDs in the array to prevent simultaneous wearing.
It can be noted that maximum reliability is provided with
a workload which only consists of random writes [3]. It is
also known that many realistic workloads are dominated by
random writes [33].

Section III-A presented the GAFTL technique for guaran-
teeing response times for random writes. In order to utilize
the benefits of these, [34] presents a technique for converting
a sequential write into a a random one. GAFTL expands on
this technique by relocating partitioned random writes on to
devices not currently being garbage collected.

A standard sequential write for X is exampled in Fig. 8b,
a forced random write using the existing technique in [34] in
Fig. 8c, and a new garbage collection aware forced random
write in Fig. 8d. Each of these correspond to the array in
Fig. 8a, and the keys for invalid stripes, stripe writes, and
garbage collection pertain to each of the sub figures.

FIGURE 8. Example sequential and random stripe writes.

The aim of the forced random write technique in [34] is to
create wear imbalance among the chips in the array for new
and update data requests. As illustrated in Fig. 8c, there is
an extra write operation to the parity SSD (SSD 5) compared
to the standard sequential write in Fig. 8b. In this approach,
it is assumed that the sequential write is divided into two
randomwrites. First, two data stripes (X1 andX2) and a partial
parity data (XP) are written to the same stripe. Second, data
X3 and X4 are written with full stripe parity (XP) of X1, X2,
X3 and X4 while invalidating the original partial parity.

Although this forced random write technique offers
enhanced reliability across the RAID array compared to a
sequential write, it still suffers from non-deterministic access
latency due to ongoing garbage collection—such as that in
SSD 4. Fig. 8d examples how GAFTL ameliorates this issue.
As it has knowledge of the ongoing garbage collection pro-
cess, the overlapping component of the stripe (X4) is reallo-
cated to a garbage collection free device.

In Fig. 8d, SSD 2 stores multiple data stripes belonging to
the same stripe. In order to reconstruct X in the case of failure
in SSD 2, the mechanism needs to keep two partial parities
(XP1 and XP2) for stripe X . Also, all indexing information
is updated in the stripe mapping table. Thus the garbage
collection aware forced random writes not only increases
system reliability, but also provides guaranteed access times
for sequential write workloads.

VOLUME 7, 2019 142981

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

Algorithm 4 informally describes this. The algorithm
exploits, and is presented in terms of, the previously described
operations. Input to the algorithm is the full stripe to be writ-
ten (Y), the garbage collection array, and the page mapping
tables. It is first split into two random stripe writes. Each
of these random stripes are then written using the random
write technique of Algorithm 2, which takes into account any
ongoing garbage collection. Once these have been written,
the full stripe parity is written and updated for thewhole stripe
using the random update operation of Algorithm 3 and details
committed to the page mapping table.

Algorithm 4 GAFTL Sequential Writes
Require: Y : N 7→ PAGE , GC_Array,MappingTable
Ensure: Devices, MappingTable
1: Split Y into random write stripes YR1, YR2 using [34]
2: Perform Algorithm 2 on YR1
3: Perform Algorithm 2 on YR2
4: Calculate full stripe parity YP
5: Perform Algorithm 3 on YP
6: Update page mapping table
7: return

D. READ OPERATIONS
Parity based RAID techniques have the ability to recover

data in the instance of a single device failure. GAFTL also
utilizes the redundant data in a RAID array to calculate
overlapped stripe units. If a read operation needs to access
a device where the garbage collector is active, the data is
marked as a failed data access by the controller. When the
host sends a read request to the SSD array, GAFTL follows
Algorithm 5. When the host asks for data at a given logical
address, physical locations are identified using the mapping
table. If none of the physical locations have a target SSD
currently involved in garbage collection, the data can be
read and returned. If however one of the locations does have
ongoing garbage collection, then all other data is read and
the missing stripe calculated using parity. As with the other
algorithms, the invariant property that only one SSD may
undergo garbage collection at a time is assumed.

Algorithm 5 GAFTL Read
Require: X : LogicalAddress,MappingTable, GC_Array
Ensure: Data : N 7→ Bit ,
1: ReadMappingTable to identify SSDs to be read
2: if a target SSD has ongoing garbage collection then
3: Read all available (non-GC) stripes
4: Calculate missing stripe data using parity
5: else
6: Read all stripes
7: end if
8: Return Data
9: return

For a real-time read operation, the mechanism simply
avoids sending a command to the overlapped stripe unit
thereby avoiding the time overhead in dealing with a failed
read request until garbage collection completes. For instance,
Fig. 9 examples the scenario where a read request for X
is submitted whilst there is ongoing garbage collection on
SSD 3. Normally, to read the data from SSD 3, the request
has to wait until this garbage collection completes. However
the mechanism is aware of this ongoing garbage collection
and consequently does not send a read operation to this SSD.
Instead, it reads the rest of the stripe units (X1, X2, X4)
including the parity data (XP) and calculates the missing data
X3 using a standard XOR operation. This operation has only
the calculation overhead, which is negligible. As seen from
the example, the mechanism offers higher performance and
guaranteed access time for a read operation even there is a
single ongoing garbage collection in the array. This technique
is applicable to both random and sequential read operations—
although GAFTL ensures that all read operations will be
random reads due to the random write enforcement.

FIGURE 9. Real-time read operation.

All of the algorithms presented in this paper so far have
assumed, and rely on, the invariant property that there is only
one garbage collector active in the array at any one point
in time. If this assumption is relaxed, the operations do not
work in the general case—and this assumption is necessarily
relaxed in the case of general, non-GAFTL RAID arrays.
In the next section, we present a technique for serialized
garbage collection whereby this invariant property can be
relied on, thus preserving the integrity of the assumption.

IV. SERIALIZED GARBAGE COLLECTION
Unmanaged garbage collection has a significant impact on
response time. In this section we present a serialized garbage
collection technique that can be implemented as a RAID
array FTL level (as in, for instance [34]) operation to achieve
guaranteed performance. The technique ensures that there
is only one garbage collector active in the array at any one
time (under non-exceptional operating conditions), thereby
ensuring the invariant assumptions of the read, write, and
update operations presented in Section III. This serialisation
of garbage collection is achieved by globally scheduling

142982 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

FIGURE 10. Serialized garbage collector state diagram.

the garbage collectors across the array. Whilst the combi-
nation of parity data and global scheduling eliminates non-
deterministic access times, the consequential challenge is
to ensure that no singe device fails due to a lack of free
pages resulting from garbage collection delays. To solve
this problem, the global garbage collection management is
divided into several modes of operation, described by the state
diagram in Fig. 10 and Algorithm 6 and as follows:
• No garbage collection (None): There is no active garbage
collection enabled on any device.

• Serialized garbage collection (S): A single garbage col-
lector may be activated on any one device.

• Prioritised garbage collection (P): Serialized garbage
collection is enabled but another device has higher pri-
ority for cleaning.

• Normal (conventional) garbage collection (N): Any
number of garbage collectors may be active in the array
at the same time. This corresponds to an exceptional
circumstance in GAFTL.

Conventional garbage collectors typically have two states:
either there is no garbage collection going on, or unmanaged
garbage collection across the array is permitted—this corre-
sponds to the normal state (N) in Fig. 10. Each SSDmonitors
the number of free blocks it has available. If unmanaged
garbage collection is permitted and the number of free blocks
exceeds a pre-defined threshold then garbage collection com-
mences. Alternatively, if an idle time period is detected,
garbage collection may commence also.

A basic informal definition of the data structures used in
the serialised garbage collector is given in Data Structure 4.
In the serialised garbage collection model, thresholds are
monitored and used to identify which devices may require
urgent or non-urgent cleaning, and also which mode of
cleaning is necessary. This is depicted in the for loop of

Data structure 4 Data Types for Serialised Garbage
Collection
1: States : None|N |S|P
2: Ps,Ph : {x : N|x < #Devices}
3: Th,Ts : N
4: State : States

Algorithm 6. The number of free blocks on each device is
inspected in turn, and the device identifier placed either in
the urgent (hard) pool Ph, the non-urgent (soft) pool Ps, or no
pool depending on where they lie in relation to the parame-
terised pre-set system threshold hard and soft levels Th and Ts.

Algorithm 6 GAFTL Serialised Garbage Collection
Require: State,Devices,Ph,Ps,Th,Ts
1: while true do
2: for i= 0 to # Devices-1 do
3: switch free_blocks(SSDi)
4: case > Ts∧ < Th: P′s = Ps ∪ {i} ∧ Ph = Ph \ {i}
5: case > Th: P′h = Ph ∪ {i} ∧ Ps = Ps \ {i}
6: default: P′s = Ps \ {i} ∧ Ph = Ph \ {i}
7: end switch
8: end for
9:

10: switch State,Ph,Ps
11: case None ∧ Ps! = ∅: State := S
12: case N ∧ Ph 6= ∅: State := P
13: case N ∧ Ph = ∅: State := S
14: case P ∧ Ph 6= ∅: State := N
15: case P ∧ Ph = ∅: State := S
16: case S ∧ #Ph > 1: State := N
17: case S ∧ #Ph = 1: State := P
18: case S ∧ Ps = ∅: State := None
19: default: No action needs taken
20: end switch
21: end while
22: return

The second switch statement in Algorithm 6 controls
the state machine and consequently garbage collection activ-
ity. During idle periods when there is no garbage collection
required, the system defaults to the None state—indicating
that there is no active garbage collection underway. If, in this
state, one or more devices are placed in the soft pool (clause
None ∧ P 6= ∅), then the garbage collector may initiated on
one of the devices chosen from the pool at random, and the
system moves into the serialised state. In this state, it selects
one of the garbage collectors in this pool at random and
activates it. Upon garbage collection competing, it removes
it from the pool. When there are no SSDs left in the soft pool
(clause S∧P = ∅) the system reverts back into the no garbage
collection state.

A common situation is that there may be more than one
SSD in the pool requiring cleaning at any one time, and that
one of the SSDs requiring cleaning is more urgent than the
others. When a hard threshold is reached on a given SSD,
this indicates that the level of free space is critically low
and cleaning is urgent. This corresponds to the > Th clause
in Algorithm 6—when a device exceeds this threshold it is
placed into the urgent pool. It is necessary to monitor the
possibility of urgency, as the selection of devices for cleaning
from the soft pool is non-deterministic and so any given
device may escape cleaning for prolonged periods.

VOLUME 7, 2019 142983

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

If there is only SSD in the pool that has reached the hard
threshold (clause S ∧ #Ph = 1) the system moves into the
prioritised garbage collection state. The chip is prioritised
and cleaned, before the system removes it from the pool
and returns to the serialized state. This mechanism is useful
because it is common in an SSD RAID array for one chip
to require more cleaning more frequently—for instance if it
carries a higher parity data ratio due to age ratio management.

A final extraordinary situation which may arise is where
multiple SSDs simultaneously exceed their hard thresholds
(clause S ∧ #Ph > 1). In this state the system moves
into normal (conventional) garbage collection mode. In this
mode multiple garbage collectors may run simultaneously
as happens in conventional techniques. After sufficient free
pages have been released, the system will revert either to
the serialized, or the prioritised, mode dependant upon the
number of SSDs exceeding soft and hard thresholds.

Clearly, in the normal (conventional) garbage collection
mode real-time guarantees are not possible—however this
mode is typically a backstop against pending system failure
due to insufficient free space, rather than a mode employed
in normal operation as the age ratio mechanism of [12],
combined with an appropriate chose of hard threshold Th,
typically ensures that themost aged device is the only one that
approaches its hard threshold. The modes show that, whilst
the property of no more than one garbage collector being
active is not truly invariant, it can be regarded as such in
anything other than a failure recovery mode—in which real-
time guarantees would not be expected to be upheld.

WCET ANALYSES
In Section II we presented how traditional architectures and
garbage collection processes are poor at offering real-time
guarantees due to uncertain latencies caused by unmanaged
garbage collection. In this section we analyse the improved
Worst Case Execution Time over existing solutions, and show
how these prevent performance degradation. In this analysis,
Ter refers to the time taken to erase a block, Uw the upper
bound of a page write, and Ur the upper bound of a page read,
terminology taken from existing literature [8], [27], [28].
Actual values for the upper bounds depend on various factors
such as the type of address mapping table used, the method
by which metadata is stored, and the existence or otherwise
of buffering. Consequently our analysis considers relative,
rather than absolute, bounds.

WCETs for existing techniques are compared in Table 2.
Two modes require discussion—where GAFTL is in either

TABLE 2. WCET comparison.

serialized or prioritised modes, and where it may be in normal
garbage collection mode. Firstly, if it moves into normal
mode then WCET times would be increased—however as
discussed in Section IV this serves only as a backstop mode
to prevent system failure and so is not directly considered for
GAFTL. The techniques of [8], [27], [28] do not take this into
account as they have only one mode. Secondly it should be
noted that previous FTL mechanisms only present solutions
at single SSD level, not considering the whole RAID array.

Typically, erase operations (Ter) are around ten times more
expensive than write operations (Uw), and write operations
are of broadly equivalent cost to read operations (Ur). The
underlying principle behind existing techniques is for the
garbage collector to pre-empt instruction streams. As it can
only pre-empt at the granularity of the operations (instruc-
tions), none of the existing solutions avoid the long latency of
an erase operation. In the worst case scenario, a request may
be received immediately after an erase operation has been
initiated and thereby have to wait for it to finish.

GAFLT is seen to significantly reduce WCET by ensuring
that no instructions are blocked by ongoing garbage collec-
tion. All requests can be directly serviced with a cost of (the
maximum of) either Uw or Ur .

V. ON-LINE PARITY MIGRATION
While the serialized garbage collection mechanism presented
in Section IV offers performance guarantees for incom-
ing requests, it is less well suited to existing reliability
mechanisms where SSD ages are strictly controlled by pre-
assigned parity distribution ratios. This is due to the differing
behaviour of the mechanism in the case where garbage col-
lection is inactive or active. In the case where it is inactive
SSD destinations for writes do not change. However in the
case where is it active, different destinations are selected.
Over time, this results in a degeneration of the parity data
distribution from the pre-assigned ratio. As the most aged
SSD performs more garbage collection than other devices in
the array it’s default parity data percentage decreases whilst
the others increases.

This has a negative impact on reliability. In this section,
we present a new mechanism that controls parity data dis-
tribution in this scenario. The mechanism enables the on-
line proactive migration of parity data while the system is
running so that desired ratios can remain adhered to (or be
intentionally altered in special cases).

Data structure 5 Data Structures for On-Line Parity
Migration
1: Percentage : {x : N|0 ≤ x ≤ 100}
2: Migration : B
3: Assign : N 7→ Percentage
4: Dest : N 7→ SSD_Device
5: Mode : 1..4
6: OPM : GC_array×Migration× Assign× Dest

142984 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

An invariant property of GC_array—that garbage col-
lection may be active on at most one device at a time—is
assumed. Data structures used for on-line parity migration are
presented informally in Data Structure 5, and are as follows:

• Migration: a boolean variable indicating whether or not
parity migration is currently active in the array.

• Assign: a sequence of percentages, indicating the share
of parity currently assigned to each device in the array.
This would normally carry the invariant property that the
sum of the percentages should be 100.

• Dest: a sequence of devices, indicating the destinations
for incoming parity write requests. The device at posi-
tion n in this sequence indicates the device that incoming
parity write requests for Devices(n) (Data Structure 3)
should actually be written (migrated) to.

• OPM : a tuple consisting of GC_array
(Data Structure 3), Migration, Assign, and Dest used to
manage the on-line parity migration and the different
states.

A simple state diagram for the parity migration is presented
in Fig. 11, where each state (mode) is characterised by var-
ious different states of the tuple OPM . Each mode may be
summarised as follows:

• Mode 1: Both garbage collection and parity migration
are inactive. Parity distribution ratios are not changed
until an SSD replacement is required—implemented
using the on-line device replacement techniques of [20].
This mode corresponds to a value of OPM where the
range ofGC_array is false,Migration is false, the range
of Assign is the initially chosen values (using the tech-
nique of [12]) and no identifier in Dest points to any
other device (that is, Dest(n) = Devices(n)).

• Mode 2: Garbage collection is active on the most aged
device in the array (GC_array(0) = true), but migration
remains inactive (Migration = false). Any parity writes
to this device are redirected to the second most aged
device in the array (Dest(1) = SSD_Device(2)). Parity
assignment ratios (Assign) remain unchanged.

• Mode 3: Garbage collection is active on a device in
the array other than the most aged device (∃1 n :
1..#GC_array|GC_array(n) = true), but migration

FIGURE 11. Parity migration states.

remains inactive (Migration = false). Any parity writes
directed towards this SSD are redirected to SSD 1
(Dest(n) = Devices(0)). Parity distribution ratios
remain unchanged.

• Mode 4 On-line parity migration: Garbage collection
is disabled across the array (GC_array = false), and
migration is active (Migration = true). Initial parity
distribution ratios (Assign) may be reassigned if on-line
device replacement requires it. Existing (pre-written)
parity data is moved around the array to rebalance parity
distribution according to the ratios in Assign.

The state transitions are described informally in
Algorithm 7. On entering mode 1, which is effectively an idle
mode, Assign is reset to reflect the original (or recalculated
if through mode 4) parity distribution levels, and the desti-
nations for incoming parity writes is reset to the expected
destinations. These have been left out of the description in
Algorithm 7 in the interests of succinctness, but are reflected
in Fig. 11. Exit transitions depend on the state of the garbage
collector. If garbage collection is enabled on the most aged
device (SSD 1) then the exit transition is to mode 2, if it is
enabled on any other device the exit transition is to mode 3.
If there is no enabled garbage collection, then the pro-active
parity migration of mode 4 may be entered.

Algorithm 7 On-Line Parity Migration
Require: Mode, OPM
1: while true do
2: switch (Mode)
3: case 1:
4: OPM := preset values
5: if GC_array(0) = true then Mode := 2
6: else if GC_array(n > 0) = true then Mode := 3
7: elseMode := 4 endif
8: case 2:
9: Assign(0, 1) := interim values
10: Dest(0) := Devices(1)
11: if GC_array(n > 0) = true then Mode := 3
12: elseMode := 1 endif
13: case 3:
14: Dest(n) := Devices(0)
15: if GC_array(0) = true then Mode := 2
16: elseMode := 4 endif
17: case 4:
18: Migration := true
19: while GC_array = false∧ migration needed do
20: if idle time then migrate a parity block endif
21: end while
22: if GC_array(0) = true then Mode := 2
23: else if GC_array(n > 0) = true then Mode := 3
24: elseMode := 1 endif
25: end switch
26: end while
27: return

VOLUME 7, 2019 142985

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

In mode 2, incoming parity writes to SSD 1 are redirected
to SSD 2. This is achieved by assigning interim values to
both Assign and Dest on entry. SSD 2 is assigned the interim
value of its parity distribution and that of SSD 1, while SSD 1
is assigned an interim distribution of 0%. The destination
for parity writes intended for SSD 1 is redirected to SSD 2.
When garbage collection completes, the mechanism leaves
this mode. If there is a pending enabled garbage collection
for another device in the array the transition is to mode 3,
otherwise it returns to mode 1.

In mode 3, all incoming parity data targeting the device
being cleaned is redirected to the most aged device (SSD 1)
using an interim value for Dest(n). Parity distribution ratios
for other devices remain unchanged from their preset values.
As this may have caused an imbalance in parity distribution
that affects ageing characteristics, an exit transition directly
back to mode 1 is not permitted, and exit may go through the
proactive migration of mode 4 if there is no pending garbage
collection on the most aged device.

On entering mode 4, the mechanism raises the Migration
flag to indicate that pro-active parity migration is under-
way in order to allow interaction with idle time detection
mechanisms. The amount of parity data needing migrated,
the devices from which it needs to be migrated, and the
devices to which it can be migrated, is calculated. Parity data
is then moved from the over-subscribed devices to the under
subscribed devices when idle times in the data stream are
detected. This move may also involve a stripe swap operation
between the two devices if the destination contains a member
of the same logical stripe.

VI. EXPERIMENTATION AND RESULTS
In this section we present the results of a number of
experiments performed on the garbage collection aware
FTL, including comparisons with a non garbage collection
FTL, and the pre-emptive garbage collection mechanism.
Performance evaluation is performed using the Microsoft
SSD simulator [5], which is in turn derived from
Disksim [35]. The parity distribution mechanism is imple-
mented in the simulator, and the RAID controller is con-
figured as the garbage collection aware FTL. NAND flash
SSD is simulated, with the performance characteristics given
in Table 3. Source code for the amended (GAFTL enabled)

TABLE 3. Array parameters.

version of the SSD simulator and FTLmay be made available
upon request.

Under normal workload—where there are not simultane-
ous garbage collection requests—the serialized mode (shift
operations) is not enabled.Whenmultiple garbage collections
are simultaneously requested, serialized mode is enabled and
the controller checks the garbage collection pool for page
consuming requests. If there are requests for multiple chips
in the pool the controller schedules all incoming garbage col-
lection requests according to priority levels. This is repeated
over all chips in the request pool until a chip has enough free
blocks. When the pool is empty, the system goes back to a
non garbage collecting state.

Results show an evaluation and comparison with several
different approaches: a non garbage collection aware FTL,
the garbage collection aware mechanism of Section III, and
the pre-emptive mechanism of [28]. By default, the simu-
lator uses the basic normal, uncoordinated approach where
garbage collection is initiated based on the internal status of
a flash chip with no global coordination. Experiments report
results of a mixture synthetic workloads (Section VI-A) and
realistic workloads taken from actual traces (Section VI-B).
For synthetic workloads the probability of sequential access,
inter-arrival time of requests, and size of requests are all
varied. Memory is initially filled with valid data. The initial
parameters for synthetic traces are given in Table 4.

TABLE 4. Synthetic trace initial parameters.

A. SYNTHETIC WORKLOADS
Each of the graphs in this section (Fig. 12, Fig. 13, Fig. 14,
and Fig. 15) show results taken both with the serialized
garbage collection FTL of Section IV and of an FTL unaware
of garbage collection. Workloads are synthetic: that is to
say, we use workload traces where we vary several param-
eters across a normal operating range. Under the serialized
garbage collection FTL, the FTL dynamically reallocates
requests across available elements of the array subject to
active garbage collection; in the garbage collection unaware
FTL they are naively allocated as the FTL.

Fig. 12 shows the results of varying the request size
across 4, 8, and 10kB. These values are used as the reliabil-
ity enhancement mechanism achieves maximum efficiency
using partial stripe writes that enable age imbalancing. For a
small request size (4kB), GAFTL response time is approxi-
mately three times faster than the garbage collection unaware
equivalent. As the request size increases, the response perfor-
mance of the garbage collection unaware mechanism drops
off very significantly—response times for 10kB requests are
approximately four times slower than than for 4kB requests.
however GAFTL does not drop off rapidly and so the

142986 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

FIGURE 12. Varying request size (synthetic traces).

performance improvement for a 10kB request is approxi-
mately 10 fold. This is because the mechanism is not delayed
by the number of cleaning processes active during the request.

FIGURE 13. Varying inter-arrival time (synthetic traces).

Fig. 13 shows similar improvements with respect to vary-
ing the arrival rate of I/O requests over 1, 3, and 5ms. For the
non garbage collection aware FTL the response time is rather
slow for a rapid inter-arrival time of 1ms, but it speeds up
as arrival time intervals increase. This is because with rapid
inter-arrival times the probability of conflict with garbage
collection is high, and as arrival times slow the likelihood of a
conflict with an active garbage collection process decreases.
However they do not decrease to a level where the effect is
negligible. For GAFTL, response times remain effectively
constant across the range—and notably remain significantly
below that of the conventional mechanism.

Fig. 14 shows the results of varying the ratio of read
requests to write requests. This is an important parameter
for two reasons. Firstly, the cost in terms of time for a
read is significantly less than for that of a write operation.
Secondly, as the number ofwrite operations increases, so does
the likelihood of need for garbage collection. For the non
garbage collection aware FTL, access times increase as the
probability of any given access being a read access increases,
almost linearly. The same relative (linear) improvement in
GAFTL may also be observed—but the response times are
significantly faster. For instance, when the probability of any
given access being a read access is 0.3, GAFTL responds
three times faster.

FIGURE 14. Varying read ratio (synthetic traces).

FIGURE 15. Varying sequential access probability (synthetic traces).

Fig. 15 shows the results of varying the probability of
a write access being a sequential write access. This is an
important measure as the reliability enhancement mechanism
in GAFTL converts all sequential write accesses to random
write accesses—random write accesses generally lead to
more parity update operations, and therefore more invalid
pages, and therefore more garbage collection. The probability
of an access being sequential is varied at 20% intervals.
The average response time for the non-garbage collection
remains high throughout, with a peak around 50%. The aver-
age response time for GAFTL remains both constant, and
significantly lower. The consistency may be expected due to
the fact that all accesses in GAFTL are converted to random
write accesses. The significantly lower repose times can be
attributed to the successful management of interactions with
garbage collection requests.

Overall, these results show significant performance
improvements for GAFTL under varying synthetic work-
loads, regardless of workload characteristics. Results are
both more consistent than for a non garbage collection
aware mechanism, and also more performant, generally being
significantly faster—both are very important in a real-time
context. Moreover, the benefits of GAFTL become more
pronounced for characteristics that are more likely to lead to
cleaning operations (smaller request sizes, faster inter-arrival
times, more random accesses. and fewer read accesses).

B. REALISTIC WORKLOADS
In this section, the same set of experiments are reported, but
with realistic (real captured) workloads. Traces were captured

VOLUME 7, 2019 142987

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

using the Flashmoon tool [36]. Characteristic features of the
traces (both read and write dominant) are given in Table 5.
The Postmark benchmark represents the behaviour of a gen-
eral purpose file system, is write dominant, fast inter-arrival
times, and typically generates small request sizes. The Boot
benchmark represents the behaviour exhibited during a kernel
boot process. It is read dominant, and instructions have a
reasonably spaced inter-arrival rate.

TABLE 5. Characteristics of realistic traces.

In the keys for the graphs that follow, A represents the
garbage collection aware mechanism presented in this paper,
B represents the preemptible mechanism of [28], and C rep-
resents a standard non garbage collection aware mechanism.

Fig. 16 shows average response times for Postmark
and Boot workloads. Average response time is improved
by nearly 13 times compared to a standard non garbage
collection aware mechanism in the Postmark workload.
A small performance improvement is achieved over the pre-
emptive garbage control mechanism. For the Boot workload,
the garbage collection aware mechanism exhibits a small
(2.32%) improvement over the pre-emptive mechanism, and
a more significant (26%) improvement over the non garbage
collection aware mechanism.

FIGURE 16. Average response times (realistic traces).

Maximum response times are presented in Fig. 17, with
results normalized to the slowest response. The garbage col-
lection aware mechanism exhibits 62% and 73% faster max-
imum response times over the pre-emptive mechanism for
both workload types. Improvement over over the traditional
mechanism is several orders of magnitude for both workload
types—because GAFTL eliminates long cleaning processes
by dynamically disturbing data stripe units.

C. RELIABILITY ANALYSES
In this section we investigate the effects of the serialized
garbage collection mechanism, and the on-line parity migra-
tion, on the reliability mechanisms. As presented in [4],
the reliability mechanism manages ageing of devices by con-
trolling the percentages of total parity data written to each

FIGURE 17. Maximum response times (realistic traces).

device. Individual device age is calculated using the ageing
formula presented in [3]. Experiments were conducted using
a write dominant synthetic trace in the MSR SSD simula-
tor [5]. SSD model parameters are given in Table 3, and the
synthetic trace characteristics in Table 4.

The reliability mechanism is not dependant upon
read or write dominant traces and so in these experiments
I/O request sizes were kept under a 16kB stripe size. Fig. 18
shows results of device ageing over the fist ten device replace-
ments. In this experiment, when the most aged device reaches
its normalized endurance limit (100% of cycles) for the first
device replacement point it contains 26% less parity data
than expected. As the device is to be replaced, this parity
data is migrated to the second most aged device in the array
which then contains approximately 40% more parity than its
optimum level before optimum levels are shifted.

FIGURE 18. Age distributions under GAFTL.

During the first replacement cycle the (normalised) age of
the second most aged device is 80%—meaning probability
of data loss is raised. The age of the second most aged
device continues to fluctuate through subsequent replace-
ment cycles—exceeding critical ageing ratios at replacement
points 1, 3, 4, 6, and 9. This is in contrast to the basic
mechanism presented in [4], where the age of the second
device stabilises after the third replacement cycle.

Fig. 19 shows the results of the same experiment, using the
same synthetic trace, with on-line parity migration enabled.
These results show that on-line parity migration has signifi-
cantly reduced the negative effects on ageing stability caused
by the garbage collection aware mechanism. Parity distribu-

142988 VOLUME 7, 2019

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

FIGURE 19. Age distributions under GAFTL and OPM.

tion is kept at optimum levels and stabilises from replacement
cycle 3, thus preserving the reliability offered by the basic
mechanism of [4].

VII. CONCLUSION AND DISCUSSION
Limitations of SSD RAID are well understood both in pub-
lished scientific literature, and in application environments
such as manufacturers, end users, and internet forums. The
increasing use of large scale SSD RAID in enterprise archi-
tectures has motivated the requirement for these limitations
to be addressed. Whilst there has been advances in reliability
mechanisms in recent years, the challenge of highly deter-
ministic real-time support has remained.

Consumer demand for large, enterprise server storage facil-
ities that offer measurable service levels has grown massively
in recent years, and there are a number of products that
serve this market. Whilst these products offer configurable
service level guarantees at the applications (or file system)
level, the guarantees are typically not at the level of real-
time support at FTL or device level. Consequently, as the
size of enterprise storage facilities grows, and application
demands grow, it becomes increasingly challenging to main-
tain these guarantees. Moreover, the lack of support for real-
time guarantees at the device level has meant that the use
of these architectures in high-assurance and safety-critical
applications has presented significant barriers.

In this study new techniques for a high reliability SSD
RAID array that ameliorates these challenges by addressing
them at the FTL and RAID level have been presented. The
approach taken in this study was firstly to raise physical and
logical aspects of read, write, and erase operations globally
to the FTL. Secondly, it was to raise the oversight of garbage
collection globally. The combination of these meant that it
was possible to manage read, write, and erase operations
to take garbage collection into consideration—resulting in
deterministic response times.

A drawback of this approach is the adverse effect on
the data level reliability—specifically, the wear-levelling that
is required for SSD RAID reliability. This drawback was
addressed by introducing an on-line parity migration system
that redressed unintended wear imbalance by moving parity
when required, during idle periods.

By considering the challenge in the context of unmanaged
garbage collection across the array, the study illustrated that
results in terms of real-time performance, and storage reliabil-
ity, are viable, performant, deterministic, and an enhancement
on state-of-the-art. It also illustrated that this can be achieved
without need for changes at a physical device level or at a
high level file system level, and that it can be achieved with
software enhancements at FTL and RAID level.

Techniques were investigated, and experiments per-
formed, using an industry standard trace driven simulator.
Experimental results validate the hypothesis that the com-
bination of these techniques result in deterministic perfor-
mance with respect to time, without deterioration in terms of
performance in terms of reliability. Response times exhibit
near-order of magnitude improvement over unmanaged tech-
niques, as well as consistency under varying request size, read
ratio, inter-arrival time, and sequential access probability.
Results are consistent across both standard synthetic and
realistic workload experimental data.

A property of these techniques is that they all rely on the
assumption (invariant) property that only one garbage collec-
tor is active at any one time. This was enforced in three modes
of operation. Not only do the results evidence that this is not
a hindrance, they demonstrate that it is exactly enforcing this
property that unlock the performance improvements. A fourth
mode relaxes this assumption. In this fourth mode (equivalent
to current state-of-the-art) garbage collection is unmanaged.
The experimental data did not cause this mode to be entered,
leading to the conclusion that it may be useful as a recovery
mode in the case of extraordinary circumstances, and the
further hypothesis that it may be completely unnecessary in
the general case.

A future goal for this work is to incorporate it into our
FPGA-based Verilog hardware-in-the-loop RAID controller
and FTL of [18], such that results may be correlated with
physical devices. This would enable further insight into real-
time properties—including the standard deviation of read
access times—and scalability to enterprise level.

An additional goal for this work is to produce a fully
functional, real-time, verified SSD RAID file system suitable
for safety-critical environments. In order to achieve this,
the informal descriptions presented in this paper could be
captured accurately in a full formal, timed model of the FTL
RAID implementation using timed automata or timed process
algebra such as [37]–[40]. This would mean safety-critical
and real-time properties, investigated empirically through
experimentation, could be formally verified also—both at the
file system level, and at the environment (application) level.

REFERENCES

[1] S. J. Kwon, A. Ranjitkar, Y.-B. Ko, and T.-S. Chung, ‘‘FTL algorithms
for NAND-type flash memories,’’ Des. Automat. Embedded Syst., vol. 15,
nos. 3–4, pp. 191–224, Dec. 2011. doi: 10.1007/s10617-011-9071-9.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
‘‘RAID: High-performance, reliable secondary storage,’’ ACM Comput.
Surv., vol. 26, no. 2, pp. 145–185, Jun. 1994. doi: 10.1145/176979.176981.

VOLUME 7, 2019 142989

http://dx.doi.org/10.1007/s10617-011-9071-9
http://dx.doi.org/10.1145/176979.176981

A. A. McEwan, M. Z. Komsul: Real-Time Dependable Flash Storage System

[3] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, ‘‘Differential
RAID: Rethinking RAID for SSD reliability,’’ ACM Trans. Storage, vol. 6,
no. 2, p. 4, Jul. 2010.

[4] I. F. Mir and A. A. McEwan, ‘‘A reliability enhancement mechanism for
high-assurance MLC flash-based storage systems,’’ in Proc. IEEE 17th
Int. Conf. Embedded Real-Time Comput. Syst. Appl., vol. 1, Aug. 2011,
pp. 190–194.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, ‘‘Design tradeoffs for SSD performance,’’ in Proc. USENIX
Annu. Tech. Conf., Jun. 2008, pp. 57–70.

[6] Intel Corporation, ‘‘Understanding the flash translation layer (FTL) spec-
ification,’’ Intel Appl. Note AP-684, 1998.

[7] F. Chen, D. A. Koufaty, and X. Zhang, ‘‘Understanding intrinsic character-
istics and system implications of flash memory based solid state drives,’’
ACM SIGMETRICS Perform. Eval. Rev., vol. 37, no. 1, pp. 181–192, 2009.
doi: 10.1145/1555349.1555371.

[8] Z. Qin, Y. Wang, D. Liu, and Z. Shao, ‘‘Real-time flash translation
layer for NAND flash memory storage systems,’’ in Proc. Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2012, pp. 35–44. doi:
10.1109/RTAS.2012.27.

[9] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. R. Nevill, ‘‘Bit error rate in NAND flash
memories,’’ in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 9–19.

[10] L. Fan, J. Luo, Y. Mei, T. Rutt, and Z. Wang, ‘‘Lifespan analysis for
redundant array of independent module based solid state drives,’’ IEEE
Trans. Consum. Electron., vol. 64, no. 3, pp. 328–333, Aug. 2018.

[11] S. Wang, F. Wu, Z. Lu, J. Zhou, and C. Xie, ‘‘Ward: Wear aware raid
design within ssds,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 11, pp. 2918–2928, Nov. 2018.

[12] A. McEwan and I. Mir, ‘‘Age distribution convergence mechanisms for
flash based file systems,’’ JCP, vol. 7, no. 4, pp. 988–997, Apr. 2012.

[13] A. A. McEwan and M. Z. Komsul, ‘‘Reliability and performance enhance-
ments for SSD RAID,’’ Microprocess. Microsyst., vol. 52, pp. 461–469,
Jul. 2017. doi: 10.1016/j.micpro.2016.11.012.

[14] Y. Li, P. P. C. Lee, and J. C. S. Lui, ‘‘Analysis of reliability dynamics of SSD
RAID,’’ IEEE Trans. Comput., vol. 65, no. 4, pp. 1131–1144, Apr. 2016.

[15] S.-Y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, ‘‘Exploiting internal
parallelism of flash-based SSDs,’’ IEEE Comput. Archit. Lett., vol. 9, no. 1,
pp. 9–12, Jan. 2010.

[16] C. H. Wu, P. H. Wu, K. L. Chen, W. Y. Chang, and K. C. Lai, ‘‘A hotness
filter of files for reliable non-volatile memory systems,’’ IEEE Trans.
Dependable Secure Comput., vol. 12, no. 4, pp. 375–386, Jul. 2015.

[17] I. Mir and A. McEwan, ‘‘A high performance reconfigurable flash man-
agement framework,’’ in Proc. Int. Conf. Inf. Sci., Electron. Elect. Eng.,
vol. 2, Apr. 2014, pp. 1216–1220.

[18] M. Z. Komsul, A. McEwan, and I. Mir, ‘‘An FPGA-based development
platform for real-time solid state devices,’’ in Proc. Int. Conf. Inf. Sci.,
Electron. Elect. Eng., vol. 2, Apr. 2014, pp. 1198–1203.

[19] M. Z. Komsul, A. A. McEwan, and I. Mir, ‘‘A real-time hot swapping
technique for SSD RAID systems,’’ in Proc. Int. Conf. Appl. Syst. Innov.
(ICASI), May 2016, pp. 1–4.

[20] A. A.McEwan andM. Z. Komsul, ‘‘On-line device replacement techniques
for SSD RAID,’’ in Proc. Euromicro Conf. Digit. Syst. Design, Aug. 2015,
pp. 438–444.

[21] S. Im and D. Shin, ‘‘Delayed partial parity scheme for reliable and high-
performance flash memory SSD,’’ in Proc. 26th Symp. Mass Storage Syst.
Technol. (MSST), 2010, pp. 1–6.

[22] K. M. Greenan, D. D. Long, E. L. Miller, T. Schwarz, and A. Wildani,
‘‘Building flexible, fault-tolerant flash-based storage systems,’’ in Proc.
5th Workshop Hot Topics Syst. Dependability (HotDep), Jun. 2009,
pp. 1–6.

[23] S. Im and D. Shin, ‘‘Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,’’ IEEE Trans. Comput., vol. 60,
no. 1, pp. 80–92, Jan. 2011.

[24] Y. Kim, J. Lee, S. Oral, D. Dillow, F. Wang, and G. Shipman, ‘‘Coor-
dinating garbage collectionfor arrays of solid-state drives,’’ IEEE Trans.
Comput., vol. 63, no. 4, pp. 888–901, Apr. 2014.

[25] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu, ‘‘Elastic parity logging for
SSD RAID arrays: Design, analysis, and implementation,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 10, pp. 2241–2253, Oct. 2018.

[26] L.-P. Chang and T.-W. Kuo, ‘‘Real-time garbage collection for flash-
memory storage systems of real-time embedded systems,’’ ACM Trans.
Embedded Comput. Syst., vol. 3, pp. 837–863, Nov. 2004. doi:
10.1145/1027794.1027801.

[27] S. Choudhuri and T. Givargis, ‘‘Deterministic service guarantees for
NAND flash using partial block cleaning,’’ in Proc. 6th IEEE/ACM/IFIP
Int. Conf. Hardw./Softw. Codesign Syst. Synth., Oct. 2008, pp. 19–24.

[28] J. Lee, Y. Kim, G. Shipman, S. Oral, and J. Kim, ‘‘Preemptible I/O schedul-
ing of garbage collection for solid state drives,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 32, no. 2, pp. 247–260, Feb. 2013.

[29] A. A. McEwan and M. Z. Komsul, ‘‘Pre-emptive garbage collection
for SSD RAID,’’ in Proc. Euromicro Conf. Digit. Syst. Design (DSD),
Aug. 2016, pp. 356–363.

[30] A. A. McEwan and M. Z. Komsul, ‘‘Age aware pre-emptive garbage
collection for SSD RAID,’’ Microprocess. Microsyst., vol. 56, pp. 13–21,
Feb. 2018. doi: 10.1016/j.micpro.2017.10.008.

[31] N. A. Rodríguez-Olivares, A. Gómez-Hernández, L. Nava-Balanzar,
H. Jiménez-Hernández, and J. A. Soto-Cajiga, ‘‘FPGA-based data storage
system on NANDflash memory in RAID 6 architecture for in-line pipeline
inspection gauges,’’ IEEE Trans. Comput., vol. 67, no. 7, pp. 1046–1053,
Jul. 2018.

[32] Y. Lu, C. Wu, and J. Li, ‘‘EGS: An effective global I/O scheduler to
improve the load balancing of SSD-based RAID-5 arrays,’’ in Proc. IEEE
Int. Symp. Parallel Distrib. Process. Appl., IEEE Int. Conf. Ubiquitous
Comput. Commun. (ISPA/IUCC), Dec. 2017, pp. 298–305.

[33] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, ‘‘Characteriza-
tion of storageworkload traces from productionwindows servers,’’ inProc.
IEEE Int. Symp. Workload Characterization, Sep. 2008, pp. 119–128.

[34] A. A. McEwan and I. Mir, ‘‘An embedded FTL for SSD RAID,’’ in Proc.
Euromicro Conf. Digit. Syst. Design, Aug. 2015, pp. 575–582.

[35] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, ‘‘The Disksim
simulation environment version 4.0 reference manual (CMU-PDL-08-
101),’’ Parallel Data Lab., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-PDL-08-101, 2008, p. 26.

[36] P. Olivier, J. Boukhobza, and E. Senn, ‘‘Flashmon V2: Monitoring raw
NAND flash memory I/O requests on Embedded Linux,’’ SIGBED Rev.
Rev., vol. 11, no. 1, pp. 38–43, Feb. 2014. doi: 10.1145/2597457.2597462.

[37] S. Schneider, Concurrent and Real-time Systems: The CSP Approach,
1st ed. New York, NY, USA: Wiley, 1999.

[38] A. Sherif and H. Jifeng, ‘‘Towards a time model for circus,’’ in Formal
Methods and Software Engineering, C. George and H. Miao, Eds. Berlin,
Germany: Springer, 2002, pp. 613–624.

[39] K. Wei, J. Woodcock, and A. Burns, ‘‘Timed circus: Timed CSP with
the miracle,’’ in Proc. 16th IEEE Int. Conf. Eng. Complex Comput. Syst.,
Apr. 2011, pp. 55–64.

[40] M. Khattri, J. Ouaknine, and A. Roscoe, ‘‘Translating timed automata to
tock-CSP,’’ Proc. 10th IASTED Int. Conf. Softw. Eng., Apr. 2011. doi:
10.2316/P.2011.720-047.

ALISTAIR A. MCEWAN received the D.Phil.
degree in computer science from the University of
Oxford, in 2006.

He joined the University of Leicester, U.K.,
in 2007, where he is currently an Associate
Professor of real-time systems and software engi-
neering with the Advanced Computational Engi-
neering Group. He has worked on a number of
projects, where he was involved in theoretical
approaches to concurrent systems, systems spec-

ification and verification, modeling of safety-critical systems, and hard-
ware/software co-design. His current research interests include application
of formal software engineering techniques to the development, and safety-
modeling of large systems involving software and bespoke hardware.

MUHAMMAD ZIYA KOMSUL received the
B.Sc. and M.Sc. degrees in computer engineer-
ing from Trakya University, Turkey, in 2010 and
2012, respectively, and the Ph.D. degree from the
School of Engineering, University of Leicester.
His research interests include flash-based storage,
real-time systems, FPGA-based architectures, and
embedded systems.

142990 VOLUME 7, 2019

http://dx.doi.org/10.1145/1555349.1555371
http://dx.doi.org/10.1109/RTAS.2012.27
http://dx.doi.org/10.1016/j.micpro.2016.11.012
http://dx.doi.org/10.1145/1027794.1027801
http://dx.doi.org/10.1016/j.micpro.2017.10.008
http://dx.doi.org/10.1145/2597457.2597462
http://dx.doi.org/10.2316/P.2011.720-047

