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ABSTRACT The ARINC-653 standard defines temporal partitioning that enables multiple avionics
applications to execute independently from each other without interference in terms of CPU resources.
Though partitioning has been mainly discussed from the viewpoint of manned aircraft, it can also efficiently
integrate multiple applications on civilian Unmanned Aerial Vehicles (UAVs) that have even severer
limitations on size, weight, power, and cost. In order to employ ARINC-653 temporal partitioning to
civilian UAVs, its implementation must be flexible enough to be applied to diverse run-time software
environments and computing hardware platforms. In this paper, we suggest a portable and configurable
implementation of ARINC-653 for small-sized civilian UAVs aiming for low cost, easy development, and
easy extension. Our implementation provides the Operating System (OS) abstraction layer that defines the
essential OS-level features and the OS-independent interfaces to the upper layer that actually implements the
ARINC-653 standard. Our implementation is also modularized so that the policies of resource management
in CPU scheduling and memory allocation can be easily extended and selectively configured. In addition,
we implement the advanced resource management schemes to promote the benefits of multi-core processors
that are already widely deployed in Commercial Off-The-Shelf (COTS) systems. We show that our ARINC-
653 implementation is portable across different OS, such as Linux and RTEMS, reusing the most of source
codes thanks to the layered and modular design. We also analyze the overheads of the ARINC-653 APEX
interfaces and multi-core scheduling. Moreover, we conduct a case study for a small-sized quad-copter.

INDEX TERMS ARINC-653, integrated modular avionics, multi-core, portability, temporal partitioning,
unmanned aerial vehicles.

I. INTRODUCTION
As the number of embedded computing devices in the
current-generation avionics systems is growing rapidly,
the issues of Size, Weight, Power, and Cost (SWaP-C)
become more difficult to resolve. To address SWaP-C,
the Integrated Modular Avionics (IMA) architecture that pro-
vides an efficient way of integrating several real-time appli-
cations on a single computing device has been suggested [1].
Though the IMA architecture is mainly discussed from the
viewpoint of large aircraft or manned aerial vehicles, small
Unmanned Aerial Vehicles (UAVs) are those that indeed
require IMA to reduce SWaP-C. U.S. Army, for example,
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categorizes UAVs with a maximum gross takeoff weight of
less than 20 lb and an airspeed below 100 kn as Group 1 (i.e.,
small UAVs) [2]. As low-cost and small-sized UAVs become
popular in various civilian domains, such as hobby, filmmak-
ing and surveillance, it is highly required that various, multi-
ple applications can be easily integrated on a single embedded
computer according to their purposes in small-quantity batch
production. Moreover, the integrated software tasks have to
satisfy the real-time requirements. Thus, it is expected that
IMA can provide efficient and reliable consolidation of real-
time applications of small-sized civilian UAVs, improving its
productivity.

The ARINC-653 standard defines the essential software
features for IMA and specifies the APplication/EXecu-
tive (APEX) interfaces (i.e., APIs) [3]. Partitioning is the
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key feature defined by ARINC-653 to guarantee several
real-time applications to exclusively utilize CPU and mem-
ory resources reserved, while providing isolation of execu-
tion environments between different applications. In order
to employ ARINC-653 partitioning to small-sized civilian
UAVs, its implementation must be flexible enough to be
applied to diverse run-time software environments and com-
puting hardware platforms. Though there were significant
studies on the design and implementation of the ARINC-
653 standard [4]–[11], the flexibility was not a focus of the
previous researches. Since themajority of small-sized civilian
UAVs use Commercial Off-The-Shelf (COTS) software and
hardware, which are more varied than those for military or
typical aircraft, the ARINC-653 implementation has to be
portable across different software environments and config-
urable according to different platforms. However, different
Operating Systems (OS), for instance, implement different
task scheduling policies and system calls; thus, an ARINC-
653 implementation is very likely to be OS-dependent. More-
over, as multi-core processors are already prevalent in COTS
hardware, the ARINC-653 implementation for UAVs must
efficiently utilize multiple CPU cores.

In this paper, we suggest a portable and configurable
ARINC-653 implementation for small-sized civilian UAVs
aiming for low cost, easy development, and easy extension.
Our implementation provides the OS abstraction layer that
defines the essential OS-level features and OS-independent
interface to the upper layer that actually implements the
ARINC-653 standard. Thus, we can easily replant the
ARINC-653 implementation to another OS by modifying
the OS abstraction layer only, while reusing the most of
codes that are directly related to ARINC-653. In addition,
we implement the advanced resource management schemes
to promote the benefits of multi-core processors. The mea-
surement results show that our ARINC-653 design is portable
across different OS thanks to the OS abstraction layer and
can make the scheduling overheads overlap with application
execution on a multi-core processor by the advanced resource
management. We also present a case for a small UAV, where
real-time applications run on our ARINC-653 implementa-
tion. We summarize our contributions as follows:
• We propose an internal design of ARINC-653 aiming
for portability and configurability over various run-time
environments of civilian UAVs.

• We present the implementation of the new features
defined in the ARINC-653 standard to support multi-
core processors.

• This study can provide practical insights into require-
ments of applying ARINC-653 to small civilian
UAVs.

The rest of this paper is organized as follows: In Section II,
we give an overview of ARINC-653. We suggest an imple-
mentation of portable and configurable ARINC-653 in
Section III. In this section, we describe the OS abstraction
layer and the support for multi-core processors. The per-
formance evaluation of the ARINC-653 implementation is

conducted in Section IV. We discuss related work and the
limitations of our study in Sections V and VI, respectively.
Finally, we conclude this paper in Section VII.

II. ARINC-653 OVERVIEW
The ARINC-653 standard defines the APEX interfaces
between the OS of an avionics computer and the application
software [3]. The interfaces allow the application software to
control the CPU scheduling and communication.

The ARINC-653 standard defines temporal partitioning
that enables the avionics applications to execute indepen-
dently from each other in terms of CPU resources. This par-
titioning concept is a key for IMA architecture as it provides
the resource isolation between applications (i.e., partitions).
The partitions are created at the system initialization phase
and cannot be removed or added dynamically. The CPU
scheduling algorithm of partitions is predetermined, repeti-
tive with a fixed periodicity, which is represented as partition
windows in the configuration file. A partition window is a
time duration, for which the CPU resources are given to the
specified partition.

A partition comprises one or more processes that share
the resources of the partition but are not visible outside of
the partition. Each process has a priority level and can be
preempted by a higher-priority process. The process schedul-
ing can be either periodic or aperiodic based on the policy
configured when each process is created. In general, the par-
tition scheduler and process scheduler are implemented in
a hierarchical manner; once the partition scheduler decides
which partition to give the CPU resources, the process sched-
uler then decides which processes of this partition to execute
within the given partition window. In this paper, we focus
on how to provide the portability and configurability in the
implementation of this hierarchical CPU scheduling. In the
newest version of the ARINC-653 Part 1 [3], a partition can
run across multiple CPU cores, while a process can run on
only one of the cores assigned to the partition. The core
affinity of a process can be specified by the APEX interface,
INITIALIZE_PROCESS_CORE_AFFINITY.

Regarding communication, ARINC-653 defines APEX
interfaces for intra- and inter-partition communication. The
intra-partition communication interfaces that include buffers,
blackboards, semaphores, and events provide communication
between two or more processes running in the same partition.
The buffers store messages in the message queue and deliver
to the receiver in FIFO order. On the other hand, the black-
boards do not queue messages. Any message written to a
blackboard remains there until the message is either cleared
or overwritten by a new message. The semaphores are used
to synchronize between processes. An event is a communi-
cation mechanism that notifies an occurrence of a condition
to processes which are waiting for it. The inter-partition
communication interfaces provide communication between
two or more partitions that may run on different computing
devices. Since we target small UAVs that are equipped with a
single embedded computer and run independent applications,
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in the latter sections, we does not consider the inter-partition
communication.

III. ARINC-653 TEMPORAL PARTITIONING
As described in Section II, temporal partitioning provides a
framework for safe consolidation of real-time applications
with respect to CPU resources. In this section, we suggest
a design of ARINC-653 temporal partitioning that is portable
and configurable for diverse software and hardware platforms
of small civilian UAVs.

A. OVERALL DESIGN
ARINC-653 can be implemented in different software
space (e.g., user-, kernel-, and hypervisor-space) accord-
ing to the requirements of target systems [12]. As small
civilian UAVs have a wide choice of COTS software
and hardware platforms, providing the portability of the
ARINC-653 implementation is very important, but it is
not trivial to realize. Aiming for portability, we implement
ARINC-653 at user-space and introduce an OS abstraction
layer that provides the OS-independent primitive functions
essential to the ARINC-653 implementation. Thus, by mod-
ifying only the OS abstraction layer, we can apply our
ARINC-653 implementation to a different platform. This
allows us to reuse the most of source codes already verified.
In addition, our ARINC-653 implementation provides the
modularity in that the policies of resourcemanagement can be
newly defined and plugged in as a module for different run-
time environments. There were also several user-space imple-
mentations of ARINC-653 [4]–[6]; however, the portability
of these originated from using the Portable Operating System
Interface (POSIX) and was limited to POSIX-compliant OS.
Unlike existing implementations, our OS abstraction layer
can provide even distinguished portability and we empirically
show that our ARINC-653 can run successfully on different
OS, such as Linux and RTEMS.Wewill describemore details
of our layered and modular design in Subsection III-B.

The multi-core processors are already deployed in many
civilian embedded systems including UAVs. The latest revi-
sion of the ARINC-653 standard also includes the extensions
to support multi-core processors as described in Section II.
However, the actual implementation issues have not been
extensively discussed in literature in terms of ARINC-653.
Existing researches on ARINC-653 focus more on the
application-level issues of multi-core systems, such as analy-
sis of Worst-Case Execution Time (WCET) [13] and deci-
sion of core affinity [14]. In this paper, we present an
actual implementation of ARINC-653 temporal partitioning
for multi-core processors. Our implementation can provide
a reference design of how to manage the partition windows
and core affinity on multi-core processors. Some of such
details are omitted in the ARINC-653 standard. Our ARINC-
653 implementation also can be configured to decide where
the multi-core schedulers run. Such flexibility enables the
scheduling overheads to be overlapped with actual execution

FIGURE 1. Layered design of ARINC-653.

of applications. We will describe more details of multi-core
scheduling in Subsection III-C.

B. LAYERED AND MODULAR DESIGN
Our ARINC-653 implementation has a two-layer architecture
at the user-space as shown in Figure 1, where the upper
layer is the ARINC-653 core layer and the other is the OS
abstraction layer. The ARINC-653 core layer implements
temporal partitioning and APEX, which are independent on
the underlying software and hardware platforms. The OS
abstraction layer provides the OS-independent abstraction to
the ARINC-653 core layer, so that the implementation of the
upper layer can be reused without modifications for different
platforms. This can make the modeling and verification of
software much easier and improve the safety [15], [16].

For example, the ARINC-653 processes can be scheduled
by signaling or direct scheduling calls, depending on the
underlying OS. In either case, the ARINC-653 processes are
implemented as threads because those belong to the same
partition share the address space. In Linux, though signal-
ing is the more practicable mechanism for scheduling of
ARINC-653 processes, it is difficult to signal a specific thread
belong to a different address space unless each thread has a
unique process ID. Thus, we create an ARINC-653 process
by calling the clone() system call with the CLONE_VM
flag turned on and the CLONE_THREAD flag turned off,
so that each thread has its own process ID, sharing the
address space. On the other hand, Real-Time Operating
Systems (RTOS), such as RTEMS [17], provide not only
POSIX-compliant signaling system calls but also native
direct scheduling calls that suspend and resume the execution
of a task. Since the latter interfaces provide less overheads,
we use direct calls, such asrtems_task_suspend() and
rtems_task_resume() in RTEMS, instead of signaling.
The OS abstraction layer hides such details by providing sim-
ple scheduling interfaces namedOSAL_Process_Stop()
and OSAL_Process_Cont() to the upper layer. The cur-
rent implementation of the OS abstraction layer supports
Linux and RTEMS, of which the performance will be pre-
sented in Subsection IV-A.
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In addition, our ARINC-653 also supports storageless
UAVs that may not include a storage, such as flash memory,
due to a limited payload or a lightweight RTOS that does not
support a file system. The ARINC-653 standard provides the
examples of the configuration table in XML schema format,
which includes partition windows and attributes of partitions
and processes. The embedded systems that have a storage
system can store the configuration file in the storage and read
it at the run-time to initialize the system. However, if the
storage system does not exist, we need a different mech-
anism to represent the system configuration. Our ARINC-
653 implementation can configure the system at either the
run-time or the compile time. OnUAVswith a storage system,
we represent the system configuration in the JSON format,
store it as a file, and read the file at the run-time. On the
other hand, the system configuration is represented in source
codes (i.e., a header file) when the target UAV does not
have a storage system; that is, the attributes and schedul-
ing behaviors of partitions and processes are decided at the
compile time.

There also can be diverse demands on different policies for
resource management, such as CPU scheduling and dynamic
memory allocation. To cope with such demands, we manage
the functions that implement policies via an array of function
pointers. The ARINC-653 process scheduler, for instance,
can change its algorithm by changing the corresponding
function pointer without side effects to other functionality.
In regard to the memory allocation, some platforms may not
support dynamic memory allocation, or some others may
not want dynamic memory allocation because of run-time
overheads and failure. To address these requirements, our
modular framework allows the APEX interfaces (e.g., buffer
and blackboard services) to statically allocate the internal
buffers at the compile time based on the configuration.

C. MULTI-CORE SCHEDULING
As we have described in Subsection III-A, our ARINC-653 is
implemented at the user-space, emphasizing portability; that
is, the partition and process schedulers are also implemented
as user-space daemon processes. Consequently, it gives the
system integrator with the the flexibility to decide where to
run these daemon processes on multiple cores. A general
approach is to run a scheduling daemon on each core, for
which the daemon is responsible. This approach is quite
similar with existing operating systems in that each core
performs CPU scheduling on the processes assigned to that
core. We call this approach distributed scheduling as the
scheduling daemons run every core. This approach, however,
adds scheduling overheads (i.e., timer, partition scheduling,
and process scheduling overheads) between partition win-
dows as shown in Figure 2(a). These scheduling overheads
can encroaches on the CPU resources reserved by partitions
or lag behind in starting partition windows. If the timer is
reset when the scheduler is invoked (i.e., (1) in Figure 2(a)),
less duration of CPU resources is assigned to partitions than
reserved. On the other hand, if the timer is reset at the end

FIGURE 2. Comparison of distributed scheduling with centralized
scheduling (si represents scheduling overheads).

of the scheduling procedure (i.e., (2) in Figure 2(a)), the time
lags are accumulated.

Another approach is to dedicate a core to the schedul-
ing daemons, while application partitions run on the rest
of the cores. We call this approach centralized scheduling,
because a single core takes care of scheduling of the other
cores. Although this approach sacrifices a core, as shown
in Figure 2(b), the scheduling overheads can be overlapped
with partition execution. Consequently, we can eliminate the
scheduling overheads that exist between partition windows
and remove the side effect of distributed scheduling. In addi-
tion, centralized scheduling has the potential to realize the
theoretical models for hard real-time scheduling in which
the system overheads, such as scheduling overhead, are gen-
erally assumed to be zero. Such overlapping of scheduling
overheads, however, would be beneficial only for a limited
number of cores as the scheduling overheads increase in pro-
portional to the number of cores. Thus, our ARINC-653 pro-
vides the system integrator with an interface to select between
distributed scheduling and centralized scheduling. We will
show the impact of the number of cores on the benefits of
centralized scheduling in Subsection IV-B.
We also support the features described in the ARINC-

653 standard for multi-core systems.We specify a set of phys-
ical cores (Pcores), where a partition can be scheduled, in the
configuration file as shown in Figure 3. The Lines 231-241 in
this figure represent that Partition 1 can run on Pcores 2 and
3, which are mapped to logical cores (Lcores) 0 and 1 of the
partition. Mapping between Pcores and Lcores is performed
at the initialization phase by parsing this configuration file.
If the system does not support storage system, this mapping
is done at the compile time as described in Subsection III-B.
In addition, to specify the affinity of processes to Lcores,
we add the processor_core_affinity entry in the
configuration file as shown in Line 12, which represents
that Task 1 in Partition 1 has the affinity to the first Pcore
(i.e., Pcore 2). Once all processes are created, our initial-
ization daemon initializes the core affinity of each process
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FIGURE 3. Example of the configuration file in JSON format.

according to the affinity and mapping information by calling
the INITIALIZE_PROCESS_CORE_AFFINITY APEX.
We assume that the core affinity of processes is not dynam-
ically changed at the run-time. We also introduce other
attributes formulti-core, which are not defined in theARINC-
653 standard. Thescheduler_affinity_type entry in
Line 1 represents the affinity policy of scheduling daemons
and can have either centralized or distributed as
described above. The scheduler_type entry in Line
11 specifies the process scheduling policy as described in
Subsection III-B. To define partition windows for each core,
the scheduler_core entry is inserted as shown in Line
129. The following lines (i.e., from Lines 130 to 136) repre-
sents the first partition window on Pcore 2.

IV. PERFORMANCE EVALUATION
In this section, we show the potential of our ARINC-653
implementation along with detailed performance evaluation
and a case study for small UAV.

A. OVERHEADS OF THE APEX INTERFACES
In this subsection, we analyze the overheads of APEX inter-
faces on Linux and RTEMS, respectively. Our intention is,

TABLE 1. APEX overheads on Linux.

TABLE 2. APEX overheads on RTEMS.

however, not to compare the performance on different OS but
to show that the OS abstraction layer can efficiently support
different OS for the ARINC-653 core layer. The lines of
code (LOC) of the common source codes for two different
OS is about 6,500, while the OS-dependent codes in the
OS abstraction layer are about 1,100 LOC for Linux and
1,700 LOC for RTEMS. That is, we could reuse 79∼ 85% of
source codes.

We conducted the overhead measurement on an Intel
i5 system running Ubuntu 16.04 (Linux kernel version
4.15) and an ARM Cortex-A7 system running RTEMS
(kernel version 4.11.3). Tables 1 and 2 show the mea-
surement results with the APEX interfaces for parti-
tion and process management. We can observe that the
first two interfaces (i.e., GET_PARTITION_STATUS and
GET_PROCESS_STATUS) show high overheads on both
Linux and RTEMS as these interfaces internally exchange
messages with the scheduling daemons to get the parti-
tion status and process status. We see higher overheads
on Linux due to the trap exception for messaging system
calls, but the RTEMS case does not show an overhead as
much as Linux because RTOS generally provide the system
services through direct function calls. The next three inter-
faces in each table (i.e., GET_MY_ID, GET_PROCESS_ID,
and GET_MY_PROCESSOR_CORE_ID) show very low
overheads since the process IDs and the core IDs
are stored in the global memory of the correspond-
ing partition. That is, these interfaces simply refer
to that memory area to get the ID information. The
INITIALIZE_PROCESS_CORE_AFFINITY interface
initializes the core affinity of the specified process by calling
the system calls, such as sched_setaffinity() on
Linux and rtems_task_set_affinity() on RTEMS,
of which the overheads are shown in the tables. The START
and STOP interfaces resume and suspend the execution of
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a process. respectively. Thus, these interfaces need to
exchange messages with scheduling daemons to change the
state of the process, which results in high overheads. The
STOP interface on Linux especially has to send a SIGSTOP
signal to the corresponding process if it is in the running state.
The CREATE_PROCESS interface shows the highest over-
head in the tables since it calls a complex system call, such as
clone() and rtems_task_create(), to creates a new
process in the system.

B. SCHEDULING OVERHEAD
In this subsection, we compare the scheduling overhead of
centralized scheduling with that of distributed scheduling.
To analyze the scheduling overhead, we measured the time
interval between the start of the current partition window and
that of the next partition. The closer this time interval is to
the duration of the partition window in the configuration file,
the fewer side effects due to the scheduling overhead are.
Thus, we reported the difference between the time duration in
the configuration file and the time interval measured for each
partition window. A negative means that the actual system
assigns less CPU resources to the partition than configured;
on the other hand, a positive number represents that CPU
resources are assigned to the partition more than configured
or leaked by the scheduler. We conducted the experiments on
an Intel i7 hexa-core system, where CentOS 7 (Linux ker-
nel version 3.10) was installed. We analyzed the scheduling
overhead on dual-, quad-, and hexa-core cases as these are
popular numbers of cores in COTS multi-core processors.
We ran two partitions for each core, and their period and
duration were configured as 25 ms and 10 ms, respectively.
Each partition comprised two CPU-intensive tasks, the period
and the time capacity of each taskwere set to 50ms and 10ms,
respectively. We measured 100 samples of time intervals for
consecutive partition windows.

The measurement results are shown in Figures 4, 5, and 6,
which depict the differences between reserved and actual
time duration of partition windows. Thus, the closer to zero,
the more accurate the resource was provided. In the case
of dual-core, we can observe that centralized scheduling
shows very little jitters (i.e., −7.6 µs ∼ +6.5 µs), while
distributed scheduling shows larger deviation and jitters
(i.e., −89.8 µs ∼ +71.5 µs). The jitters of centralized
scheduling become worse as the number of cores increases,
but those of distributed scheduling is not affected signifi-
cantly. Consequently, distributed scheduling shows less jitters
than those of centralized scheduling in the hex-core system
(Figure 6). That is, centralized scheduling can effectively
make the scheduling overheads overlap with the execution of
partitions; however, its overheads increase in proportional to
the number of cores and worsen the jitters.

C. CASE FOR DRONE
To validate the operability of our ARINC-653 imple-
mentation, we performed a case study for small drone.
We used the Erle-Copter [18], of which the dimension was

FIGURE 4. Differences between reserved and actual partition windows on
a dual-core processor.

FIGURE 5. Differences between reserved and actual partition windows on
a quad-core processor.

FIGURE 6. Differences between reserved and actual partition windows on
a hexa-core processor.

370 x 370 x 95 mm and the payload was 1 kg. This quad-
copter was equipped with an Erle-Brain 3 flight control com-
puter that consisted of a Raspberry Pi 3 Model B embedded
board, IMU, servo controller, etc. We installed Raspbian
(Linux kernel version 4.4.50) and our ARINC-653 imple-
mentation on the Raspberry Pi 3. We ran two application
partitions that performed flight control and video streaming,
respectively. ArduPilot [19] was modified to implement the
flight control partition, which consisted of six processes:
i) The Timer process read the sensing data from the IMU
(Inertial Measurement Unit) sensor and updated the attitude
information in the blackboard; ii) The RCIN process received
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TABLE 3. Period and time capacity of processes.

TABLE 4. Period and duration of partitions.

control signal from radio control transmitter and stored it
to the blackboard; iii) The Main process read the sensing
and control data from the blackboard, performed noise fil-
tering, and controlled motors; iv) The UART process read
GPS information; v) The I/O process logged sensor data to
microSD; and vi) The ToneAlarm process turned on or off
LEDs based on the current state. In the modified ArduPilot,
these processes followed the ARINC-653 periodic process
model and used ARINC-653 intra-partition communication
interfaces, such as blackboards and semaphores. The video
streaming partition had only one periodic process that sent
video frames of 320 x 240 in MJPEG format via wireless
LAN. The frame rate was 30 fps. We decided the period and
time capacity of the processes as shown in Table 3.
The core affinity assigned to each process is shown

in Figure 7. Since the Raspberry Pi 3 board in our
experimental system had a quad-core processor, we used the
centralized scheduling policy that showed less jitters than
distributed scheduling on a quad-core processor as discussed
in Subsection IV-B. Thus, the Pcore 0 was dedicated to the
scheduling daemons. The flight control partition ran across
the other three cores (i.e., Pcores 1 to 3). The video streaming
partition ran only on Pcore 3, which was shared with the flight
control partition. The period and duration of the partitions
were calculated as shown in Table 4 by using the algorithm
suggested by Shin and Lee [20].

We conducted an indoor flight test with respect to take off,
hovering, rotating, and landing. The left picture of Figure 8
shows the snapshot of the flight test. The right picture is the
video frame received at that point.

To show the benefits of using temporal partitioning in this
scenario, we measured the frames per second provided by the
VStreaming process, while running it together with another
partition that burned 20% of CPU resources. In this exper-
iment, we added this artificial partition, because the three
tasks of the flight control partition that ran with VStreaming
in Figure 7 hardly consumed the CPU resources. As we can
see in Figure 9, we can guarantee the 30 fpswith ARINC-653,
but the number of frames drops significantly without ARINC-
653 because of interference with the background partition.

FIGURE 7. Core affinity of application partitions and scheduling daemons.

FIGURE 8. Indoor flight test.

FIGURE 9. Benefits of temporal partitioning.

This clearly shows that the temporal partitioning of ARINC-
653 can isolate the execution environment between partitions
and provide transparent consolidation of different avionics
applications (i.e., partitions).

V. RELATED WORK
Many industrial and academic organizations implemented
the ARINC-653 standard. Most of commercial products and
few academic instances [11], [21] were implemented at
the kernel-space; thus, these showed very low overheads
but had less flexibility and portability [12]. A challenging
approach was to employ the virtualization technology for
partitioning [7]–[9]. This virtualization-based implementa-
tion allowed different OS to run simultaneously on a single
embedded computing board; however, the implementations
at the hypervisor-space was not portable and added signifi-
cant system overheads. There were also user-space designs
aiming for portability [22]. For example, AMOBA [4] and
SIMA [5] were developed for the purpose of simulating
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the ARINC-653 run-time environment and implemented on
top of POSIX. In addition, the CORBA Component Model
with ARINC 653 [6] defined a component-based model for
ARINC 653 and was also implemented on POSIX. However,
since not all OS are fully POSIX-compliant, the portabil-
ity of these implementations is very limited. Our ARINC-
653 implementation includes the OS abstraction layer that
provides better portability than existing implementations.
Consequently, we could show that our ARINC-653 success-
fully ran on Linux and RTEMS with minimal modifications.

The Open Group Future Airborne Capability Environ-
ment (FACE) provides an open standard platform for avionics
software applications. The Operating System Segment (OSS)
of the FACE reference architecture defines the interfaces that
should be provided by the FACE-compliant OS to provide
application portability. These interfaces are a combination of
the ARINC-653 and POSIX standards. That is, the interfaces
defined by the OSS are higher-level interfaces than the OS
abstraction layer in our implementation. It is also noteworthy
that our ARINC-653 implementation can promote Linux and
RTEMS to FACE-compliant OS because Linux and RTEMS
support POSIX.

There were also significant discussions on the ARINC-653
temporal partitioning over multi-core processors. Huyck [23]
classified the ARINC-653 partition scheduling for multi-core
processors into Asymmetric Multi-Processing (AMP) and
Symmetric Multi-Processing (SMP). In AMP, all processes
in a partition run on the same core, while, in SMP, processes
of a partition can run on different cores. Jean et al. [24] and
Pathan et al. [25] especially focused on AMP systems in their
studies. Carrascosa et al. [9] implemented both AMP and
SMP on XtratuM. Silva and Tatibana [10] also implemented
AMP and SMP on AIR. However, discussions on how to
optimize ARINC-653 itself on multi-core systems in terms
of scheduling overheads were not focused. Our ARINC-
653 implementation not only supports both AMP and SMP,
but also prepares different policies named distributed and cen-
tralized scheduling to reduce the scheduling jitters according
to the number of cores.

Overall, our portable and configurable design and imple-
mentation of ARINC-653 is more suitable for small civilian
UAVs equipped with diverse COTS platforms compared with
existing researches.

VI. DISCUSSION
In this section, we discuss the limitations of our study
in terms of compliance to the ARINC-653 specification.
The ARINC-653 specification is organized into four parts,
Part 1 [3] of which defines the required services such as
partition management, process management, time manage-
ment, memory management, inter-partition communication,
and intra-partition communication. In this paper, we have
mainly referred to Part 1 and suggested an implementation
that supports the full features of temporal partitioning and
intra-partition communication, while omitting memory parti-
tioning and inter-partition communication. Besides temporal

partitioning, memory partitioning is another indispensable
feature to guarantee isolated run-time environments between
partitions. The memory management service in Part 1 limits
the memory usage of each partition and stack size of each
task, which are supposed to be specified in configuration file.
Our implementation partially supports memory partitioning
with the aid of OS. In both Linux and RTEMS, we can
specify the stack size for each task. It, however, is diffi-
cult to limit the total memory usage of each partition in
our implementation. Regarding spatial security, the memory
access across different partitions is prohibited by means of
memory protection provided by the Linux kernel and MMU
of processors. On the other hand, RTEMS uses a flat memory
model and all processes in RTEMS are basically implemented
as threads that share the same address space; thus, it likely
happens that a task that is either erroneous or malicious
accesses the memory area of another partition.

The inter-partition communication service defined in
Part 1 provides communication between two or more parti-
tions that may run on the same node or different nodes. The
inter-partition communication can operate in either queuing
mode or sampling mode. In the queuing mode, the messages
are queued in the internal message queue and passed to the
application in a FIFO manner. Thus, there is no intentional
message loss in this mode. On the other hand, in the sam-
pling mode, only the last message is saved overwriting the
previous one. Since we target partitions that are not correlate,
inter-partition communication is not supported in our cur-
rent implementation. If we consider communication between
partitions that only run on the same embedded computer,
we believe that our implementation can be easily extended
to support the queuing and sampling modes of inter-partition
communication by using message queue and shared memory
IPCs provided OS.

The last part of the ARINC-653 specification, Part 4 [26]
defines a subset of the APEX interfaces of Part 1 for a
simpler execution model. For the sake of simplicity, Part 4
targets the partitions with only one or two processes (one
for periodic and the other for aperiodic) and does not sup-
port intra-partition communication and multi-core proces-
sors. Such restricted interfaces may be suitable for small
UAVs due to smaller footprint and lower overheads. With
regard to temporal partitioning, Part 4 does not require a
complex real-time scheduler, because it allows only one peri-
odic process within a partition and only one partition window
per period. The video streaming partition in Subsection IV-C,
for example, has only one periodic process and does not
require intra-partition communication; thus, services defined
in Part 4 are sufficient. Nevertheless, some of existing UAV
control programs consist of several processes as described in
Subsection IV-C; thus, one periodic process and one aperi-
odic process may not be enough to implement a high-end
flight control program. If we allow several periodic pro-
cesses within a partition accordingly, it is required to support
multiple partition windows and intra-partition communica-
tion. Moreover, since the COTS hardware is equipped with
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multi-core processors as we have emphasized in this paper,
we believe that supporting multi-core processors will be an
important requirement for civilian UAVs. In this, we believe
it is valuable to provide both Part 1 and Part 4 for developers
and integrators to choose according to the requirements of
applications and the capability of hardware platform.

Part 1 also supports health monitoring by providing config-
uration tables and APEX interfaces for error handling. Errors
are classified into process-, partition-, and module-level
errors. The recovery actions for partition- and module-level
errors are specified in the configuration table. The process-
level errors are handled by an error handler implemented
by the application developer. In Part 4, only partition- and
module-level errors are considered. Our current implementa-
tion does not support health monitoring; however, as future
work, this should be considered for resilient and secure flight
control that avoids crashes and injuries in urban areas or
crowded areas.

VII. CONCLUSION
Since civilian UAVs in small-quantity batch production have
diverse requirements on software and hardware platforms,
it is very critical to provide a portable and flexible run-time
environment to applications. In this paper, we suggested a
layered andmodular design of ARINC-653 for civilian small-
sized UAVs. Our ARINC-653 implementation is comprised
of the ARINC-653 core layer and the OS abstraction layer
for portability. In addition, our implementation provides the
modularity so that the system integrator can easily change the
policy in resourcemanagements, such as CPU scheduling and
memory allocation. Moreover, our ARINC-653 implementa-
tion supports multi-core processors and especially provides
the distributed and centralized scheduling policies for less
jitters on different number of cores.

We showed that our ARINC-653 implementation was
portable across different OS (i.e., Linux and RTEMS),
reusing the most of source codes (79 ∼ 85%) due to the
portable and configurable design. We also analyzed the over-
heads of the APEX interfaces and multi-core scheduling.
In addition, we conducted indoor flight tests of a small-sized
quad-copter, where we ran two partitions across multiple
cores with centralized scheduling.
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