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ABSTRACT As an unavoidable non-enzymatic reaction between proteins and reducing sugars, glycation
can decline antioxidant defense mechanisms, damage cellular organelles, and form advanced glycation
end products (AGEs), thereby resulting in a series of destructive physiological diseases. Identification and
analysis of protein glycation sites will be beneficial to understand the complex pathogenesis related to the
glycation. In this paper, a new glycation site predictor, DeepGly, is proposed based on a deep learning
framework with a recurrent neural network (RNN) and a convolutional neural network (CNN). Firstly, for the
class imbalance problem in the benchmark dataset, Long Short-Term Memory (LSTM) RNNs are designed to
generate artificial peptides with glycation sites to form a balanced dataset. Then, the peptides in the balanced
dataset are cleaved into a series of biological words, and continuous distribution representation is employed
to transform the biological words into digital vectors. Finally, the digital vectors are input into the CNN
with participations of the plurality and multiple convolution kernels to automatically extract various features,
pooling layers to perform feature selection, and a softmax function to classify peptides. On the same datasets
using 10-fold cross validation test, the prediction performance of DeepGly is far superior to that of existing
methods, which indicates that the proposed method can be used as an ideal choice for protein glycation site
prediction and also has a certain promotion effect on other related fields.

INDEX TERMS Glycation, recurrent neural network, continuous distributed representation, convolutional

neural network.

I. INTRODUCTION

Glycation, first described by LC Maillard in 1912, is one of
the most important post-translational modifications (PTMs)
that involves a series of complex reactions as follows [1].
The formyl and ketone having a carbonyl group are produced
by the beta-oxidation or the peroxidation reduction of sugar.
The oxygen atom of the carbonyl group is negatively charged.
Under high glucose condition, it can undergo non-enzymatic
glycation reactions with nucleophilic groups in biomolecules
to form advanced glycation end products (AGEs). The long-
term accumulation of AGEs in the human body will trigger
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the following two major cellular effects: (i) Intermolecular
bonds or crosslinking between extracellular and intracellular
proteins occur, and physiological characteristics of extra-
cellular matrix proteins are changed. (ii) The interactions
between AGEs and the cell surface receptor for AGE (RAGE)
happen, activating complex signaling pathways that ulti-
mately lead to the production of pro-inflammatory medi-
ators and reactive oxygen species [2], [3]. Studies [4]-[8]
have shown that these variations are closely related to the
pathogenesis of many diseases such as diabetes [9], [10],
nephritis [11], [12], atherosclerosis [13], [14], cataract [15],
[16], Alzheimer’s disease [17], [18], etc. As listed in Table 1,
the formations of typical AGE compounds are mainly asso-
ciated with lysine. In other words, the majority of glycation
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TABLE 1. Typical AGE compounds and their precursors.

Precursor
Lysine, glyoxal
Lysine, methylglyoxal

AGE compound
Ne-carboxymethyl-lysine (CML)
Ne-carboxyethyl-lysine (CEL)

N-fructosyl-lysine Lysine

Pyrraline Lysine, 3-deoxyglucosone
Glucosepane Lysine
Imidazolium dilysine (IDL) Lysine
Alkyl formyl glycosyl pyrroles (AFGP) Lysine

Arginine-lysine imidazole (ALI)
Glyoxal lysine dimer (GOLD)
Methylglyoal lysine dimer (MOLD)

Lysine, arginine
Lysine, glyoxal
Lysine, methylglyoxal

Crossline Lysine
Pentosidine Lysine, arginine
Argpyrimidine Arginine, methylglyoxal

Vesperlysine Lysine

reactions occur in lysine. Therefore, identification of lysine
glycation sites is particularly crucial to understanding the
pathogenesis and providing a theoretical basis for curing the
diseases.

Generally, it is time-consuming and labor-intensive to
perform functional annotation of protein binding sites
by conventional experimental methods. In recent years,
machine learning theory has provided new ideas for pro-
tein glycation site prediction. Through statistical analysis,
Johansen et al. indicated that acidic amino acids catalyze
the glycations of nearby lysine. They established a neural
network-based glycation site predictor “GlyNN” with the
amino acid composition around the glycation site and the
positional information of lysine as input [4]. After that, taking
support vector machine (SVM) as the prediction algorithm,
Liu et al. developed an improved predictor “PreGly” by
integrating different feature extraction strategies, including
the frequency of amino acid appearance, amino acid factor
and k-spaced amino acid pair [5]. In 2016, Xu et al. investi-
gated the role of sequence information and position-specific
amino acid propensity (PSAAP) in glycation site prediction,
and constructed the predictor “Gly-PseAAC” based on the
Compendium of a database of protein lysine modifications
(CPLM). The prediction results demonstrated that PSAAP
could distinguish whether lysine in the peptide chain under-
goes glycation reactions [6]. In 2017, Zhao et al. applied
multiple feature information to encode peptide chains for
glycation site prediction, including positional scoring func-
tions, secondary structures, AAindex and k-spaced amino
acid pairs. A new predictor “Glypre” [7] was developed
with different window sizes and a two-step feature selection.
In 2018, Islam et al. constructed a SVM based glycation site
predictor “iProtGly-SS”’ by extracting amino acid composi-
tions, secondary structures and polarities from peptide chains,
and then employing the forward feature selection method to
obtain the optimal feature set [8].

Although the methods discussed above have their own
advantages and did promote the understanding on protein
glycations, there is still room for significant improvements.
Firstly, glycation site prediction is a standard imbalanced
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learning problem where the number of negative samples in
the benchmark dataset is much larger than that of positive
samples. Thus, it could lead to biased prediction [19]. There
are three solutions [20] available for this class imbalance
problem. The first is data-level technology, which modifies
the training set to fit the standard learning algorithm. The sec-
ond is the algorithm-level approaches that modifies existing
algorithms to mitigate their bias towards majority groups. The
third is the hybrid methods that combines the aforementioned
methods to extract their strengths and reduce their weak-
nesses. In addition, the data-level technology can be divided
into two types. One is to develop undersampling algorithms
to delete negative samples, which may lose part of the sample
information. Another is to develop oversampling algorithms
to add positive samples such as the Synthetic Minority Over-
sampling Technique (SMOTE) [21], [22], which may not
work well in high-dimensional data. To deal with the imbal-
anced dataset problem, a LSTM RNNs model is constructed
in this study to oversample peptide chains with glycation
sites.

In recent years, deep learning has been proven extremely
effective in object detection and recognition [23], manag-
ing smart homes [24], signals diagnosis [25]. More specif-
ically, based on the fuzzy theory and a convolutional
neural network, a novel two stage model for detection
of important features from images is proposed in [23];
A hierarchical structure consisting two types of neural net-
works is proposed in [24]; A Radial Basis Probabilistic Neu-
ral Network (RBPNN) trained by a novel method to preserve
its generalization is proposed in [25]. As a common deep
learning method, Recurrent Neural Networks (RNN) [26] can
predict the next possible word distribution is that the hidden
layer records the information in the front of the sequence
and adds it to the current input to affect the output. It widely
used in various tasks of NLP such as text generation [27],
word segmentation [28], translation [29], etc. However, due
to gradient disappearance or gradient explosion, traditional
RNN structures are difficult to handle long-term dependen-
cies in sequences. Bypassing these problems, Long Short-
Term Memory (LSTM) cell can make the model remember
long-term information [30]. Protein sequences can be
regarded as a special genetic language, which is highly sim-
ilar with natural language. Thus, LSTM RNNs [31] will be
designed in this study to generate peptide chains with lysines.

In order to simplify the process of feature extraction,
the ProtVec [32] extracted from the Skip-gram network
will be employed in this study to transform sparse pep-
tide chain features into a denser representation (contin-
uous distribution representation) [33], [34]. Continuous
distribution representation can capture the semantic and
syntactic relationships between words in a sentence [35].
The peptide chains encoded by continuous distribution
representation have been successfully applied in the fields
of protein family classification, protein visualization, pro-
tein structure prediction, disordered protein identification and
protein-protein interaction prediction [32].
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FIGURE 1. The overall workflow of the present method. Firstly, the LSTM
RNNs model trained with the positive dataset is used to sample peptide
chains at an appropriate sampling temperature. To validate the
effectiveness of the generated peptide chains, we present systematic
comparisons between the positive samples and the generated peptide
chains. Then, the artificial samples generated by the LSTM RNNs are
added to the dataset, and the redundancy of new dataset is removed by
the CD-HIT with a threshold of 50%. Finally, the CNN is constructed to
predict glycation sites with the samples in the balanced dataset encoded
by continuous distribution representation as input.

The major limitation of the prediction capabilities of the
earlier methods is that the strategies to extract traditional
hand-crafted features are highly complicated and subjective.
Convolution Neural Networks (CNN) [36] have the abilities
to extract advanced features from the input data, and learn
the nonlinear mapping from a specific input to a specific
output [23], [37]. Kim applied CNN for the text classification
and achieved a high accuracy [38]. Recently, deep learning
methods have become a new paradigm for PTM predictions.
Fu et al. applied CNN to predict the ubiquitination sites
of proteins and achieved excellent success [39]. The results
indicated that CNN could learn some instinct information
from input data without using complex feature extraction and
feature selection methods.

The establishment process of the model proposed in this
study for glycation site prediction is shown in Figure 1.
Firstly, the LSTM RNNs model trained with the positive
dataset is used to sample peptide chains at an appropriate
sampling temperature. To validate the effectiveness of the
generated peptide chains, we present systematic compar-
isons between the positive samples and the generated peptide
chains. Then, the artificial samples generated by the LSTM
RNNs are added to the dataset, and the redundancy of new
dataset is removed by the CD-HIT [40] with a threshold
of 50%. Finally, the CNN is constructed to predict glycation
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sites with the samples in the balanced dataset encoded by
continuous distribution representation as input.

Il. MATERIALS AND METHODS

A. DATASETS

Three datasets, respectively named dataset A, dataset B, and
dataset C, are introduced in this study for glycation site
prediction. Among the three datasets, dataset A and dataset B
respectively proposed in references [6] and [4] are employed
to make a fair comparison between our proposed method and
previous studies, while dataset C is employed to construct our
glycation site predictor. These datasets will be described in
detail below.

1) DATASET A

The dataset is derived from a comprehensive database of
CPLM [41] available at http://cplm.biocuckoo.org/. CPLM
encompasses 12 different experimentally identified pro-
tein lysine modifications. For the glycation site prediction,
the dataset widely used in previous studies [6]-[8] contains
323 positive samples and 2046 negative samples extracted
from 72 different proteins. If the sequence similarity is > 40%,
the homologous peptides from the dataset are removed by
using CD-HIT. Due to the excessive number of negative sam-
ples, some are randomly removed from the dataset. Finally,
the dataset A contains 223 positive and 446 negative samples.

2) DATASET B

By searching more than 400 papers, Johansen et al. [4]
obtained a lysine glycation site dataset. After manual inspec-
tion, it was found that part of the lysines were in propep-
tides and signal peptides, and some remained lysines were
unconfirmed or controversial. To avoid confusing the pre-
diction algorithm, the glycation sites mentioned above were
masked out. As a result, the final dataset referred to dataset B
in this paper was finally made up of 89 positive samples
and 126 negative samples, and widely used in subsequent
research.

3) DATASET C
The samples in dataset C is the union of the samples
in dataset A before CD-HIT applied and the samples in
dataset B. Previous methods were trained on relatively small
datasets, which may affect the prediction performance. For
this reason, dataset C will be employed to construct our
glycation site predictor. To avoid redundancy and homology
bias, the peptide chains greater than 50% sequence iden-
tity are removed by the CD-HIT. The final dataset contains
155 positive samples and 674 negative samples.

Suppose that the window size is 7, a norm sample in the
dataset is a peptide chain with 2n+ 1 amino acids, and defined
as follows.

P=A_A_(n—1)---AA_1KAjAy .. AG—Ay, (1)

where A_, represents the n5-th upstream amino acid
of the center amino acid K, while A, represents the
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FIGURE 2. The architecture of the proposed LSTM RNNs to generate
peptide chains with glycation sites.

n-th downstream amino acid of the center amino acid K.
If the number of flanking amino acids is less than 7, the miss-
ing positions are expanded with a special residue ‘X’. The
selected value of the window size n has a certain impact on
the glycation site prediction performance. After validations of
the prediction performance with different window sizes, it is
observed that the predictor performs best for n = 24. Thus,
the window size is chosen as 24.

B. ARCHITECTURE OF THE PROPOSED LSTM RNNS

As indicated in Section II.A, the number of peptide chains
with glycation sites in the dataset C is much smaller than that
of peptide chains without glycation sites. To deal with the
imbalanced dataset problem, LSTM RNNs are proposed to
generate peptide chains with glycation sites. Subsequently,
the generated peptide chains are added to the dataset C to
form a balanced dataset.

LSTM consisting of forgetting gates, input gates and out-
put gates is an improved RNN that can enhance network
prediction performance by learning long-term dependency
information in training sequences [42]. Before building the
LSTM network architecture as illustrated in Figure 2 for gen-
erating artificial positive samples, each input sample is added
with a begin token ‘B’ at the head of the sample, and the cor-
responding One-Hot vector is “000000000000000000000".
The order of amino acids is ‘A’, ‘R’, ‘N’, ‘D’, ‘C’, ‘Q’,
‘E’, ‘G’, ‘H’, T, ‘'L, ‘’K’, ‘M, ‘F’, ‘P’, ‘S’, ‘T’, ‘W’, ‘Y’,
‘V’, ‘X, wherein the corresponding code for lysine (K) is
“000000000001000000000”".

In Figure 2, for each amino acid residue x(;), LSTM RNNs
can predict the next amino acid residue along the gener-
ated peptide chain. To depict the differences between the

VOLUME 7, 2019

Original Sequence
GKDLMEKVKSPELQAEAKSYFEKSKEQLTPLIKKAGTELVN
Biological Words
GKD KDL DLM LME MEK EKV KVK VKS KSP SPE PEL ... ...

FIGURE 3. The biological words extracted from an original sequence.

generated peptide chains with the actual peptide chains,
the cross entropy loss calculated as in Equation 2 is adopted
to obtain the optimal network weight.

K
L==Y yilog (), ©)
i=1

where y; and y; respectively denote the i-th amino acid
residues of the generated peptide chains and the actual
peptide chains. K denotes the length of the peptide chain.
Experiments are conducted to evaluate the performances
of the multiscale LSTM RNNs with different hyper-
parameters. The optimal hyper-parameters that can minimize
the loss function are tuned using an automated grid search
procedure [43], [44].

During generation, to control sequence variabilities, a tem-
perature factor [45] is introduced in the softmax function, and
defined as

exp (vi/T)
YK exp 0i/T)

where y; denotes the one-hot vector of the i-th amino acid
residues of the peptide chains; K indicates the length of the
peptide chain; T represents the sampling temperature. The
value of the temperature factor can directly affect the diversity
of the generated peptide chains. The higher the value of the
temperature factor, the more diverse the generated peptide
chains.

P@yi) = 3)

C. CONTINUOUS DISTRIBUTION REPRESENTATION
Derived from the NLP field, the concept of continuous
distribution representation is proposed to map words from
an original space to a new multidimensional space by the
Skip-gram model or the Continuous Bag-Of-Words (CBOW)
model [33], [34]. In order to increase the speed of calculation,
the negative sampling technique is used for optimization [46].
In view of the obvious similarities between peptide chains
and natural languages, each peptide chain is cut into biologi-
cal words consisting of three adjacent amino acids as shown
in Figure 3. The ProtVec [32] adopted in this study is a feature
matrix extracted from biological words by continuous distri-
bution representation, which can be formally represented as

BWVec(1)

BWVec(2)
ProtVec = . , 4
BWVec(N)
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FIGURE 4. The architecture of the proposed CNN. For each sample, the input is a matrix with a shape of
47 % 100. As the sizes of the selected convolution kernels are 2 x 100, 3 = 100, 4 % 100, respectively, and
64 convolution kernels are operated in each layer, the shapes of the obtained feature maps in
convolutional layer are 46 = 64, 45 « 64, 44 = 64, respectively. After the maximum pooling operation,

64 features are obtained in the pooling layer for each feature map, and these features are concatenated

to input the output layer.

where BWVec(i) represents the continuous distribution rep-
resentation of the i-th biological word along a given peptide
chain.

D. CONVOLUTIONAL NEURAL NETWORK CONSTRUCTION
The task of image processing has some similarities to peptide
classification. In the image processing, an image is usually
represented as a pixel matrix. In the peptide classification,
a peptide is also transformed into a matrix by continuous
distribution representation. In both cases, we are trying to
recognize an object within a large context. This suggests
CNN that has successful applied in image processing can be
adapted to work for peptide classification. Using the feature
vectors encoded by continuous distribution representation as
input, a CNN will be constructed for the first time to identify
glycation sites.

As shown in Figure 4, for a given peptide chain, the input
of the CNN is a two-dimensional array encoded by contin-
uous distribution representation. As the feature map of the
biological word cannot be divided, the convolution kernel in
the convolution layer has the same length as the feature map
of the biological word.

Suppose the kernel size is m x n and x;.;4+,—1 denotes the
i-th row to i+m — 1-th row of the input data, a new feature
conv; ; can be obtained by convolving the kernel with x;.; 4, —1
as follows.

convj ;i =f (Wj @ Xisigm—1 + b) (%)

where ® represents the convolution operator; j is the number
of kernels; W; denotes the parameters of kernel; b is the
bias term; and f denotes the rectification linear unit (ReLU)
activation function [47]. Through performing the above
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operations, feature maps is generated for different convolu-
tion kernels, and then filtered by the max-pooling method
in the pooling layer. The advantage of this method is that it
preserves the most important part of each feature map and
greatly reduces the computational complexity of the model.
Finally, the pooling results for each feature map are merged
in the concatenation layer. The softmax function is adopted
to generate the model output.

Due to the large number of hyper-parameters in the pro-
cess of CNN construction, it is impractical to search opti-
mal values of all parameters by the method of exhaustion.
Thus, the proposed CNN is firstly constructed with hyper-
parameters chosen from a wide range, and then the search
range around the best performing parameter is narrowed grad-
ually. After many iterations, the hyper-parameters that yield
the minimum softmax cross entropy loss are selected as the
optimal hyper-parameters.

E. PERFORMANCE EVALUATION INDEXES

The performance of glycation site predictors is systematically
measured by the following indexes, sensitivity (SN), speci-
ficity (SP), accuracy (ACC), Matthews correlation coefficient
(MCC), and area under the receiver operating characteristic
curve (AUC). The first 4 indexes are defined as follows.

TP
SN = — ©)
TP + FN
TN
sp— IV %)
TN + FP
TP - TN
ACC = + , ®)
TP + FP+ TN + FN
TP x TN —FP x FN
McCC ©)]

~ /(TP FN)(TP+FP)(IN + FPY(IN +FN)’
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TABLE 2. Hyper-parameters of LSTM RNNS.

Hyper-parameter Value
Input Length 50
Batch size Full batch
Layers 2
Dropout 0.2,0.4)
LSTM blocks 128
Fully connected layer units 21
Regularization L2
Learning rate 0.01
Optimizer Adam

where TP, FP, TN and FN represent the numbers of true
positive, false positive, true negative, and false negative,
respectively.

Receiver operating characteristic (ROC) curve is a graph-
ical plot of the true positive rate versus the false positive
rate under different discrimination thresholds [48]. Across
all possible decision thresholds, AUC summarizes a model’s
performance with values ranging from 0 to 1. The higher the
AUC value, the better the prediction performance.

Ill. RESULTS AND DISCUSSIONS

A. THE PERFORMANCE OF LSTM RNNS

After many rounds of iterative hyper-parameter selection,
the optimal hyper-parameters of the LSTM RNNs for arti-
ficial peptide chain generation are listed in Table 2. Note
that Adam is chosen as the optimizer to compute different
and adaptive learning rates for each parameter using a batch
size of full batch for an initial learning rate of 0.01. The loss
function is penalized with a L2-norm of the model parameters
to prevent overfitting.

With the hyper-parameters given in Table 2, the proposed
LSTM RNNs tend to be completely stable after 2000 iter-
ations. But at this point the network has a risk of overfit-
ting. In order to avoid this, the training of the network is
terminated at 1000 iterations. The sampling process starts
with the character ‘B’, and ends with the last amino acid of
the peptide chain to be sampled. Furthermore, to make the
artificial samples consisting of glycation sites with a great
probability, the amino acids in the centre positions of the
sampled peptide chains are fixed to lysine (K).

Compared with the SMOTE [21] algorithm, LSTM RNNs
are not only suitable for dealing with high-dimensional data
but also can generate visualized peptide chains rather than a
bunch of abstract feature vectors, which lays the foundation
for filtering generated samples by using existing glycation
site predictors. To decrease sequence redundancy, the peptide
chains generated at different temperatures are selected by the
CD-HIT tool [40] with a threshold of 50%. The glycation site
predictors GlyNN [4] and Gly-PseAAC [6] are employed to
determine whether the generated peptide chain contains the
glycation site. If the generated peptide chain is predicted to
contain the glycation site simultaneously by the webservers
of the two predictors, it will be labeled as an artificial positive
sample.
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FIGURE 5. The percentage of the generated peptide chains at various
temperatures predicted to be negative samples by GlyNN and Gly-PseAAC.
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FIGURE 6. The percentage of the generated peptide chains at various
temperatures selected by the CD-HIT tool.

B. ANALYSIS OF THE GENERATED PEPTIDE CHAINS

As can be seen from Figure 5, at any temperature, the per-
centage of the generated peptide chains predicted to be neg-
ative samples by Gly-PseAAC and GlyNN differs slightly.
Figure 6 shows that when the temperature factor is 1.25,
the percentage of the generated peptide chains selected by
the CD-HIT tool with sequence identity less than 50% tends
to converge. Thus, the peptide chain sampling by the LSTM
RNNS is performed at this temperature.

Previous research [1], [4], [8] has found that glycation
reactions are strongly influenced by physicochemical prop-
erties of neighboring residues that surround the glycation
site. A positively charged amino acid close to the glycation
site in the primary or tertiary (3D) structure often triggers
the glycation reactions. As reported, the hydrophobicity of
the native amino acids is adopted to develop feature extrac-
tion methods and achieves satisfactory results for glycation
site prediction. Furthermore, the biological function of a
protein is dependent on its amino acid compositions [49].
To validate the effectiveness of the generated peptide chains,
here we present systematic comparisons between the actual
peptide chains given in the dataset C and the generated pep-
tide chains on amino acid composition, global charge and
hydrophobicity [50].
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FIGURE 7. Comparisons between the actual peptide chains and the generated peptide chains on amino acid
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20 native amino acids for the actual peptide chains and the generated peptide chains. (b) The relative

frequency of global charged amino acids at each position around the actual peptide chains and the generated
peptide chains. (c) The violin plots for the hydrophobicity distributions of the actual peptide chains and the
generated peptide chains. (d) The violin plots for the hydrophobic moment distributions of the actual peptide

chains and the generated peptide chains.

TABLE 3. The statistical significance test results between the generated
sample and the original sample.

Characteristic P-value
Amino acid composition  0.500
Global charge 0.071
Hydrophobicity 0.251
Hydrophobic moment 0.326

Figure 7(a) clearly shows that the overall frequencies of
the 20 native amino acids for the actual peptide chains
and the generated peptide chains are almost identical. The
relative frequency of global charged amino acids at each
position around the actual peptide chains and the generated
peptide chains as displayed in Figure 7(b) approximately
obey the same distribution. In Figure 7(c) and Figure 7(d),
the actual peptide chains and the generated peptide chains
have similar shapes for the distributions of amino acid
hydrophobicity. These results indicate that the generated
peptide chains effectively match the actual peptide chains,
which will be beneficial to enhance the dataset qual-
ity, and then improve the performance of glycation site
prediction.
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TABLE 4. Hyper-parameters of the proposed CNN.

Hyper-parameter Value
Input Length 4700
Batch size Full batch
Convolution blocks ([2,3,4], 64, ReLU)
Fully connected layer units 128
Cutoff 0.5
Regularization L2
Learning rate 0.01 with decay rate 0.95
Optimizer Adam

Next, we use the paired t-test with the significance level of
alpha = 0.05 to perform a statistical significance test [51]
between the actual peptide chains and the generated peptide
chains on amino acid composition, global charge, hydropho-
bicity and hydrophobic moment. The results in the table
below indicates that there is no significant difference between
the actual peptide chains and the generated peptide chains.

C. EFFECTIVENESS OF THE LSTM RNNS

After many rounds of iterative hyper-parameter selection,
the optimal hyper-parameters of the proposed CNN for
glycation site prediction are listed in Table 4.
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TABLE 5. Prediction results of the proposed CNN with and without the LSTM RNNs on the dataset C.

Method k-Fold Cross-Validation ACC (%) SP (%) SN (%) AUC MCC

4 - Fold Cross-Validation ~ 81.3+0.3 100 0 0.504+0.2  Undefined”

Without LSTM RNNs 6 - Fold Cross—Val%dat@on 81.340.1 100 0 0.507+£0.4 Undeﬁned:
8 - Fold Cross-Validation ~ 81.2+0.2 100 0 0.50940.2  Undefined
10- Fold Cross-Validation  81.140.1 100 0 0.500+0.1  Undefined"
4 - Fold Cross-Validation  83.1+1.1 84.8+2.1 81.5+0.6 0.870+1.2 0.665+2.2

. 6 - Fold Cross-Validation  89.8+0.6 88.9+0.6 90.8+1.1 0.921+0.4 0.800+£1.3
WIth LSTMRNNS ¢ 014 Cross-Validation  90.0+0.5 87.941.2 924403 0910413  0.80240.9

10- Fold Cross-Validation  91.8+£0.3 91.1£0.5 92.6£0.4 0.944+0.5 0.838+0.6

'*The value of MCC cannot be calculated as the denominator in Equation 15 equals to 0.

Three methods are commonly used to evaluate the per- Receiver Operating Characteristic
1.0 :

formance of a predictor, namely k-fold cross-validation test,
leave-one-out cross-validation (LOOCYV) test, and indepen-
dent dataset test [52]. The LOOCYV test is supposed to be
the most rigorous one that can always yield a unique result
for a given benchmark dataset [53]. However, to reduce the
computational complexity, the k-fold cross-validation test is
adopted to access the performance of the proposed predictor
DeepGly. During the process of the k-fold cross-validation
test, the dataset is divided into k subsets with roughly equal
size. Each subset is taken as a testing set in turn and the other
k — 1 subsets are taken to train the predictor [54], [55]. The
average performance measures over the k folds are used for
performance evaluation. To avoid sampling bias, the above
procedure is repeated 50 times.

To provide insights in the effectiveness of the LSTM
RNNs, the prediction results of the proposed CNN with
and without the LSTM RNNs on the dataset C are com-
pared based on different k-fold cross-validations. As listed
in Table 5, the proposed glycation site predictor DeepGly
with LSTM RNNs and CNN yields better performance than
the variant using only CNN for all k-fold crossvalidations.
Taking 10-fold cross-validation as example, the LSTM RNN’s
improves the ACC, SN, and AUC from 81.1%, 0,and 0.500 to
91.8%, 92.6%, 0.944, respectively. Similar conclusions can
be conducted for other k-fold cross-validations. It is worth
noting that the SP achieved by the predictor without LSTM
RNNGs is as high as 100%, and the sensitivity as low as 0. This
phenomenon demonstrates that the imbalanced dataset prob-
lem will lead to most of samples classified as the majority
class. In Table 5, the standard deviation of each evaluation
index is relatively small, which indicates that the proposed
method is hardly affected by the random division of
samples.

Additionally, ROC curves with LSTM RNNs and with-
out LSTM RNNs for different k-fold cross-validations are
depicted to further validate the effect of LSTM RNNs on the
prediction performance. As shown in Figure 8, ROC curves
without LSTM RNNs for different k-fold cross-validations
fluctuation up and down around the straight line y = x,
while ROC curves with LSTM RNNS are far from and above
the straight line y = x. These results indicate that LSTM
RNNS can select informative and representative data subset to
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FIGURE 8. ROC curves with LSTM RNNs and without LSTM RNNs for
different k-fold cross-validations.

achieve a relatively good prediction effect for the imbalanced
dataset.

D. COMPARISON BETWEEN THE PROPOSED CNN AND
SUPPORT VECTOR MACHINE

In recent years, support vector machine (SVM) has
been successfully applied in the field of glycation site
prediction [5]-[8]. To demonstrate the powerful capacity
of the proposed CNN, its prediction performance is com-
pared with SVM using the same feature extraction method
proposed in this study. To improve prediction performance of
the SVM, all features are ranked according to their weights
calculated by the minimum redundancy maximum correla-
tion (mMRMR) algorithm [56]. In classification, adding a new
feature will simultaneously introduce useful information and
redundant information. When the useful information is more
than the redundant information, the prediction accuracy will
be improved. On the contrary, a decrease in the prediction
accuracy will happen. When the useful information and the
useless information are almost the same, the prediction accu-
racy will behave constant. As shown in Figure 9, the feature
set corresponding to top-ranking k features that gives the
best prediction accuracy is chosen as the input of the SVM.
Table 6 summarizes the prediction results of the proposed
CNN and the SVM on dataset A and dataset B using 10-fold
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TABLE 6. Prediction results of the proposed CNN and the SVM on dataset A and dataset B using 10-fold cross-validation.

Dataset Classification Model ACC (%) SP (%) SN (%) AUC
Dataset A CNN 90.5 96.4 78.9 0.766
SVM 76.6 76.2 100 0.233
Dataset B CNN 92.1 97.7 84.4 0.838
SVM 65.2 60.3 100 0.405
TABLE 7. Performance comparisons of DeepGly and existing methods on the dataset A and dataset B.
Dataset Method ACC (%) SP (%) SN (%) AUC MCC
Gly-PseAAC[6] 689 740 587 0726 0320
Dataset A iProtGly-SS[8] 81.6 60.1 924 0.592 0.562
DeepGly 90.5 96.4 789 0911 0.766
Gly-PseAAC[6] 68.1 80.2 56.1 0.771  0.380
PreGly[7] 85.5 95.9 71.1 — 0.700
Dataset B iProtGly-SS[8] 93.6 93.4 93.7 0.977 0.878
DeepGly 91.8 91.1 92.6 0.944  0.838
80 on the dataset B are higher than those of existing methods
A except iProtGly-SS. The prediction performance of DeepGly
7] is slightly inferior to that of iProtGly-SS, probably due to the
% 7ol fact that deep neural networks are better at handling large data
g sets while the size of dataset B is small. These observations
2 651 indicate that DeepG.ly generally outperforms existing meth-
ods integrating multiple sources of hand-designed features.
601 The competitive performance of DeepGly stems from the
following factors. (i) Representing peptide chains by con-
551 tinuous distribution representation can effectively extract the
Zﬁ:ﬁ::ﬁi‘; semantic information of peptide chains. (ii) The proposed
50, 10 20 30 20 50 60 7 LSTM-RNNs is very efficient for the imbalanced dataset

Number of Features

FIGURE 9. Prediction accuracy of SVM against top k features ranked by
the mRMR algorithm on dataset A and dataset B.

cross-validation. It can be seen that the ACC, SP, MCC of the
proposed CNN on dataset A and dataset B are significantly
higher than those of the SVM, which highlights the superior-
ity of the proposed CNN to capture complex patterns around
glycation sites.

E. PERFORMANCE COMPARISONS WITH EXISTING
METHODS

Various kinds of computational methods have been proposed
for predicting protein glycation sites on the dataset A and
dataset B. To verify the effectiveness of the proposed method
DeepGly, the prediction results of DeepGly and existing
methods that has been introduced in Section 1 are com-
pared on the dataset A and dataset B. As listed in Table 7,
the ACC yielded by Gly-PseAAC and iProtGly-SS on the
dataset A are 68.9% and 81.6%, respectively, much lower
than the ACC achieved by DeepGly. Similar conclusions can
be obtained for the other performance evaluation indexes on
the dataset A. Considering the SP, none of the other methods
can perform better than DeepGly on the dataset B. In addition,
all the performance evaluation indexes achieved by DeepGly
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problem. (iii) CNN can automatically mine the hidden high-
level discriminative features, thereby reducing the process
of the feature extraction and feature selection to capture
complex patterns around glycation sites.

IV. CONCLUSION

As an important type of post-translational modifications, pro-
tein glycation sites are closely tied to many human diseases.
Therefore, correctly identifying glycation sites could provide
important clues for discovering the pathogenesis of the rele-
vant diseases. In this study, a deep learning framework called
DeepGly with recurrent and convolutional neural networks
has been proposed to identify glycation sites. For the imbal-
anced dataset problem, LSTM RNNs that can remember the
long short-term information of sequences are constructed
to generate peptide chains with glycation sites. Driven by
the obvious analogy between protein sequences and natural
languages, the concept of continuous distribution represen-
tation is adopted to encode peptide chains. In view of the
powerful ability to extract advanced features, CNN is selected
as the prediction algorithm of glycation sites. This study
represents the first application of deep learning in glycation
site prediction. Experimental results have demonstrated the
possibility of implementing LSTM RNNs to balance the
dataset, the feasibility of applying continuous distribution
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representation to encode peptide chains, and the effective-
ness of establishing CNN to classify peptide chains. Com-
pared with existing methods, the proposed method achieves
superior performance. However, the deep learning model is
prone to overfitting. To reduce the influence of this problem,
the network scale of the CNN model constructed in this paper
is relatively small. In addition, the scales of the datasets used
in previous methods in this field are all small, and there is no
standard dataset to test the degree of overfitting. In the future,
the over-fitting problem of deep learning will be an important
research direction. Furthermore, new and informative feature
sets will be integrated into DeepGly, and different network
architectures such as generative adversarial networks will be
constructed to further improve the performance.
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