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ABSTRACT High quality transmission of Virtual Reality (VR) video depends strictly on bandwidth and
delay requirements. It becomes possible with the maturity and commercialization of 5G technology. How-
ever, to transmit VR video streaming over wireless communication system, we must cope with the challenge
that fluctuation exists in the wireless channel conditions. For example, available channel bandwidth, packet
loss rate, and interference level may vary with time due to channel fading and user’s mobility. The problem
is more prominent when transmitting naked-eye 3D video which generally consists of multiple viewpoints
with different resolutions. In order to optimize the quality of experience (QoE) of watching naked-eye
VR video over wireless networks, this paper proposes a network-assisted neural adaptive video streaming
algorithm (NAVSA). Specifically, we present a modified QoE function to describe the quality of naked-eye
3D streaming quantitatively, which not only considers the quality of naked-eye 3D video itself, but also
considers the phenomenon of rebuffering and video fluctuation that occurs during video transmission. Next,
with the network-assisted feedback, the physical layer information, the buffer occupancy of the video client,
and the size of the next video chunk are collected to train a reinforcement learning model. Based on dynamic
adaptive streaming over HTTP (DASH), the model can automatically choose appropriate viewpoints and
resolutions corresponding to the current condition of the wireless networks such that the network capacity
can be fully explored. To verify the performance of our proposed NAVSA, we simulate 3 naked-eye
3D video application scenarios on the NS3 platform. The results show that the performance of NAVSA
is about 5∼8% better than some state-of-the-art algorithms in wireless networks.

INDEX TERMS Reinforcement learning, adaptive transmission, naked-eye 3D, network assistance, wireless
networks.

I. INTRODUCTION
With the development of mobile terminals and the enrichment
of online video content, the demand for streaming video
service applications is increasing, and it is becoming the
main type of traffic in wireless networks. Currently, stream-
ing video services account for a considerable proportion of
Internet traffic [1]. According to the Cisco report [2], it is
predicted that the network video traffic will account for 82%
of all consumer Internet traffic by 2021. In the past decade,
mobile users’ demand for high-definition images and high-
quality video streams has been continuously upgrading.

With the enhancement of 5G technologies, such as net-
work slice [3], D2D [4], [5], physical layer coding [6], [7]
and other IoT technologies [8], [9], many streaming media
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application services emerge [10]–[13]. Among them,
VR applications become the new hits due to the unique
immersive experience they brought to the public [14]–[16].
The rapid development of wearable devices makes VR video
streaming service applications quickly enter people’s sights
and lives, and is widely used in video live broadcast, immer-
sive games, online exhibition halls, panoramic street scenes
and other fields. In particular, the naked-eye 3D video enables
each user to view objects from a freely switchable viewpoint,
and the viewer can place himself in an immersive scene with-
out any additional accessories, making it ideal for commercial
use [17]–[19].

However, with the widespread application of stream-
ing video services and the explosive development of con-
tent, the tradeoff between business needs and wireless
network transmission capabilities has become increasingly
prominent, such as greedier bandwidth and stricter delay.
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The existing wireless networks shouldn’t transmit these
applications directly, otherwise it will sacrifice the picture
quality, or there will incur serious stalls and scene switching
delay, causing the viewer’s dizziness. However, vivid image,
immersive sound and rich video information acquire suffi-
cient bandwidth. To solve these problems, there has been
mickle works focusing on the encoding/decoding schemes to
reduce video traffic [20]–[27]. For examples, to reduce the
high bandwidth consumption in cloud gaming, [20] proposed
a hybrid streaming framework which jointly applies video
streaming and graphics streaming to provide a high-quality
gaming experience. Reference [21] proposed the adaptive
multi-view video streaming system for real-time streaming
which can achieve low encoding/decoding computation and
high video quality while satisfying bandwidth limitations.
To reduce the huge amount of video content redundancy,
a content-slimming system framework based on the conver-
gence of computing, communication and cache was proposed
in [22]. However, the existing methods can not effectively
adapt to the wireless channel fluctuations. In a wireless
network, the bandwidth, channel quality, packet loss, trans-
mission delay and many other metrics typically vary from
time to time, ignoring these variances may lead to lower
efficiency or degraded QoE.

The current immersive video transmission research on the
wireless networks is mainly based on theMPEG-DASH tech-
nology [28]–[32], in which the quality of the video chunk to
be downloaded is determined by observing the throughput
of the network and the length of the client buffer. These
adaptive bitrate (ABR) algorithms run on the client video
player, dynamically selecting the video bitrate for each video
chunk to maximize the user’s QoE. Most of the existing ABR
algorithms are based on a fixed rule, or consider the estimated
network throughput [33], [34], or consider the player buffer
size [35], or comprehensively take these two quantities [36]
into account. These scenarios need to be adjusted for different
network conditions and QoE requirements. Reference [33]
developed a suite of techniques that systematically guide
the trade-offs between stability, fairness, and efficiency, and
it proposed a general framework for robust video adapta-
tion, which was found to improve fairness by 40%, stability
by 50% and efficiency by at least 10%. The most advanced
model predictive control (MPC) algorithm [37] is aimed
to solve the QoE maximization problem in the future of
several video blocks, which is particularly sensitive to the
prediction of future network throughput. In order to provide
users with better QoE through wireless network transmission,
[38] proposed a framework named as QoE-driven and
network-assisted naked-eye 3D adaptive video streaming
over wireless networks (QNANA) to adaptively transmit
naked-eye 3D video streaming over wireless networks
through network-assisted methods.

Recently, machine learning based methods have been
widely used in video streaming. Due to the limitation of
traditional ABR algorithms that their rules are deterministic
and inevitably fail to achieve optimal performance across

a broad set of network conditions and QoE metrics. For
this problem, [39] proposed a reinforcement learning based
ABR algorithm Pensieve, which can adapt to different user
preferences directly by modifying the reward module, and
learn the best ABR algorithm to adapt to various network
conditions. Reference [40] applied the deep reinforcement
learning approach to dynamic resource optimization for wire-
less buffer-aware video streaming under unknown channel
state and video rate. These reinforcement learning methods
don’t know any information at the beginning of training,
but they can gradually learn to make a good ABR deci-
sion under the incentive of reward signals. After training,
the performance of reinforcement learning methods is com-
parable to or better than the state-of-the-art ABR algorithms.
However, the input of these reinforcement learning meth-
ods still adopts the bandwidth estimation of the applica-
tion layer, which is incompatible with the wireless channel
condition, resulting in inadequate utilization of bandwidth
resources.

In this paper, we modify the QoE function in order to
accurately describe the viewing experience of naked-eye
3D video in wireless network transmission and propose a
network-assisted adaptive bitrate algorithm based on rein-
forcement learning, namely NAVSA, to meet the best QoE.
In NAVSA, a neural network, which uses collected net-
work physical layer information, buffer occupancy and next
video chunk size as inputs replaces the traditional DASH
policy. We take the QoE function of naked-eye 3D video
streaming as the objective function, and update the neural
network parameters under different network traces through
reinforcement learning, in which the QoE is continuously
improved. By tracking the changes of the physical layer of
the wireless channels, NAVSA can better adapt to the net-
work environment than other reinforcement learning adaptive
bitrate algorithms such as Pensieve, which uses past chunk
throughput estimation, past chunk download time, next chunk
size, current buffer size, number of chunks left and last chunk
bitrate as inputs. To verify it, we use the same network
traces to train a NAVSA model and a Pensieve model, and
compare them using the same testing set, which shows that
NAVSA is a more adaptive bitrate algorithm than Pensieve.
Then, we put the two trained models into 3 specific sce-
nario simulations, and analyze the performance with other
algorithms in details. The results show that the outcome of
NAVSA is about 5∼8% better than some state-of-the-art
algorithms.

The reminder of this paper is organized as follows.
Section II presents the details of our proposed NAVSA algo-
rithm, including QoE function, network-assisted function and
reinforcement learning model. The model is trained with
simulated data based on A3C framework, and evaluated the
accuracy comparedwith the Pensieve. In section III, we verify
the NAVSA algorithm with naked-eye 3D video streaming
under different scenarios, and compare our proposed algo-
rithm with other adaptive algorithms. The section IV gives
the conclusion.
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TABLE 1. Viewpoints and resolution combinations.

II. ALGORITHM
A. QOE FUNCTION
The naked-eye 3D video stream realizes stereoscopic percep-
tion based on the principle that the left eye and the right eye
simultaneously acquire different image information from the
same object. By synthesizing 3D images usingmultiple view-
points, the autostereoscopic 3D effect can be well achieved.
More views mean greater viewers’ stereoscopic freedom. For
a given degree of freedom, more viewpoints can also produce
more detailed and continuous images, thus creating even
more impressive depth and robustness.The quality of naked-
eye 3D video is mainly affected by two factors: stereo effect
and picture quality. To quantitatively measure the quality
of naked-eye 3D video, [41] proposed a multi-view video
quality evaluation method based on the structural similarity
image measure (SSIM). In order to simplify the model and
improve the operability of the simulation, we characterize
the stereoscopic effect with the number of viewpoints and
characterizes the image quality with resolution. It should
be noted that the viewpoints and resolution only describe
the quality of the video itself, while not involve the impact
of video rebuffering and fluctuation on users’ QoE in the
transmission process.

As shown in Table.1, it is assumed that there are K = 10
kinds of viewpoints and resolution combinations for the video
source of the same content, and each combination has a
specific bitrate level configuration.

For the k-th combination of viewpoints and resolution
in Table.1, the quality of the video q(k) is defined by

q(k) = ρ · SQP(k)+ (1− ρ) · IQ(k), (1)

where k = 1, 2, · · · ,K , ρ denotes a weighting factor, SQP(k)
and IQ(k) denote, respectively, the stereoscopic influence
factor and the picture quality influence factor of the k-th com-
bination. In addition, the QoE is related to the video quality,
as well as the rebuffering time and smoothness in the process
of watching naked-eye 3D video in wireless transmission,

which is shown in the following equations (2) and (3):

qoerebuff = −
N∑
n=1

Bn, (2)

qoesmooth = −
N−1∑
n=1

|rep(kn+1)− rep(kn)|, (3)

where Bn represents the rebuffering time in the process of
downloading the n-th video chunk, and rep(kn) represents
the bitrate level corresponding to viewpoints and resolution
combination kn.

With qoerebuff and qoesmooth defined in (2) and (3), the QoE
metric of the naked-eye 3D video is defined as equation (4).

QoE = α
N−1∑
n=1

q(kn)+ β · qoerebuff + γ · qoesmooth, (4)

where q(kn) represents the video quality of the n-th video
chunk corresponding to viewpoints and resolution com-
binations kn ∈ {1, 2, · · · ,K }. α is the influence fac-
tor of the naked-eye 3D video chunk quality, β is the
influence factor of the rebuffering time, and γ is the
influence factor of smoothness. The magnitude of these
three weighting coefficients determines whether the user
prefers high quality video or prefers low rebuffering
time under the QoE metric. In this paper, QoEhd met-
ric is selected to assume that users prefer high quality
video.

B. NETWORK-ASSISTED FUNCTION
In the traditional DASH policy, the client calculates the
available bandwidth at the next video chunk by using the
terminal network port throughput or the rate of downloading
chunks within a certain period of time. This method has no
data interaction with the underlying network, leading to hys-
teresis, which causes the bandwidth carrying capacity to be
often overestimated or underestimated. The network assisted
policy can directly obtain the bandwidth estimation value
from the network side and transmit the bandwidth estimation
value to the client by establishing the information interaction
interface between the network side and the application side,
thereby improving the accuracy and stability of the band-
widthmeasurement, and better tracking the channel condition
changes.

In order to follow the channel fluctuation, an algorithm
is proposed in [38] which samples the physical layer infor-
mation at each time intervals, taking the time t − 1t as the
starting center sampling point,1t as the step sampling inter-
val, and1t/2 as the symmetric sampling range. The discrete
layer symmetric sampling is performed on the physical layer
information for the time ranging from t − 1t to t − m1t ,
and the estimated available bandwidth carrying capacity at
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the sampling time t is calculated as

BW t (i) =
1
1t

t+ (1−2i)1t
2∑

j=t− (1+2i)1t
2

TBSize(j), (5)

BW t =
1
m

m∑
i=1

BW t (i), (6)

where BW t (i) represents the physical layer throughput sam-
ple value of the i-th equal time interval at the sampling
time t , BW t represents the arithmetic mean of the throughput
sampling time series at the sampling time t , which is used
to estimate the available bandwidth carrying capacity at that
time. TBSize(j) represents the transport block size received
by the receiving end at time j. In the simulation experiment,
1t is set to 25 milliseconds, and the total number of samples
is set to 20, that is, the channel condition in the time range of
about 0.5 seconds is covered.

C. REINFORCEMENT LEARNING MODEL
In this section, we introduce the design ideas and training
methods of the proposed network-assisted neural adaptive
video streaming algorithm (NAVSA), and detail the architec-
ture and functions of each module in the algorithm.

1) DESIGN
Weuse the A3C (asynchronous advantage actor-critic) frame-
work [43] to train the NAVSA, as shown in Fig. 1. This is
a relatively advanced reinforcement learning algorithm that
introduces a multi-threaded asynchronous architecture based
on Actor-Critic. That is, by creating multiple threads, each
thread has an agent running on the copy of the environ-
ment, and the parameter gradients of the multiple threads
are added to the neural network of the global agent after
a certain number of training steps. The neural networks of
all threads then update the parameters of the neural network
sharing the global agent together to achieve parallel and
asynchronous execution and learning inmultiple environment
instances. Each thread has two neural networks, one called
actor network, which is responsible for the policy gradient
to learn strategy; the other is called critic network, which is
responsible for the value evaluation function. The structure of
these two neural networks is shown in Fig. 2.

When the algorithm has been completely trained, only the
parameters of the global neural network need to be saved as
a policy model. Then, enter the state into the model to get the
probability of each action, and then select the action with the
highest probability as the model output.

In the following, the various modules in NAVSA are
described.

• State: After downloading a video block n, the resulting
sn = (−→x n,

−→c n, bt ) is used as input to the two neural
networks. −→x n is a vector representing the estimated
network capacity of the past 5 seconds. In the process
of model trains, we directly replace collected network

FIGURE 1. A3C framework.

FIGURE 2. The actor network and critic network used in this paper to
generate NAVSA.

physical layer information with the throughput value
of the past 5 seconds in the network trace document.
−→c n is also a vector indicating the size of the next video
chunk at each viewpoints and resolution combination.
bt indicates the buffer size of the client player at current
time t . Specifically, −→x n and

−→c n are given by

−→x n =
(
BW t−MT ,BW t−(M−1)T , · · · ,BW t

)
(7)

−→c n = (chunkn+1(1), chunkn+1(2), · · · , chunkn+1(K ))

(8)

where BW t−MT represents the estimated available band-
width carrying capacity at time t−MT , andM is set to 9,
T is set to 500 milliseconds. chunkn+1(kn+1) represents
the size (in bytes) of the (n + 1)-th video chunk with
viewpoints and resolution combination kn+1.

• Action Space: We use the total number of viewpoints
and resolution combinations K as the size of the action
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space A, and an ∈ {1, 2, · · · ,K } denotes the combina-
tion number of the viewpoints and resolution selected
by the client player when downloading the n-th video
chunk.

• Policy: The policy refers to the mapping rule from state
sn to action an. This mapping can be denoted by

π : π (sn, an)→ [0, 1] (9)

which is a probability distribution function, indicating
the probability of selecting an under state sn. In the
A3C framework, the probability distribution function
π (sn, an) is specifically implemented by the actor net-
work, whilst the critic network is used to implement
the value estimation function π (sn, an), which is used to
represent the value of the state sn. The specific structure
of these two neural networks can be found in [39].

• Reward Function: We use r(sn, an) to indicate the
reward returned to the policy after the client downloads
the n-th video chunk. r(sn, an) is defined as

r(sn, an) = αq(an)− βBn − γ |rep(an)− r(an−1)|

r(s1, a1) = αq(a1)− βB1 (10)

where q(an),Bn, r(an), α, β, γ are defined in previous
subsections.
With the reward function defined in (10), the QoE of the
user watching naked-eye 3D video can also be expressed
by:

QoE =
N∑
n=1

r(sn, an). (11)

• Environment: Because the conditions and devices
required to transmit naked-eye 3D video are not avail-
able yet, and the actual video downloading and play-
back is too time-consuming. So we simulate the process
of slicing, downloading and playing back the naked-
eye 3D video. We re-coded a naked-eye 3D video to
generate 10 video sources, each of which has 48 video
chuncks and corresponds to a combination of viewpoints
and resolution. The duration of each video chunk is set
to 1 second. We used the method in [39] to generate
a synthetic dataset containing 400 randomly network
traces as training set and 120 randomly network traces as
testing set. Specifically, these traces are generated using
a Markovian model in which each state represented an
average throughput in the aforementioned range. The
time interval between two adjacent bandwidth values
in each trace is 0.5 seconds and the duration of each
trace is 200 seconds. Each throughput value is between
5Mbps and 150Mbps and is drawn from a Gaussian
distribution centered around the average throughput for
the current state, with variance uniformly distributed
between 0.05 and 0.5, to simulate channel fluctuations
of 5G wireless networks.

2) TRAINING METHODOLOGY
We use θ to represent the parameters of the two neu-
ral networks in the policy, then the actor network is rep-
resented by πθ (sn, an), and the critic network is repre-
sented by vθ (sn). The purpose of reinforcement learning
is to maximize the reward expectation J (θ ) of the policy
model, i.e.

θ∗ = argmax
θ

{J (θ )} (12)

where θ∗ represents the neural network parameters that we
finally hope to learn, J (θ ) is the objective function of the
maximization which is defined as

J (θ ) = Eτ∼pθ (τ )[r(τ )] (13)

where

τ ∈ {(a1, a2, · · · , an)|an = 1, 2, · · · ,K }

represents an action selection trajectory. pθ (τ ) is a probability
distribution function, indicating the probability of the action
selection trajectory τ appearing under the policy model with
parameter θ . r(τ ) represents the total reward value under this
action selection trajectory.

The gradient of the objective functionJ (θ ) is given by [42]

∇θ =

∫
∇θpθ (τ )r(τ )dτ

=

∫
pθ (τ )∇θ log pθ (τ )r(τ )dτ. (14)

Since pθ (τ ) can be expressed as

pθ (τ ) = p(s1)
N∏
n=1

πθ (sn, an)p(sn+1|sn, an), (15)

we have

∇θ log pθ (τ ) =
N∑
n=1

∇ logπθ (sn, an) (16)

From this, the gradient ∇J (θ ) of the objective function J (θ )
can be calculated as

∇J (θ ) = Eτ∼pθ (τ )

[
N∑
n=1

∇θ logπθ (sn, an)r(τ )

]
. (17)

Theoretically, πθ (sl2 , al2 ) does not affect πθ (sl1 , al1 ) if
l2 > l1, so it is concluded that:

∇J (θ ) = Eτ∼pθ (τ )

[
N∑
n=1

∇θ logπθ (sn, an)
N∑

n′=n

r(sn′ , an′ )

]
.

(18)

The variance of the gradient calculated by above formula
can be very large. To address this problem, [43] proposed the
advantage function A(sn, an) defined as

A(sn, an) = r(sn, an)+ γ v(sn+1)− v(sn) (19)
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where v(sn) is the value estimate of state sn, which represents
the expected value of the discount reward of the current
state sn and all subsequent states during the state transition,
implemented by the critic network. γ represents the discount
weight.

Substituting the advantage function A(sn, an) for∑N
n′=n r(sn′ , an′ ) in (18), the calculation formula of the objec-

tive function gradient becomes:

∇θJ (θ ) = Eτ∼pθ (τ )

[
N∑
n=1

∇θ logπθ (sn, an)A(sn, an)

]
(20)

The actual training process is mainly divided into two
steps, which are performed alternately until the training is
completed:
• Pull: Synchronize the parameters θ, θv of the two global
networks to the actor network and the critic network of
each thread:

θ ′ ← θ

θ ′v ← θv (21)

After the parameter synchronization completed, perform
the step Push.

• Push: Each thread runs an agent on the copy of the
environment, simulating the download process and play-
back process of the naked-eye 3D video in parallel,
and sampling multiple state transitions (si, ai, ri, si+1)
as a batch under the policy πθ ′ with the parameter θ ′.
Then update the global critic network using the timing
difference algorithm [42]:

θv← θv − αcritic
∑
i

∇θvA(si, ai) (22)

where αcritic represent the learning rate of global critic
network.
Calculate the advantage function A(sn, an) and update
the global actor network:

A(si, ai) = ri + γ vθv (si+1)− vθv (si) (23)

θ ← θ + αactor
∑
i

∇θ logπθ (si, ai)A(si, ai)

(24)

where αactor represents the learning rate of the global
actor network.
Each agent passes the data of the respective batch to the
central agent to complete the parameter update and then
executes the step Pull.

Fig. 3 shows the change of the average QoE of 400 net-
work traces with training episodes in the training process
of NAVSA model. The average QoE was sampled every
10 episodes.After training, we tested the NAVSA model with
120 network traces in the testing set, and compared it with a
Pensieve model under the same training set.

Fig. 4 shows the CDF curves of the total QoE values of the
two algorithms under each network trace.

FIGURE 3. The average reward in NAVSA training process varies with the
episodes over 60 random network traces. The red curve is the moving
average value of the green curve.

FIGURE 4. Comparing the average QoE values of Pensieve and NAVSA
under testing set network traces.

Fig. 5 shows the bitrate selection, buffer occupancy and
bandwidth estimation of the two algorithms under a certain
network trace. The total QoE of Pensieve under this network
trace is 67.1086, while the total QoE of NAVSA is 75.8431.
As can be seen, NAVSA’s bandwidth calculation is more
precise, and brings about the improvement of QoE.

III. SIMULATION
In this section, we used the model trained in Section II to
simulate naked-eye 3D video application scenarios on the
NS3 platform based on [44], as shown in Fig. 6.

Each client is considered as a user equipment (UE) in the
LTE network. The LTE-EPC network simulator in NS3 [45]
is used to simulate the fading characteristics of the mobile
channel during DASH client’s motion.

The remote host (eNb) is set as the DASH server, and the
naked-eye 3D video stream of 10 code rate levels between
10-100 Mbps is stored, and each bitrate level is mapped to
the highest viewpoints and resolution combination of QoE.
In the simulation, the DASH client is set to send a request to
the DASH server. After downloading a naked-eye 3D video
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FIGURE 5. Comparing bitrate selection, buffer occupancy and bandwidth
estimation of NAVSA and Pensieve on one trace.The gray line
Phy-Bandwidth represents the network trace.

FIGURE 6. DASH application framework.

chunk, the client loads the video streaming into buffer, and
playbacks it. Of course, the NS3 platform does not have a real
video player, nor does it have a real server to store naked-eye
3D video chunks at various bitrates. We store the size of the
naked-eye 3D video chunks of each bitrate level into a text
file. When the DASH client makes a request to the server,
the server reads the size of the video chunk of a specific bitrate
requested by the client, and then send the same size packets to
the client. We also set a buffer on the client. When the server
finish sending certain size packets, the length of the buffer
will increase by a video chunk length. Then when the server
is sending the next ‘‘video clip data’’, the cache length will
be reduced evenly, to simulate the entire naked-eye 3D video
streaming and playback process.

The process of the above server sending packets to the
client does exist and has a record at the physical layer, so the
client can obtain the TB size at a certain moment by querying
the physical layer log and use this to accurately estimate the
wireless channel throughput.

TABLE 2. Simulation parameters.

FIGURE 7. Profiling bitrate selections, buffer occupancy with four
algorithms under Scenario 1. (a) Bitrate. (b) Buffer.

A. SIMULATION PARAMETERS
The NS3 simulation parameters are shown in Table. 2. The
naked-eye 3D video chunks stored by the DASH server is 1s
in length. The following 3 scenarios have been considered in
the simulation:

VOLUME 7, 2019 141369



Y. Liu et al.: Network-Assisted Neural Adaptive Naked-Eye 3D Video Streaming Over Wireless Networks

FIGURE 8. Profiling bitrate selections, buffer occupancy with four
algorithms under Scenario 2. (a) Bitrate. (b) Buffer.

• Scenario 1: The DASH client is a user on the road, and
moves from the cell edge to the cell center at a speed
of 3 km/h.

• Scenario 2: The DASH client is a user of the electric
vehicle such as sightseeing bus, and traverses multiple
adjacent cells at a speed of 20 km/h.

• Scenario 3: The DASH client is a user on the car, and
traverses multiple adjacent cells at a speed of 60 km/h.

B. SIMULATION RESULTS
We compare the performance of our proposed algorithm
NAVSA with three existing algorithms, including Pensieve,
robustMPC (this is a version of MPC that normalizes the
calculated throughput by using the maximum prediction
error of the past 5 video blocks to conservatively esti-
mate the bandwidth values of the next 5 video blocks), and
FESTIVE [33]. The performance comparison is based on the
QoEhd metric, and then we analyze the bitrate selection of
each algorithm in the three scenarios. The parameters α, β
and γ ofQoEhd metric are shown in Table. 2, and the average
bitrate in each scenario is calculated as follows:

Rave =
1
N

N∑
n=1

rep(kn) (25)

FIGURE 9. Profiling bitrate selections, buffer occupancy with four
algorithms under Scenario 3. (a) Bitrate. (b) Buffer.

Fig. 7 (a), Fig. 8 (a) and Fig. 9 (a) show the curve of
the bitrate selection of the four algorithms in 3 scenarios
with the simulation time. The bitrate of each level in the
figure is mapped to the highest viewpoint and resolution com-
bination of QoE. The gray line ’’Phy-Throuput’’ represents
the throughput fluctuation of scenarios and the black line
is the sliding average of the gray line. In addition to the
FESTIVE algorithm, the NAVSA, Pensieve and robustMPC
are all QoE-driven. Because the chosenQoEhd metric prefers
to select high-quality video chunks, it relatively weakens the
penalty of rebuffering and bitrate fluctuations, which result
in the three algorithms are very aggressive. They frequently
perform bitrate switching, filling low quality video chunks
into buffer in order to select a high quality video chunk at the
next moment.

The buffer length changes shown in Fig. 8 (b) also illus-
trate the aggressiveness of the three algorithms, in which the
client buffer is always at a lower level and fiercely fluctuates.
Because the bandwidth of scenario 3 is the highest for most
of the time, the buffer occupancy of the three algorithms
can be maintained at a stable value as shown in Fig. 9
(b) when the high bit rate is chosen as far as possible.
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FIGURE 10. QoE varies with the number of video blocks viewed under
scenario 1, scenario 2 and scenario 3. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3.

FESTIVE is a relatively conservative algorithm which tries
to keep the buffer length at a stable level. When chang-
ing the policy selection, FESTIVE will try to avoid large
bitrate switching, and the quality of the selected video is not
high.

Fig. 10 shows the variation of QoE of each algorithm with
the number of video chunks viewed under 3 scenarios. It can
be seen that the final QoE of NAVSA is the highest, and
Pensieve and robustMPC are slightly worse due to theQoEhd
metric. In order to select high quality video chunks, the aver-
age bitrate histogram shown in Fig. 11 also reflects the
performance of each algorithm to some extent. In addition,

FIGURE 11. Average bitrate of four algorithms under scenario 1,
scenario 2 and scenario 3.

we find that the performance of Pensieve is more unstable
than NAVSA under the same training set, as shown in Fig. 11.
Because the network bandwidth estimate in Pensieve and
robustMPC is at the application layer. The same state may
have different channel conditions, which leads to errors in
the value estimation of the current state. NAVSA directly
samples the change of the mobile channel from the physical
layer, so that the estimation of the network bandwidth is
more accurate, which result in the value error of the state
smaller, and the action with higher reward is more reliable,
making the QoE of NAVSA the highest in these state-of-the-
art algorithms.

IV. CONCLUSION
Taking the naked-eye 3D video transmission as an exam-
ple, this paper proposes an adaptive video stream algo-
rithm NAVSA combining network-assisted and reinforce-
ment learning. The algorithm can effectively cope with
the fluctuation characteristics of 5G mobile channels and
improve the QoE of users watching VR video. Addition-
ally, NAVSA requires less information inputs at the same
cost of model training time of Pensieve. In the simulation,
under QoEhd metric, the QoE value and average bitrate of
NAVSA is about 5∼8% better than state-of-the-art Pensieve
and robustMPC algorithms, and 30∼40% better than the
traditional DASH algorithm FESTIVE.
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