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ABSTRACT Forecasting the significant wave heights (Hs) is indispensable in HS-related engineering studies
and is exceedingly important in the assessment of wave energy in future. As a technique essential for the
future of clean energy systems, reducing the forecasting errors related to Hs has always been a vital research
subject. In this paper, an optimized hybrid method based on the back propagation neural network (BP) and
the cuckoo search algorithm (CS) is proposed to forecast the Hs in the South China Sea. This approach
employs the CS as an intelligent optimization algorithm to optimize the parameters of the BP model, which
develop a hybrid model that is suit for the data set, reducing the forecasting errors. The proposed method
is subsequently tested based on nine prediction points selected in the South China Sea, where the proposed
hybrid model is proved to perform effectively and steadily.

INDEX TERMS CS-BP, significant wave heights, South China sea, predication performance.

I. INTRODUCTION
Ocean waves are complex phenomenon because their pro-
duction depends on many atmospheric, meteorological and
oceanographic factors [1]. The study of ocean waves is of
great significance to marine engineering construction, marine
development, transportation, marine fishery, aquaculture and
so on. The rapid and accurate prediction of wave heights
is also crucial for disaster warning and emergency preven-
tion [2]. The complex and random characteristics of ocean
waves make it more difficult to predict the height of ocean
waves.

For effective prediction of wave heights, many experts and
scholars put forward different methods such as empirical,
numerical and soft computing approaches. The prediction
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of ocean waves is traditionally done by converting wind-
related information to waves. The empirical models like SMB
and Darbyshire were frequently used to predict ocean wave
heights in the 1960s and 1970s [3]. Numerical models such
as wave modeling (WAM) and nearshore wave modeling
(SWAN) [4] are usually based on a form of spectral energy or
action balance equation, which became popular in the 1980s
and 1990s due to itsmathematical rigor and the large temporal
and spatial coverage with them [5]. However, this method is
to build a physical model of wave heights, which requires not
only basic knowledge of physical processes as a prerequisite,
but also high performance computing infrastructure, as well
as high cost and long time period [6]. In case of an ocean
emergency, in order to take emergency measures in advance
and reduce disasters, it is necessary to propose a faster and
more accurate wave heights predictionmethod. Predicting the
heights of wave from the knowledge of generating wind is
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basically an uncertain and random process, so it is difficult to
model with deterministic equations, which makes it ideally
suit for neural network model [7].

Agrawal and Deo [8] studied the online prediction of wave
heights by Artificial Neural Networks (ANNs), first-order
autoregressive moving average (ARMA) and Autoregressive
Integrated Moving Average (ARIMA) model. They reported
that ANNs was more accurate for short-term predictions than
either time series model. Mahjoobi and Adeli Mosabbeb [9]
proposed a support vector machine (SVM) method for pre-
dicting wave heights. Compared with the traditional neural
network, the pre diction error of SVM is small. Ozger [10]
applied the hybrid method of wavelet and fuzzy to pre-
dict the significant wave heights and average wave period
48 hours ago, and the results were satisfactory compared
with autoregressive, artificial neural network and fuzzy logic
model. Nitsure et al. [11] used wind information and genetic
programming (GP) for wave prediction and the results were
satisfactory, especially for the peak of wave heights formed
by the extreme events like hurricanes. In the same year,
Kambekar and Deo [12] used GP and model trees to pre-
dict waves, and the results showed that GP model had a
better tendency than the MT model. Truong and Ahn [13]
used a modified gray model MGM (1,1) to predict wave
for real-time control of wave energy converters in irregular
waves. Fernández et al. [14] introduced classification tech-
niques in marine energy prediction. Shahabi et al. [15] used
a hybrid wavelet-genetic programming approach to predict
the significant wave heights of two monitoring stations in the
north Atlantic. The results showed that the model has higher
prediction reliability. Cornejo-Bueno et al. [16] proposed
a hybrid Grouping Genetic Algorithm - Extreme Learning
Machine approach (GGA-ELM) to predict the significant
wave height at the Western coast of the USA, obtaining good
results. This approach can solve feature selection problems
and may be applied to alternative regression approaches.
Wang et al. [7] used a BP neural network model optimized by
mind evolutionary algorithm (MEA-BP) to predict the ocean
wave heights, and the results indicated that MEA-BP was
superior to the genetic algorithm-BP neural network model
(GA-BP) and standard BP neural network model (St-BP)
with faster running time and higher prediction accuracy.
Yang et al. [17] applied SARIMAmodel to predict the signif-
icant wave height of the South China Sea and adjacent waters
in the long term, which has a good prediction performance.

BP neural network is the most widely used neural net-
work, which can directly map input to output. Although BP
neural networks can utilize relevant parameters in prediction
of Hs, they also are easy to be trapped in local minimum.
Therefore, it is very necessary to use powerful optimization
algorithms to overcome this shortcoming. CS is a population-
based optimization algorithm and a meta-heuristic algorithm,
which can be implemented to adjust weights and biases of
BP neural network by updating location of the nests in order
to achieve the purpose of improving performance [18]. This
paper presents a CS-BP prediction model, which combines

the local optimization of BP neural network and the global
optimization of cuckoo search algorithm. The model is used
to predict the Hs in the South China Sea, transforming the
uncertainty of Hs into predictability.

II. RESEARCH METHODOLOGY
According to the theory that wave is created by wind interact-
ing with the ocean surface, Hs and wind data are combined
with neural network to predict Hs. The Figure 1. shows the
research method for predicting Hs, which can be divided into
three steps.

1) The features selection. According to the theory that
wave is driven by wind, the parameters, such as Hs and wind,
are selected and processed.

2) The optimization of the BP neural network. The BP
neural network is optimized by genetic algorithm and particle
swarm optimization algorithm (PSO) and cuckoo search algo-
rithm to GA-BP model, PSO-BP model and CS-BP model
respectively.

3) The prediction of Hs using neural network model and
analysis of prediction results. The Hs are predicted by the
neural network model. It is compared with the Hs from
WAVEWATCH-III (WW3) driven bywind data to analyze the
generalization ability and prediction accuracy.

III. SELECTED PREDICTION POINTS
In this paper, we choose the South China Sea as the study
area. The annual average Hs simulated by WW3 wave model
in the South China Sea in 2017 are shown in the Figure 2. The
blue points represent that, in the South China Sea, the nine
prediction points were selected from 111.375◦E-117.125◦E
and 9.125◦N-21.125◦N. Each research point has a latitude
difference of 6◦ and a longitude difference of 3◦. As can be
seen from Figure 2, there are significant differences in Hs
at the nine prediction points, which cover a wide range of
geographical locations and different weather conditions. This
could make research results more universal.

IV. AVAILABILITY DATA AND SETTING OF
INPUT PARAMETERS
A. SIGNIFICANT WAVE HEIGHTS AND WIND DATA
The ocean surface is subjected to the action of wind to
generate waves. As the wind gets stronger and stronger,
the waves get bigger and bigger. Energy accumulates over
time. The current wave is related not only to the current wind
speed, but also the previous wind speed and wave. Therefore,
Hs database and wind database were used as input parameters
of the used model in this study.

The Hs data is from the WW3 model because of its high
resolution and accuracy. The WW3 model is the third gen-
eration of full-spectrum space wave mode under the frame-
work of the WAM, developed by a marine simulation team
in NOAA/NCEP Environmental Simulation Center. In this
study, WW3 was used to simulate wave field in the South
China Sea from January 2012 to December 2017. Range
selected for model calculation was 97.375◦E-125.125◦E,
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FIGURE 1. Research methodology for predicting significant wave heights.

FIGURE 2. The annual average significant wave heights simulated by the
WW3 model in the South China Sea in 2017.

0.125◦N-30.125◦N. Many studies have demonstrated that
WW3 has a good ability to simulate the wave in the
South China Sea and Simulated Hs accuracy is within 15%
[19], [20]. So, the simulated Hs are used as input data for
the used model and validation data for comparing with the
predicted Hs.

The CCMP wind data comes from ESE (NASA earth
science enterprise) [21], combining several kinds of data
such as Advanced Earth Observing Satellite, 2nd Genera-
tion (ADEOS-II), QuikSCAT, Tropical Rainfall Measuring
Mission Microwave Imager (TRMM TMI), Special Sensor
Microwave Imager (SSM/I) and Advanced Microwave Scan-
ning Radiometer Earth Observing System (AMSR-E), and is
derived from variation method. CCMP wind field is chosen
due to its high resolution and long-time sequence.

B. INPUT PARAMETER AND NETWORK STRUCTURE
According to the theory of wind generating wave, the wind
data andHs data were used as the input parameters of the used
model. After daily-averaging the data, there are 1,826 sets of
data at one prediction point, including five years’ data from
2013 to 2017, so the nine prediction points contain 16434 sets
of data. The default samples are divided into three categories:
training samples, verification samples and test samples. The
last 100 sets of data were selected as the test set and validation
set and the rest as the training set.

There are three kinds of input parameters. The first kind
of input parameters are V10(t) and U10(t), the second kind
of input parameters are the first input parameters, V10(t-1),
U10(t-1) and Hs(t-1), and the third kind of input param-
eters are the second input parameters, V10(t-2), U10(t-2)
and Hs(t-2). The output parameter is Hs(t). While V10 and
U10 are respectively the daily average wind speed in latitude-
direction at 10 meters and in longitude-direction at 10 meters.
Hs is daily average significant wave height. The time step is a
day. To prevent prediction error, an array of all ones is added
to each input data as training set.

A three-layer BP neural network was developed in this
study due to its sufficient ability to approximate any contin-
uous nonlinear functions [22]. The structure of three-layer
BP neural network includes input layer, hidden layer and
output layer. The number of three input layers corresponding
to the above input data of the prediction model are 3, 6 and
9, respectively. The number of hidden layers was determined
by Eq. (1).

q = 2p+ 1 (1)

where p is the number of input layer and q is the number of
hidden layer. From the Eq. (1), the number of hidden layers
are 7, 13 and 19. The output parameter is the Hs. Thus, three
kinds of neural network structure are 3-7-1, 6-13-1 and 9-19-1
respectively. The network structure is shown in table 1.
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TABLE 1. The network structure.

V. PREDICTION MODEL
Recently, the neural network has developed rapidly and
achieved good results in economy, biology, ocean and
other aspects. Zhang et al. [23] studied a hybrid algorithm
combining PSO and BP together to train the weights and
thresholds of neural network. After illustrating the result of
different applications, they concluded that the hybrid algo-
rithm integrating BP and PSO improved the performance,
and exceeded the individual BP or PSO in terms of the
convergence rate and error level. Adhikari et al. [24] inves-
tigated a PSO approach which improve the predicting abil-
ity of feed-forward artificial neural network optimized by
particle swarm optimizations to predict uniaxial compressive
strength and achieved good results. Wang et al. [18] used
the BP model optimized by cuckoo search algorithm, which
is superior to the traditional BP neural network in lightning
prediction. In this paper, we try to apply the BP, GA-BP, PSO-
BP and CS-BP model to the prediction of Hs in the South
China Sea.

A. BP NEURAL NETWORK
In the mid-1980s, California PDP (Parallel Distributed
Processing) applied Error Back Propagation Training to the
research of neural network, which systematically solved the
learning problem of connection weight of hidden layer in
multi-layer neural network [25].

The back-propagation (BP) is the most well-known
learning strategy among vast number learning algo-
rithms [26], [27] and has arbitrary complex pattern clas-
sification ability and excellent multi-dimensional function
mapping ability. Structurally, there are input layer, hidden
layer and output layer. The calculation processes of BP neural
network consists of forward calculation process and reverse
calculation process. In the process of forward propagation,
the input parameters are processed layer by layer from the
input layer through the hidden layer and transferred to the
output layer. Moreover, the state of neurons in each layer only
affects the state of neurons in the next layer. Every neuron

decides its net weighted contribution as:

X =
n∑
i=1

xiωi + θ (2)

where n is the number of inputs, and xi and ωi demonstrate
respectively the value of ith input and weight. The thresholds
applied to the neurons is denoted by θ .
If the desired output cannot be obtained in the output layer,

it will be transferred to back propagation, and the error signal
will be returned along the original connection path. By modi-
fying the weights and thresholds of each neuron, the predicted
output of BP neural network are gradually approaching the
desired output [28].

B. OPTIMIZAED BP NEURAL NETWORK
The BP network is apt to plunge into local minimum, so the
optimization algorithm is used to improve its performance.

In 1962, professor Holland from the university ofMichigan
proposed a genetic algorithm, which is a global optimization
algorithm simulating the mechanism of biological evolution.
However, it has highly sensitive to the initial population,
which affects its global optimal search ability [29] and has
been successfully combined with BP neural network [30].
According to the selected fitness function, individuals are
screened through selection, cross and mutation in genetic
algorithm. The weights and thresholds of BP neural net-
work are optimized and updated to form a new algorithm,
namely the BP neural network model optimized by genetic
algorithm (GA-BP).

In this case, the roulette method based on fitness ratio was
selected. The selection probability of each individual i is Pi ,
as follows.

fi =
k
Fi

(3)

pi =
fi
n∑
j=1

fj

(4)
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where Fi is the fitness value of individual i. Since the fitness
value is getting better and better, the reciprocal of fitness
value is performed before individual selection. The coeffi-
cient k is set as 10. n is the number of individuals in the
population.

The encoding method of individual is real encoding, so the
real crossover method is adopted. The crossover of the kth
chromosome ak and the lth chromosome al at position j is
performed as follows.

akj = akj(1− b)+ aljb
alj = alj(1− b)+ akjb

}
(5)

where b is a random number between [0, 1].
The jth gene aij of the ith individual was selected to be

mutated by the following methods.

aij =

{
aij + (aij − amax) ∗ f (g) r > 0.5
aij + (amin − aij) ∗ f (g) r ≤ 0.5

(6)

f (g) = r2(1−
g

Gmax
)2 (7)

where amax and amin are upper and lower bounds of gene
aij respectively. r2 is a random number. g and Gmax are
respectively the number of current iteration and themaximum
number of evolution. r is a random number between [0,1].

Originally proposed by Kennedy and Eberhart [31],
the PSO algorithm is a global algorithm with strong global
optimization capability [32]. In particle swarm optimization,
all kinds of simple particles are put into the search space
of n-dimensional problem or capacity [33]. Three indexes
of position, velocity and fitness value are used to represent
the particle characteristics. The position of every particle is
determined by connecting some aspects of their own current
and optimal position with those of other swarm particles.
By comparing the fitness value of particles with the individual
extreme and the global extreme, the individual extreme value
and the global extreme value are updated. After the condition
is met, the velocity and position of particles are updated,
and then the weights and thresholds of BP neural network
are updated [34]. Thus the BP neural network optimized by
particle swarm optimization algorithm is formed.

In each iteration, the particle updates its speed and position
through the individual extreme value and the global extreme
value. The update formula is as follows:

X k+1i = X ki + V
k+1
i (8)

V k+1
i = ωV k

i + c1r1(P
k
b,i − X

k
i )+ c2r2(G

k
b,i − X

k
id ) (9)

where Xi is the n-dimensional vector that denotes the position
of particle i in the search space, and k is iteration. Vi means
the speed of this particle. The best position of the individual
and global extremum found by the swarm are respectively
represented by Pb,i and Gb,i, in Eq. (9). Besides, ω is inertia
weight, r1 and r2 are random values in the scope of [0, 1], c1
and c2 are positive speeding up constants.
A large inertia weight is conducive to global search,

while a small inertia weight is more conducive to local

search. In order to balance the global search capability and
local search capability of the algorithm, the weight of linear
decline relation is proposed.

ω(k) = ωstart − (ωstart − ωend ) ∗
k

Tmax
(10)

where ωstart is the initial inertia weigh. ωend is the inertia
weight at the maximum number of iterations. k and Tmax are
respectively the number of current iteration and themaximum
number of iteration. In this paper, ωstart is 0.9 and ωend is 0.4.
The cuckoo search algorithm (CS) was proposed

in 2009 by Yang and Deb [35], Cambridge scholars. It is
a meta-heuristic algorithm that simulates cuckoo parasitic
reproduction and combines the cuckoo reproduction process
with the Lévy flight search method [18], [36] of birds. In the
algorithm, the host egg in the nest is regarded as a solution,
and the cuckoo egg is regarded as a new solution. Thereafter,
the nest with higher quality egg may be preserved to the next
generation, the target is that the cuckoo’s egg is incubated
instead of the host’s egg. In other words, the bad solution in
the nest is replaced by the good cuckoo’s solution.

In the CS algorithm, the initial location of the host nest is
expressed as:

xi = r × (Ub− Lb) (11)

where r is the uniform random numbers within the inter-
val [0, 1], and the Ub and Lb respectively are the upper and
lower bounds of the search space.

Yang et al. proposed that cuckoo’s location is updatedmak-
ing use of the Lévy flight mechanism. The update formula is
as follows:

x(t+1)i = x(t)i + α ⊕ L(λ) (12)

where x(t+1)i and x(t)i denote the new solution and current
location unit, respectively. α is the step size associated
with the optimized problem, and the step size α = 1 is
selected. The notation ⊕ represents the entry-wise multipli-
cation. L(λ) the transition probability, and it carries out the
random walk based on the Levy distribution, which is given
by Eq. (13):

L(λ) = 0.01
µ

|v|
1
β

(x(t)i − x
(t)
b ) (13)

where x(t)b is the best location, β = 1.5, µ and v are deducted
from the normal distribution curves.

The next task in CS algorithm is to compare the discovery
probability pa with a random number to determine whether
a new solution can be generated. In case the cuckoo egg
is discovered by the host bird and it would be abandoned
from the nest, the event may occur based on the probability
Pa. Thence, the Pa can be regarded as the probability of an
individual to be retained. The new solution is calculated as

x(t+1)i =

{
x(t)i + γ × (x(t)j − x

(t)
k ) r > pa

x(t)i otherwise
(14)

147494 VOLUME 7, 2019



S. Yang et al.: Prediction of Significant Wave Heights Based on CS-BP Model in the South China Sea

FIGURE 3. Algorithm flow of the BP, GA-BP, PSO-BP and CS-BP model.

where r and γ are the uniform random numbers within the
interval [0, 1], x(t)j and x(t)k are two different solutions which
are chosen at random.

C. ALGORITHM FLOW OF THE BP, GA-BP, PSO-BP AND
CS-BP MODEL
In this paper, the mean square error (MSE) of simulated
and predicted Hs have been selected to be minimized as an
objective function defined in Eq. (15):

MSE =
1
n

n∑
i=1

(Xi − Pi)2 (15)

where Xi and Pi refer to simulated and predicted Hs, respec-
tively, and n is the number of simulations.

As shown in Figure 3, the algorithm flow has four parts:
BP neural network, genetic algorithm optimization, particle
swarm optimization and cuckoo search algorithm.

1) Constructing input data related to Hs.
2) Establishing the BP neural network of the relation

betweenHs and input parameters: Theminimummean square
error (MSE) and establishing the network structure, such as
the number of hidden layers.

3) Initializing the weights and thresholds of BP neural
network.

4) Calculating the fitness value to optimize the weights and
thresholds of BP neural network. This step includes genetic
algorithm, particle swarm optimization and cuckoo search
algorithm.

The part of genetic algorithm: the error obtained by train-
ing BP neural network is taken as the fitness value. After
selection, cross and variation, the fitness value is calculated.
The population scale of the GA is set as 25, the crossover
probability is set as 0.7, and the mutation probability is set as
0.1. If the condition is met, the step 5 should be conducted.
Otherwise, the previous operation is repeated.

The part of particle swarm optimization: initializing the
position and velocity of the particles. The population scale of
the PSO is set as 25, c1 and c2 are set as 1.5. The fitness value
of particles is calculated. If the current fitness value is better
than individual extremum, the individual extremum should
be updated. If the current fitness value is better than global
extremum, the global extremum should be update. Otherwise,
the particle’s position and speed be updated directly. If the
condition is met, the step 5 should be conducted. Otherwise,
the previous operation is repeated.

The part of cuckoo search algorithm: initializing the loca-
tion of the nest and setting relevant parameters. The number
of nests is set as 25 and probability Pa is set as 0.25. The
fitness value of nests is calculate to select the current best
nest. According to Eq. (12), the location of the nest is updated
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FIGURE 4. The correlation coefficients between the predicted output data and the simulated output data at the
three stages of training, verification and testing based on (a) BP, (b) GA-BP, (c) PSO-BP and (d) CS-BP model.

to obtain a new location of nest and calculate its fitness value.
By comparing the updated new nest with the previous genera-
tion one, the nest with the best fitness value is selected as the
current one. Compared the random number γ generated by
Eq. (14) with Pa, nests with smaller probability are retained,
while nests with bigger probability continue to be updated
and improved. If the condition is met, the step 5 should be
conducted. Otherwise, the previous operation is repeated.

5) Getting the optimal weights and thresholds, and then
updating them.

6) The BP neural network be trained to predict the Hs.

VI. SIMULATION RESULTS AND DISCUSSION
The Hs data simulated by WW3 in the South China Sea and
wind data are used for the model applications. According to
the theory that wave is created by wind interacting with the
ocean surface, different combinations of data sets are imposed
as input variable to predict Hs. In addition, different model
structures are adopted. After the Hs are predicted based on

CS-BP model, the network learning and prediction results
will be checked to evaluate the prediction performance of
the model. In order to achieve this goal, the data set is first
divided into training, test and verification set. Then, correla-
tion analysis is carried out on the prediction results and the
models’ generalization ability is compared. The prediction
results are further evaluated and performance of the CS-BP
model is also compared with the classical ARIMA, ELM,
BP model, GA-BP and PSO-BP model. Through the com-
parison of error indicators, the influence of different models
on the prediction results is analyzed when the input parame-
ters and network structure are determined and the influence
of different input parameters and network structure on the
prediction results is analyzed when the prediction model is
determined.

A. CORRELATION ANALYSIS OF PREDICTION RESULTS
In the South China Sea, we used the first 16434 sets of data
as the training data set, and the latter 100 sets as the test
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FIGURE 5. The expected and predicted significant wave heights based on BP, GA-BP, PSO-BP and CS-BP
obtained by (a) (3-7-1), (b) (6-13-1), and (c) (9-19-1) network structure.

data set to predict Hs. In the modeling process, the default
samples are randomly divided into three categories: training
samples, validation samples and test samples. In Figure 4.
four graphs show the correlation coefficients between the
prediction output data and the simulated output data at three
stages of training, verification and testing based on BP, GA-
BP, PSO-BP and CS-BP model. The BP model is effective
in training stage, the effect of the validation stage becomes
worse, and the effect of the test stage is poor. These indicate
that the prediction results of BP model for the unknown data
are worst in four models and the generalization ability of
BP needs to be improved. The prediction performance of the
GA-BP model is relative equilibrium in three stages of train-
ing, verification, testing. In test stage, the effect of GA-BP
model is better than the BP, and the prediction performance
of PSO-BP and CS-BP model are better than that of other
models, as well as their respective training stage. All these
indicate that GA, PSO and CS can not only improve global
searching ability but also improve the generalization ability
of BP model, and the generalization ability of CS-BP is the
best with the correlation coefficient of 0.97298 in the test
stage.

B. PERFORMANCE COMPARISON OF THE BP, GA-BP,
PSO-BP AND CS-BP MODEL
The Hs in the South China Sea are predicted by CS-BP
model. In order to better compare the prediction effect of
CS-BP model, not only CS-BP model, but also ARIMA,
ELM, BP and GA-BP model are proposed. The accuracy
in predicting the Hs was then judged by four performance
criteria [37], [38]. They aremean absolute error (MAE),mean
absolute percentage error (MAPE), root mean square error
(RMSE) and root mean squared percentage error (RMSPE),
and mathematical expressions of the performance criteria are
given by:

The MAE can be calculated as

MAE =
1
n

n∑
i=1

|Xi − Pi| (16)

The MAPE can be calculated as

MAPE =
1
n

n∑
i=1

∣∣∣∣Xi − PiXi

∣∣∣∣× 100% (17)
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FIGURE 6. The error changes in different cases.

TABLE 2. The MAE, MAPE, RMSE and RMSPE of the ARIMA, ELM, BP, GA-BP, PSO-BP and CS-BP model.

The RMSE can be calculated as

RMSE =

√√√√1
n

n∑
i=1

(Xi − Pi)2 (18)

The RMSPE can be calculated as

RMSPE =

√√√√1
n

n∑
i=1

(
Xi − Pi
Xi

)2

× 100% (19)

where Xi is the simulated output of the test data, and Pi is the
predicted output of the test data.

Four performance criteria are proposed to eliminate the
influence of weather and other uncertainties. The expected
and predicted Hs based on BP, GA-BP, PSO-BP and CS-BP
model are shown in Figure 5. From Figure 5, the predicted
results are consistent with the expectation. The table 2 shows
four performance criteria of BP, GA-BP, PSO-BP and CS-
BP model. The error changes in different cases are shown

in Figure 6. In the PSO-BP and CS-BP model, the MAE,
MAPE, RMSE and RMSPE all decrease with the increase
of input parameters and number of hidden layers. However,
the MAPE, RMSE and RMSPE of 9-19-1 neural network
are greater than 6-16-1 neural network in the BP model and,
the RMSE of 9-19-1neural network is greater than 6-16-
1 neural network in the GA-BP model. It can be concluded
that the proper increase of the number of input parameters and
hidden layers can reduce the prediction error and improve the
prediction accuracy. In the same network structure, MAPE,
RMSE and RMSPE of BP network are the largest, that of
CS-BP is the smallest, and that of GA-BP and PSO-BP are
between them. It can be seen that GA, PSO and CS can
optimize BP neural network to improve prediction accuracy.
In addition, in 9-19-1 network structure, the MAE of the
GA-BP model is the largest. This is because of cross and
mutation operations in genetic algorithms, which can destroy
original genes. The destroyed genes can lead to bigger errors,
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namely worse predictions. However, both PSO and CS can
avoid this problem. The former has the function of memory,
the particles move towards the direction of local optimal
and global optimal in each iteration and movement, and can
approach gradually according to the current speed. The latter
can approach gradually the optimal value based on the loca-
tion of the updated nest. Therefore, PSO and CS have better
optimization ability than genetic algorithm. From table 2,
we can clearly see that the optimal prediction results of
ARIMA and ELM are slight better that the 9-19-1 BP neural
network and the prediction results of the 9-19-1 CS-BPmodel
are the best compared with any other model. This is because
that Lévy flights is used in the global search for CS, unlike
the standard random walks used in other algorithms. In the
algorithm flow, we found that CS is simple, which GA needs
selection, crossover and mutation to make it complicated.
In addition, the CS-BP model has another advantage that
once the model is trained, it can be exploited as a quick,
accurate tool for indirect estimation of Hs. In summary, all
the results show that the CS-BP model is feasible and reliable
in predicting Hs.

VII. CONCLUSION
In this study, the CS-BP model for Hs prediction was pro-
posed. The motivation behind this research is the significance
of rapid and accurate Hs prediction in many applications
including marine engineering construction and emergency
prevention. The study covers a wide range of geographical
locations and different weather, making the data universal and
available. This study based onCS-BPmodel for Hs prediction
in South China Sea, has led to several conclusions.

1) GA, PSO and CS can improve the generalization abil-
ity of BP model. However, compared with BP, GA-BP and
PSO-BP model, the CS-BP model has the best prediction
performance in the test stage, with the correlation coefficient
of 0.97298, which is better than its own training stage. The
CS-BP model has the best generalization ability.

2) In the 9-19-1 network structure, the MAE of GA-BP
model is the largest. The reason causing this phenomenon is
that cross and mutation operation in genetic algorithm can
sometimes destroy good genes, which lead to large error.
Except for this phenomenon, under the same input parameters
and network structure, the prediction accuracy of CS-BP
model is the best, followed by PSO-BP, GA-BP andBP. These
mean that CS-BP model is best compared with BP, GA-BP
and CS-BP model.

3) With the appropriate increase of the number of input
parameters and hidden layers, the prediction error of the
model is reduced and the prediction accuracy is improved.
The study revealed that compared with other models (includ-
ing ARIMA and ELM), predicted results in the South China
Sea using the 9-19-1 CS-BP model are best according to the
performance criteria obtained: MAE of 0.1575, MAPE of
0.0620, RMSE of 0.1950 and RMSPE of 0.0097. The reasons
for good results are that the nest approach gradually the
optimal value based on the location of the updated nest, and

unlike the standard random walks used by other algorithms,
Lévy flights is used in the global search for CS.

Through comparison, the CS-BP model can predict the
ocean Hs quickly and accurately in some degree.
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