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ABSTRACT To fully utilize the system resources and enhance the user experience, two types of offloading
mechanisms are designed for massive MIMO (multiple-input-multiple-out) enabled heterogeneous cellular
networks (HCNs). Such mechanisms can achieve a tradeoff between energy efficiency (EE) and spectral
efficiency (SE) experiences, but also have a difference on whether or not a power coordination measure is
mentioned. At last, they are mathematically written as the network-wide utility maximization problems that
are closely related to the SEs and EEs of associated users. In them, we introduce a crucial parameter α to
adjust the EE-SE preference. It is noteworthy that the finally formulated problems are in some relatively
complicated forms. To solve them, some necessary changes should be made at first, and then we can design
some feasible algorithms. Specifically, we try to design a distributed algorithm for a mere offloading problem
using dual decomposition (DD), and develop a two-layer iterative algorithm for the joint power coordination
and offloading problem using DD and two-sided scalable (2.s.s.) function update. Regarding such these
algorithms, we show the corresponding computation complexity and convergence analyses. In the simulation,
we mainly investigate different network parameters on an EE-SE tradeoff for our advocated mechanisms and
another existing mechanism.

INDEX TERMS User association, offloading design, heterogeneous cellular networks, massive MIMO,
energy efficiency, spectral efficiency.

I. INTRODUCTION
Massive MIMO (multiple-input-multiple-out) enabled het-
erogeneous cellular networks (HCNs) are envisioned as a
crucial technology to improving the area spectrum efficiency
(SE) for the 5th generation (5G) mobile communications [1],
[2], which can approximately provide the 1000-fold wire-
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less capacity and meet the ubiquitous access requirements
for the future network development [3]–[6]. Massive MIMO
enabled HCNs (MM-HCNs) integrate many kinds of low-
power nodes (base stations, BSs) to enhance the network
coverage [7]–[9], and equip large-scale antennas for the high-
power nodes to achieve an unprecedented SE.

The offloading mechanism design is regarded as an impor-
tant and indispensable part of radio resource management
in wireless networks, and has attracted much and much
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attention. In fact, an offloading mechanism definitely assigns
some users to one or several BSs, and thus it also refers to
the user association (cell selection or BS assignment) [10],
[11]. Most of the time, many designers often take account of
an offloading operation to improve the (cell-edge) user expe-
rience by utilizing network resources economically. To this
end, these designers often try to optimize the SEs or the utility
of them.

As another important performance index, the energy effi-
ciency (EE) has attracted increasing attention from both
academia and industry, and it has been optimized to reduce
operational cost and achieve a goal of green communi-
cations [12]. To reduce the energy consumption and thus
improve EEs, some energy-efficient offloading mechanisms
are widely advocated, which may integrate a BS on/off oper-
ation, power coordination [13]–[15] and so on. On one hand,
such these mechanisms can improve EEs in the energy-
efficient optimization, but they may result in some degraded
SEs because of decreased transmit power or longer user-BS
distance. On other hand, these mechanisms can enhance SEs
by reducing network interference in the throughput optimiza-
tion, but they often cannot achieve the best EEs. That is to say,
there should exist a tradeoff between SE and EE.

In general, some offloading mechanisms designed for
MM-HCNs may need to optimize some certain performance
metric (e.g., SE, EE or EE-SE tradeoff) of interest. To this
end, most of designers often consider some different opti-
mization objectives, e.g., achievable rates, long-term rates,
transmit power, geographical location, cell loads, etc. Next,
we will give some detailed investigations on the offload-
ing mechanism design for HCNs, especially for MM-HCNs.
As we know, HCNs can be seen as a special case of
MM-HCNs. In the existing efforts, there are many investi-
gations on the offloading mechanism design for HCNs, but
relatively few ones on it for MM-HCNs. In view of this,
we may need to recall the relative work on both HCNs and
MM-HCNs.

A. RELATED WORK
According to the difference of optimized performance met-
rics, most existing efforts on the offloading mechanism
design can be roughly divided into three groups.

In the first group, some designers concentrated on the
offloading mechanisms with SE optimization. So far, such a
type has been thoroughly studied in the literatures. To bal-
ance the network loads, some designers in [16], [17] added
a bias/offset to low-power nodes and thus theoretically
enhanced the signal strength of users nearing to them.
Through such a treatment, some users may be associated with
some BSs with good biasing signal power. This method is
often regarded as the cell range expansion, which can offload
some cell-edge users at high-power nodes to some other low-
power ones. However, it may be difficult for this approach
to find a closed-form solution of optimal bias/offset, and
thus it may not reach an optimal offloading performance.
In another different light, some designers got involved with

optimizing offloading indices in some formulated problems,
e.g., network throughput maximization [17], logarithmic util-
ity maximization [18]–[24] or α−utility maximization [25],
[26], where the mentioned utilities may refer to some func-
tions with respect to users’ data (long-term) rates. In this
type of offloading mechanisms, user’s long-term rate is an
important parameter used for balancing the network loads and
thus improving the experience of cell-edge users. Definitely,
it is tightly coupling with both the load level of BS and the
signal power of users associated with this BS. In order to
achieve a high network experience, some users may have to
give up overloaded BSs with good channel conditions, and
access some underloaded BSs with relatively high channel
qualities. Through this manner, the network resources can be
fully utilized, and then users may get full and better services.
In the first group, other designers also developed some dif-
ferent offloading mechanism to find a tradeoff between user
experience/fairness and network throughput under the max-
min optimization [27].

In the second group, some designers worked on the design
of energy-efficient offloading mechanisms, which optimizes
offloading indices in the formulated EE problems. To reduce
the network energy consumption and reach a goal of green
communications, some designers directly minimized total
power consumption such as the sum power of BSs, the one
of users, or the one of both users and BSs. To this end, many
different energy-reducingmechanisms were introduced in the
offloading design, which mainly included the power coordi-
nation/control, power allocation and beamforming. Certainly,
the power consumption reduction should be performed under
users’ QoS (quality-of-service) requirements. So far, the sum
power minimization for offloading has been widely stud-
ied [28], [29]. In addition, there exist other energy-efficient
offloading mechanisms that mentioned different optimiza-
tion objectives, e.g., the sum energy efficiency/consumption
[30]–[34], the sum utility of users’ EEs [35], the overall
(whole) EE [36], etc. All these mechanisms finally tried to
optimize some performance metrics related to EEs under
users’ QoS requirements, where the individual (user’s) EE
represents a ratio of user’s data rate to the power consumed
by it in uplink or its selected BS in downlink, and the overall
EE denotes a ratio of sum rate to the sum power that is
consumed by all users in uplink or all BSs in downlink.
In fact, these two performance indices differ in perspectives.
Specifically, an individual EE is introduced from user’s per-
spective, but an overall EE is mentioned from the system
perspective.

In the last group, there exist many designs that attempted
to achieve a tradeoff between some special performance
metrics and energy consumption. Specifically, such these
metrics may refer to the long-term or achievable rates, delay,
and network loads. In many existing efforts, the researchers
often utilized one or more of them to design some energy-
efficient offloading mechanisms, and finally reached a trade-
off between these metrics and power consumption. To date,
such a type of mechanisms mainly focused on a tradeoff
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between SE and EE [37]–[40]. By optimizing the delay,
rate or load distribution, the SE (experience) may be
improved, and the EE experience can be further enhanced by
properly adjusting the transmit power [41]. In addition, some
QoS requirements may also need to be involved in this kind
of offloading designs.

To improve the performance metrics or the user expe-
rience, many designers took account of some interference
management measures in the aforementioned groups. Among
them, the resource (time/frequency/space/power) allocation
and beamforming have been widely advocated for offloading
designs, but the resource partitioning and power coordination
(adjustment) are rarely utilized in downlink HCNs, especially
in downlink MM-HCNs. It is easy to find that the resource
allocation may result in a waste of network resources if some
selected users cannot be served in a scheduling loop. In addi-
tion, the beamforming and offloading often take place at small
and large time scales respectively. That means they utilize
fast-fading and slow-fading channels respectively. In general,
the resource allocation and beamforming may not be well
suitable for offloading designs. However, the resource parti-
tioning and power control (coordination) may be well applied
in them since they just refer to the resource adjustment of
nodes and don’t mention any specific distribution for users.

In this paper, we design two types of offloading mech-
anisms to achieve a tradeoff between EE and SE (experi-
ences), which differ from the most ones mentioned in the
third group. Although our work seems to be similar to the
one of [37] and [40], there exist some distinct differences.
At first, the optimization objective in this paper differs from
the ones in [37] and [40]. The mentioned one in this paper
is tightly related to SE and EE, which can be beneficial to
the pure SE optimization, pure EE optimization, and joint
optimization of SE and EE. Compared with the references
[37] and [40], our optimization objective may have a clearer
insight. It is easy to find that the optimization problems in [37]
and [40] may have no relation with association (offloading)
variables if weighting parameter is equal to zero. In other
word, these problems are not the offloading ones at this time.
Secondly, the lower and upper bounds of sum utility and
total power consumption may have a great impact on the
performance of offloading algorithms in [37] and [40], but it
may not be the case in our algorithms. Generally speaking,
our designed algorithms are independent on the lower and
upper bounds of SEs and EEs. That means the performance
of these algorithms may have no any direct relation with
the mentioned bounds. Thirdly, the optimization problem
designed in this paper further considers the long-term rate
constraints of users. Evidently, such a consideration should be
necessary for guaranteeing users’ QoS requirements when the
energy-efficient offloading attracts more and more attention.
However, the references [37] and [40] may not provide such
a support for users. At last, we try to find the optimal power
of BSs using two-sided scalable (2.s.s.) function update in
this paper, but not the approaches in [37] and [40]. Through a
direct observation on [37] and [40], we find that too small

SINR may result in ‘‘log(0)’’, which may let the designed
algorithms cannot work well.

B. CONTRIBUTIONS AND ORGANIZATION
Generally, the existing efforts tried to get a tradeoff between
some certain performance metrics and power consumption,
but we consider the one between SE and EE (experiences)
under some necessary constraints, which is a completely
aspect for HCNs and MM-HCNs. The main contributions in
this paper can be listed as follows.

¶ Mere Offloading for EE-SE Tradeoff (MOET). We
just consider a mere offloading for an EE-SE tradeoff, which
is hardly involved in the existing literatures. Such a mech-
anism (MOET) integrates network loads and some other
parameters that can directly reflect SEs and EEs. Mathemati-
cally, it is formulated as a network-wide utility maximization
problem in a relatively complicated form, where a utility
function is used to further enhance the user fairness, and
a parameter α is used for adjusting the EE-SE preference.
To solve it, we may need to make some promising changes
and then develop a distributed algorithm using dual decom-
position.

· Joint Power Coordination and Offloading for EE-
SE Tradeoff (PCOET). Tomitigate the network interference
and reduce the power consumption under some strict users’
QoS constraints, a power coordination measure is integrated
into MOET. Such a mechanism (PCOET) takes account of
power coordination for downlink MM-HCNs, which may be
seldom mentioned in the past studies. Evidently, compared
to the problem formulated for MOET, the one for PCOET
should be more complicated since it owns some coupling
optimization parameters (i.e., offloading indices and transmit
power). To solve such a type of problem, there may not be
a good method but alternate optimization. Based on this,
we design a feasible algorithm consisting of two layer loops.
In the inner layer loops, the offloading indices and trans-
mit power are separately optimized; in the outer layer loop,
the operation in all inner layer loops is repeatedly carried out
until it converges or achieves the maximal allowed number of
iterations.

¸ Convergence and Complexity Analyses. As for the
algorithms designed for MOET and PCOET, we give some
investigations on the convergence and complexity analyses.
Particularly, we show some convergence proofs for offloading
and power coordination subalgorithmsmentioned in the inner
layer loops. In addition, there also exist some comprehensive
discussions for the complexity reduction and some specific
analyses for all steps involved in the solving processes of
MOET and PCOET problems.

The remainder of this paper can be organized as follows.
The system model of MM-HCNs is given in Section II; two
types of offloadingmechanisms (i.e.,MOET and PCOET) are
designed, and the corresponding convergence and complexity
analyses are attached in Section III; the simulation results
are given and discussed in Section IV; some conclusions are
drawn in Section V.
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FIGURE 1. Massive MIMO enabled HCNs (MM-HCNs). Under the full
frequency reuse, the users associated with some BS receive the
co-channel interference from other BSs, especially from MBSs.

II. SYSTEM MODEL
In this paper, we consider two-tier MM-HCNs consisting of
macro BSs (MBSs) and pico BSs (PBSs). In such networks,
the large-scale antennas are implemented at each MBS, but
single antenna is employed at each PBS [35]. The correspond-
ing deployment can be found in Fig. 1, where the extended
region is caused by an offloading mechanism that offloads
some users to low-power nodes (PBSs) from high-power
nodes (MBSs).

In MM-HCNs, there exist S BSs consisting of PBSs and
MBSs in the set S, and U users in the set U . We assume
that any user can just select (be associated with) only one
BS at any time slot. That is to say, we take account of single
association but not the multiple one. Since the latter lets one
user be served by multiple BSs at the same, it often incurs a
more higher implementation difficulty than the former.

A. KEY PARAMETERS FOR MASSIVE MIMO MBSS
InMM-HCNs, anyMBS is equipped withM antennas. Under
the equal power allocation, any resource block (RB) can
simultaneously serve at most N downlink data streams at
MBSs [35], where the condition 1 � N � M needs to be
satisfied. Under the LZFBF (linear zero-forcing beamform-
ing) precoding, the data rates of users gradually concentrate
on deterministic limits when M approaches to infinity. That
is to say, users’ data rates are independent on the fast fad-
ing (instantaneous realization) of communication channels,
and just rely on the slow fading gsu including pathloss and
shadowing [42]. In the reality, the number of users associated
with any MBS is always larger than N , which means the load
constraints are unnecessary for all MBSs [35], [37]. Assume
that all associated users of any MBS are served via resource
sharing [35], [37]. Then, the downlink data rate Rsu of user u
associated with MBS s is given by

Rsu =
N∑

k∈U ρsk
log2

(
1+

M − N + 1
N

SINRsu

)
, (1)

where

SINRsu =
psgsu∑

i∈S|spigiu +2s
. (2)

In (1) and (2), ps is the transmit power of BS s,2s is the noise
power of BS s, S|s represents the BS set that S doesn’t include
BS s, gsu denotes the channel gain between user u and BS
s, and ρsu denotes the offloading (link usage) index between
user u and BS s. In an offloading mechanism, ρsu should be
1 if user u selects (is associated with) BS s, 0 otherwise.

In fact, the data rate model (1) implies that a Round Robin
scheduler is employed by all BSs, and the time-frequency
resources are equally allocated for the users associated
with BSs.

As revealed in [35], the power consumption of massive
MIMOMBSmay not be proportional to the radiated transmit
power. Based on this, we consider a more reasonable power
consumption model for MBSs, which can clearly shows how
the power consumption of massive MIMOMBSs scales with
the number of antennas implemented at them. In such a
model, total power Ps is consumed by the transceiver chains,
channel estimation and precoding, coding and decoding, and
architectural cost [35]. Mathematically, the power consump-
tion Ps of MBS s is given by

Ps = εsps +
∑3

m=0
Cm0Nm

+M
∑2

m=0
Cm1Nm, (3)

where εs represents the power amplifier coefficient of BS s;
Cm0 and Cm1 are the power coefficients.

B. KEY PARAMETERS FOR PBSS
In MM-HCNs, any PBS may just be equipped with only one
antenna. Under the equal resource sharing, the downlink data
rate Rsu of user u associated with PBS s can be given by

Rsu =
1∑

k∈U ρsk
log2 (1+ SINRsu) . (4)

Unlike the massive MIMO MBSs, the conventional linear
power consumption model should be feasible for PBSs and
has beenwidely utilized in the existing efforts, which includes
the static power and adaptive power generally. In such two
types of power consumption, the former is often linear to the
radiated power of PBS, and the latter has a tight relation with
the power consumed by transceiver chains. Mathematically,
the power consumption Ps of PBS s is given by

Ps = εsps + ϑs, (5)

where ϑs represents the static power of PBS s.

C. AUXILIARY PARAMETERS
After providing the data rate and power consumption models,
we may also need to introduce other auxiliary parameters.
To this end, we give some definitions as follows.
Definition 1: The number of users associated with BS s is

definitely denoted as the load of this BS, which is given by
zs =

∑
u∈U ρsu in a mathematical manner.
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Definition 2: The downlink EE Esu of user u associated
with BS s is denoted as a ratio of downlink data rate of user
u to total power consumption of BS s. Mathematically, it can
be given by

Esu =
Rsu
Ps
=

Rsu
εsps +$s

, (6)

where

Rsu =
Ksrsu∑
k∈U ρsk

=
Ks∑

k∈U ρsk
log2 (1+ κsSINRsu) , (7)

$s =


3∑

m=0
Cm0Nm

+M
2∑

m=0
Cm1Nm, ∀s ∈ Sm,

ϑs, ∀s ∈ Sp,
(8)

κs = (M − N + 1)/N for any MBS s, κs = 1 for any PBS
s, Ks = N for any MBS s, Ks = 1 for any PBS s, Sm and Sp
represent the sets of MBSs and PBSs respectively.
Definition 3: The supported ratio is denoted as a ratio of

special users among users, where these special users refer to
the ones whose downlink data rates are greater than or equal
to a required threshold.

III. OFFLOADING DESIGN
In order to achieve a tradeoff between SE and EE experiences,
we will try to design two types of offloading mechanisms
including MOET and PCOET.

A. DESIGN FOR MOET
At first, we just concentrate on the mere offloading for EE-SE
tradeoff (MOET) in MM-HCNs, which jointly optimizes the
EE and SE experiences under some downlink data rate con-
straints. In such a mechanism, a logarithmic utility function
is introduced to enhance the user fairness and improve the
user experience. Mathematically, the optimization problem
for MOET is finally formulated as

max
ρ

F (ρ) =
∑
s∈S

∑
u∈U

ρsu lnψsu

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,∑
s∈S

ρsuRsu ≥ τu, ∀u ∈ U ,

ρsu ∈ {0, 1} , ∀s ∈ S, ∀u ∈ U , (9)

where ρ = {ρsu,∀s ∈ S,∀u ∈ U}; ln x represents the loga-
rithmic function with respect to x under the base e ≈ 2.7183;
the first constraint shows any user u can just select (be associ-
ated with) only one serving BS; the second constraint reveals
that any user u needs to satisfy a minimal rate requirement τu;
ψsm is a utility of user u associated with BS s and given by

ψsm = RαusuE
1−αu
su = Rαusu [Rsu/Ps ]1−αu . (10)

In (10), ψsu integrates two types of crucial performance
indices, i.e., SE and EE. In addition, αu ∈ [0, 1] is a weight-
ing parameter of user u, and used for adjusting the SE-EE
preference. Evidently, the solving process of (9) is to find

an optimal SE experience with guaranteed data rates when
αu = 1, but it tries to find an optimal EE experience under
these constraints if αu = 0.
Aswe know, some traditional offloadingmechanisms often

let users select some BSs with good channel qualities, which
may result in an extremely unbalanced load distribution for
HCNs, especially for MM-HCNs. In other words, most users
are attracted by some high-power BSs with good channel
qualities, and very few users can be served by other low-
power BSs. However, it is not the case for our design. Tomeet
the data rate constraints involved in (9), some users don’t
always are attracted by some BSs with the best channel
qualities, and they may prefer some underloaded BSs with
relatively good channel qualities. In this way, the network
resources may be utilized fully and the experiences of cell-
edge users should also be improved greatly.

Considering that the constraint
∑

s∈S ρsuRsu ≥ τu is equiv-
alent to the one Rsu ≥ ρsuτu, and the definition of downlink
data rate, we can obtain the following equivalent problem:

max
ρ

F (ρ) =
∑
s∈S

∑
u∈U

ρsu lnψsu

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,

rsu ≥ σsuρsu
∑
k∈U

ρsk , ∀s ∈ S, ∀u ∈ U ,

ρsu ∈ {0, 1} , ∀s ∈ S, ∀u ∈ U , (11)

where σsu = τu/Ks. Similar to the treatment on the second
constraint of (11) mentioned in [43], we can rewrite the
problem (11) as

max
ρ

F (ρ) =
∑
s∈S

∑
u∈U

ρsu lnψsu

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,

rsu ≥ σsu
∑
k∈U

ρsk + δsu (ρsu − 1) , ∀s, ∀u,

ρsu ∈ {0, 1} , ∀s ∈ S, ∀u ∈ U , (12)

where δsu = Uσsu. Significantly, the second constraints of
(11) and (12) should be the same if ρsu = 1. In addition,
these constraints are always satisfied (equivalent) if ρsu = 0.
In (12), the objective function F (ρ) can be expanded into

F (ρ) =
∑
s∈S

∑
u∈U

ρsu

{
χsu − ln

∑
k∈U

ρsu

}
, (13)

where χsu = ln (Ksrsu) − (1− αu) lnPs. By employing an
auxiliary parameter z = {zs,∀s ∈ S}, we can reformulate
(12) into

max
ρ,z

G (ρ, z) =
∑
s∈S

∑
u∈U

ρsuχsu −
∑
s∈S

zs ln zs

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,

rsu ≥ σsuzs + δsu (ρsu − 1) , ∀s, ∀u,

141334 VOLUME 7, 2019



T. Zhou et al.: Offloading Design for Energy and Spectral Efficiencies Tradeoff

∑
u∈U

ρsu = zs, ∀s ∈ S,

zs ≤ U , ∀s ∈ S,
ρsu ∈ {0, 1} , ∀s ∈ S, ∀u ∈ U , (14)

where the fourth constraint introduced in (14) show that the
load of some BS cannot go beyond the number of users
distributed in networks.

When the association variable ρ is relaxed to the contin-
uous domain [0,1] from discrete one {0, 1}, (14) is a con-
vex optimization problem because of its concave objective
function and linear constraints. As revealed in [44], a central
algorithm developed for a continuous domain can achieve
almost the same performance with a distributed algorithm
designed for discrete one. In view of this, we will mainly
concentrate on the development of some algorithms under a
discrete domain.
Theorem 1: By introducing the Lagrange multipliers ν =
{νs,∀s ∈ S} and υ = {υsu,∀s ∈ S,∀u ∈ U} for the third
and second constraints of (14) respectively, a decomposable
dual form of (14) is given by

min
ν,υ

H (ν,υ) = I (ν,υ)+ J (ν,υ) , (15)

where

I (ν,υ) =


max
ρ

C (ρ, ν,υ)

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,

ρsu ∈ {0, 1} ,∀s ∈ S, ∀u ∈ U ,

(16)

and

J (ν,υ) =

{
max
z

D (z, ν,υ)

s.t. zs ≤ U , ∀s ∈ S.
(17)

In (16) and (17), the mentioned function is listed as follows.

C (ρ, ν,υ) =
∑
s∈S

∑
u∈U

ρsu (χsu − υsuδsu − νs), (18)

and

D (z, ν,υ) =
∑
s∈S

zs

{
νs − ln zs −

∑
u∈U

σsuυsu

}
+

∑
s∈S

∑
u∈U

υsu {rsu + δsu}. (19)

Proof:By introducing the Lagrangemultiplier ν associated
with auxiliary constraints and the one υ associated with
downlink data rate constraints, the partial Lagrange function
of (14) is given by

L (ρ, z, ν,υ) =
∑
s∈S

∑
u∈U

υsu {rsu − σsuzs − δsu (ρsu − 1)}

+

∑
s∈S

∑
u∈U

ρsuχsu −
∑
s∈S

zs ln zs

+

∑
s∈S

νs

(
zs −

∑
u∈U

ρsu

)
= C (ρ, ν,υ)+D (z, ν,υ) . (20)

Then, the corresponding dual function can be given by

H (ν,υ) =


max
ρ,z

L (ρ, z, ν,υ)

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,

ρsu ∈ {0, 1} , ∀s ∈ S, ∀u ∈ U ,

(21)

and the dual problem can be written as

min
ν,υ

H (ν,υ) . (22)

Since the optimization of ρ and z in (21) is decoupling,
they can be separately tackled. Based on this, the dual prob-
lem (22) can be decomposed into two subproblems, which
optimize the Lagrange multipliers under optimal ρ and z
respectively. That is to say,H (ν,υ) can be decomposed into
two parts including I (ν,υ) and J (ν,υ). q
It is evident that the primal problem with respect to ρ in

(16) can be equivalent to

b = arg max
∀s∈S

{χsu − υsuδsu − νs} ,∀u ∈ U . (23)

That is to say, any user u finds some BS b that its utility
{χbu − υbuδbu − νb} is the highest among all possible BSs,
and then accesses it.
To solve the primal problem with respect to z in (17),

we employ an extreme value principle ∂D/∂zs = 0, and then
have

zt+1s = min
{
eν

t
s−1−

∑
u∈U σsuυ

t
su ,U

}
, ∀s ∈ S, (24)

where t represents an iteration index.
By following a subgradient method [45], the multiplier νs

for BS s can be updated by

νt+1s = νts − ξ1

(
zts −

∑
u∈U

ρtsu

)
, (25)

and the multiplier υsu for BS s and user u can be updated by

υ t+1su =
[
υ tsu − ξ2

(
rsu − σsuzts − δsu

(
ρtsu − 1

))]+
, (26)

where ξ1 and ξ2 are the sufficiently small fixed stepsizes; [x]+

is equal to the maximum of x and 0.
Now, we can give a whole insight on the solving process

of offloading problem (14), which is summarized in Algo-
rithm MOET. In it, 1 represents a vector or matrix whose
elements are equal to 1.

Algorithm 1 MOET
1: Initialization: t1 = 0, νt1 = 1 and υ t1 = 1.
2: Repeat:
3: Initialize the offloading state: let all elements of ρ be
0.
4: Perform the cell selection according to the rule (23).
5: Update the auxiliary factor zt1+1 using (24).
6: Update the multiplier νt1+1 using (25).
7: Update the multiplier υ t1+1 using (26).
8: Update the iteration index: t1 = t1 + 1.
9: Until G (ρ, z) converges or t1 reaches T1 iterations.
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Next, we will concentrate on the convergence analysis for
Algorithm MOET.
Theorem 2: After a few iterations, Algorithm MOET

finally converges to the optimum of (15).
Proof: The first-order partial derivatives of H (ν,υ) for s

and u are calculated by

∂H (ν,υ)

∂νs
= zs (νs,υs:)−

∑
u∈U

ρsu (νs,υs:) , (27)

∂H (ν,υ)

∂υsu
= rsu − σsuzs (νs,υs:)− δsuρsu (νs,υs:)+ δsu,

(28)

where υs: denotes the s-th row of υ.
In a real network system, the number of users is always lim-

ited. In view of this,
∑

u∈U ρsu (νs,υs:) should be bounded.
In addition, we know zs ≤ U mentioned in (14). That means
zs (νs,υs:) should also be bounded. At last, we can conclude
that all subgradients of H (ν,υ) are bounded.

sup
t
‖∂H (ν,υ)/∂νs‖ ≤ η, ∀s ∈ S, (29)

sup
t
‖∂H (ν,υ)/∂υsu‖ ≤ η, ∀s ∈ S, ∀u ∈ U , (30)

where ‖X‖ denotes a 2-norm ofX; sup
t
x represents maximum

estimate of x among all iterations; η is a constant. Evidently,
we can prove Theorem 1 by employing the convergence
proof in [45] since the dual problem (15) meets its necessary
conditions. q

B. DESIGN FOR PCOET
To reduce the power consumption under some strict data rate
constraints, a power coordination measure is integrated into
the problem (14). Thereby we have

max
ρ,p

H (ρ,p) =
∑
s∈S

∑
u∈U

ρsu lnψsu

s.t.
∑
s∈S

ρsu = 1, ∀u ∈ U ,∑
s∈S

ρsuRsu ≥ τu, ∀u ∈ U ,

0 ≤ ps ≤ p̄s, ∀s ∈ S,
ρsu ∈ {0, 1} , ∀s ∈ S, ∀u ∈ U , (31)

where p = {ps,∀s ∈ S}; p̄s represents the maximal allowed
transmit power of BS s.
We can easily find that the problem (31) is hard to tackle

since it is in a coupling andmixed-integer form. As a common
method, the alternative optimization is widely advocated to
solve this type of problems. In view of this, we will utilize it
to handle the formulated problem (31).
When the transmit power p is fixed, the problem (31) can

be easily simplified into (14) that can be solved by Algo-
rithm MOET. When the offloading index ρ is given, we can
easily know that the problem (31) just focuses on the power

coordination, and it can be further converted into

max
p

I (p) =
∑
s∈S

∑
u∈U

ρsu {ln rsu − (1− αu) lnPs}

s.t. Rsu (p) ≥ ρsuτu, ∀s ∈ S, ∀u ∈ U ,
0 ≤ ps ≤ p̄s, ∀s ∈ S. (32)

Theorem 3:Under the parameters hs =
∑

u∈U (1− αu) ρsu
and γsu = κ−1s

(
2ρsuσsu

∑
k∈U ρsk − 1

)
for any s and u,

the upper bound of (32) is given by

max
p

J (p) =
∑
s∈S

∑
u∈U

ρsursu −
∑
s∈S

hs ln ps

s.t. SINRsu (p) ≥ γsu, ∀s ∈ S, ∀u ∈ U ,
0 ≤ ps ≤ p̄s, ∀s ∈ S. (33)

Proof:At first, we deduce the upper bound of I (p) in (32).
Specifically, we have

I (p) =
∑
s∈S

∑
u∈U

ρsu {ln rsu − (1− αu) lnPs}

=

∑
s∈S

∑
u∈U

ρsu ln rsu −
∑
s∈S

hs ln (εsps +$s)

d1
<
∑
s∈S

∑
u∈U

ρsursu −
∑
s∈S

hs ln (εsps +$s)

d2
<
∑
s∈S

∑
u∈U

ρsursu −
∑
s∈S

hs ln (εsps)

= Ī (p) , (34)

where d1 holds because of rsu > 0 and ln rsu < rsu; d2 holds
due to εsps > 0,$s > 0 and ln (εsps +$s) > ln (εsps).
Then, we can achieve the upper bound of (32), i.e.,

max
p

Ī (p) =
∑
s∈S

∑
u∈U

ρsursu −
∑
s∈S

hs ln (εsps)

s.t. Rsu (p) ≥ ρsuτu, ∀s ∈ S, ∀u ∈ U ,
0 ≤ ps ≤ p̄s, ∀s ∈ S. (35)

It is easy to find that the problem (35) is equivalent to

max
p

J (p) =
∑
s∈S

∑
u∈U

ρsursu −
∑
s∈S

hs ln ps

s.t. Rsu (p) ≥ ρsuτu, ∀s ∈ S, ∀u ∈ U ,
0 ≤ ps ≤ p̄s, ∀s ∈ S. (36)

After some simple operations on the first constraint of (36),
we can easily obtain the problem (33). q
At first, we consider a common approximation, i.e.,

ln (1+ SINRsu) ≈ ln SINRsu, and then convert the problem
(33) into

max
p

J (p) =
∑
s∈S

∑
u∈U

h̄su ln SINRsu −
∑
s∈S

hs ln ps

s.t. SINRsu (p) ≥ γsu, ∀s ∈ S, ∀u ∈ U ,
0 ≤ ps ≤ p̄s, ∀s ∈ S, (37)

where h̄su = ρsu/ln 2.
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To solve the problem (37), wemay need to reformulate it in
a convex form. To this end, we consider a change of variable,
i.e., qs = ln ps and q̄s = ln p̄s for any s. After that the problem
(37) can be rewritten as

max
q
ϕ (q) =

∑
s∈S

∑
u∈U

h̄su ln0su (q)−
∑
s∈S

hsqs

s.t. ln0su (q) ≥ ln γsu, ∀s ∈ S, ∀u ∈ U ,
qs ≤ q̄s, ∀s ∈ S, (38)

where

0su (q) =
eqsgsu∑

i∈S|s e
qigiu +2s

, ∀s ∈ S, ∀u ∈ U . (39)

After some necessary operations, we can easily find that
(38) is a convex optimization problem because of concave
objective function [46] and constraints, and linear constraints.

By introducing λ = {λsu,∀s ∈ S,∀u ∈ U} for the first
constraint in (38), we can attain the partial Lagrange function
as follows.

L (q,λ) =
∑
s∈S

∑
u∈U

h̄su ln0su (q)−
∑
s∈S

hsqs

+

∑
s∈S

∑
u∈U

λsu (ln0su (q)− ln γsu). (40)

According to the extreme value principle ∂L (q,λ)/∂qs =
0, we can achieve

eqs =

∑
u∈U (λsu + h̄su)− hs∑
n∈S|s

∑
u∈U Anugsu

, ∀s ∈ S, (41)

where

Anu =
λnu + h̄nu∑

i∈S|n e
qigiu +2n

, ∀n ∈ S, ∀u ∈ U . (42)

Under the box-constrained projection [46], we rewrite (41) in
an equivalent form, i.e.,

pt+1s =

∑
u∈U (λsu + h̄su)− hs∑

n∈S|s
∑

u∈U Bnu (pt) gsu
= ϒs

(
pt
)
, ∀s, (43)

where

Bnu
(
pt
)
=

λnu + h̄nu∑
i∈S|n p

t
igiu +2n

, ∀n ∈ S, ∀u ∈ U . (44)

In general, the finally transmit power can be updated by

pt+1s = φs
(
pt
)
=
[
ϒs
(
pt
)]p̄s
o , ∀n ∈ S, (45)

where [x]∇1 = min {max {x,1} ,∇} means x takes a value
from the closed interval [1,∇]; although o should be 0, we let
it be 10−30 to avoid ‘‘ln (0)’’.
According to subgradient method, the multiplier λsu for

any s and u can be updated by

λt+1su =
[
λtsu − ξ3

(
ln0su

(
qt
)
− ln γsu

)]+
. (46)

where ξ3 represents a sufficiently small fixed stepsize.

After a box-constrained projection, the update rule (46) can
be rewritten as

λt+1su =
[
λtsu − ξ3

(
ln SINRsu

(
pt
)
− ln γsu

)]+
. (47)

Now, we can give a detailed procedure to solve the problem
(37), which is described in Algorithm PCOET. In such an
algorithm, the outer layer alternately optimizes ρ and p; the
steps 4-9 find the optimal p and establish an inner (power
coordination) loop; the step 3 achieves the optimal ρ and also
establishes an inner (offloading) loop; the step 7 is used for
guaranteeing the boundness of function (40), which is similar
to the operation in [46].

Algorithm 2 PCOET
1: Initialization: t2 = 0, t3 = 0, and pt2 = {p̄s,∀s ∈ S}.
2: Repeat (Outer Loop):
3: Perform the cell selection using Algorithm MOET.
4: Repeat (Inner Loop):
5: Update the transmit power pt2+1 using (45).
6: Update the multiplier λt2+1 using (47).
7: Normalize the multiplier λt2+1 so that 1 ∗ λt2+1=1.
8: Update the iteration index: t2 = t2 + 1.
9: Until J (p) converges or t2 reaches T2 iterations.
10: Update the iteration index: t3 = t3 + 1.
11: Until H (ρ,p) converges or t3 reaches T3 iterations.

Similar to most efforts, the convergence for a whole pro-
cedure of Algorithm PCOET cannot be proven theoretically.
However, we can give some convergence proofs for offload-
ing and power coordination subprocedures. Considering that
the former has been proven in Theorem 2, we just need to
prove the latter. To this end, it is required to prove that φs (p)
is a two-sided scalable (2.s.s.) function with respect to p for
any s. Then, we can easily prove the convergence of power
coordination loop using some results of 2.s.s. function used
for updating the power in [15], [47].
Theorem 4: φs (p) is a 2.s.s. function with respect to p for

any s.
Proof: Before providing some proofs for 2.s.s. φs (p),

we may need to prove thatϒ s (p), its upper and lower bounds
are 2.s.s. functions with respect to p for any s.

Assume that (1/c)p 4 q 4 cp for any c > 1, where x 4 y
if xs ≤ ys for any s. Then, we can easily deduce

(1/c)Bsu (p) ≤ Bsu (q) ≤ cBsu (p) , ∀s, ∀u, (48)

and thus achieve

(1/c)ϒs (p) ≤ ϒs (q) ≤ cϒs (p) , ∀s. (49)

According to the definition of a 2.s.s. function in [47],
we know that ϒ s (p) is a 2.s.s. function with respect to p for
any s. Similarly, we can easily prove that the upper and lower
bounds of transmit power in (45) are also 2.s.s.
In conclusion, φs (p) is a 2.s.s. function with respect to p

for any s. q
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Theorem 5: The power coordination loop including steps
4-8 in Algorithm PCOET converges to a unique fixed point.
Proof: As revealed in Theorem 4, we know that φs (p) is

a 2.s.s. function with respect to p for any s. According to
the results of a 2.s.s. function used for updating the transmit
power in [47], we can easily prove the convergence of power
coordination loop in Algorithm PCOET. q

C. COMPLEXITY ANALYSIS
In this section, we concentrate on the computation complex-
ities of proposed algorithms.

¶ The Complexity of Algorithm MOET. In Algo-
rithm MOET, the computation complexity may be mainly
dependent on steps 3-7. It is evident that any of these
steps has a complexity of O (US). After T1 iterations, Algo-
rithm MOET should have a complexity of O (UST1).

· The Complexity of Algorithm PCOET. In the power
coordination loop (steps 4-9) of Algorithm PCOET, Bnu can
be calculated before updating the transmit power. It is easy to
know that the power coordination loop in Algorithm PCOET
should have a complexity of O

(
US2T2

)
. After T3 iterations,

we can easily conclude that Algorithm PCOET should have
a complexity of max

{
O (UST1T3) ,O

(
US2T2T3

)}
.

IV. PERFORMANCE EVALUATION
In MM-HCNs, we consider the power coefficients C00 = 4,
C10 = 4.8, C20 = 0, C30 = 2.08 × 10−8, C01 = 1,
C11 = 9.5× 10−8 and C21 = 6.25× 10−8 [35]. Without loss
of generality, we assume that τu = 1 bit/s/Hz for any user
u. Moreover, the detailed settings of other parameters can be
found in TABLE 1, where `su represents the distance (in km)
between BS s and user u.

TABLE 1. Simulation parameters.

To highlight the characteristics and effectiveness of
designed offloading mechanisms, we introduce another exist-
ing one (mere offloading, MO) [20] for comparison. With-
out loss of generality, in the simulation, we take account
of αu = w for any user u in the presented mechanisms.
Considering our association rules mainly concentrate on a
tradeoff between SE and EE experiences, we will investigate
the impacts of different weighting parameters and numbers
of antennas at MBSs on the cumulative distribution func-
tions (CDFs) of data rates (SEs), the CDFs of EEs, the 5th
percentile average throughput (SE) and the 5th percentile
average EE. Significantly, the 5th percentile throughput

FIGURE 2. The CDFs of data rates for different offloading mechanisms
under w = 0.5 and distinct M.

represents the average of the lowest 5% data rates of asso-
ciated users, and it can also be regarded as the average of
data rates of cell-edge users; the 5th percentile EE represents
the average of the lowest 5% EEs of associated users. At last,
we investigate the convergence of our offloading mechanisms
by numerical simulation.

Underw = 0.5, Fig. 2 shows the impacts ofM (the number
of antennas at MBS) on the CDFs of data rates (SEs) for
different offloading mechanisms. Through the power coor-
dination, PCOET mitigates the network interference and thus
has fewer low-rate (cell-edge) users thanMOET.Aswe know,
MO just concentrates on the enhancement of users’ SE expe-
riences, but others try to find a tradeoff between SE and EE
experiences. Therefore, MO may have fewer low-rate users
than MOET. However, it may have more low-rate users than
PCOET due to the interference mitigation caused by power
coordination in the latter. In addition, we can also find that
the rate (SE) experience of users can be improved if M is
increased. That’s because the increased number of antennas
lets the users be associated with massive MIMO MBSs hav-
ing higher data rates. In fact, we can easily conclude this point
from the formula (1).

Under w = 0.5, Fig. 3 investigates the impacts ofM on the
CDFs of EEs for different offloading mechanisms. Among all
offloadingmechanisms,MOmay have themost low-EE users
since it doesn’t pay any attention to users’ EE experiences
but others do it. Under the power coordination, the network
interference is mitigated and the system power consumption
is reduced at the same time. Therefore, PCOET may have
fewer low-EE users than MOET. According to the formula
(8), we know that the increased number of antennas at MBS
may result in the increased circuit power consumption. Thus,
the users’ EE experiences may degrade with increased M .

Under M = 100, Fig. 4 shows the impacts of weight-
ing parameter (w) on the CDFs of data rates for different
offloadingmechanisms. As revealed in Fig. 2, the power coor-
dination mitigates network interference. Thus, PCOET may
have fewer low-rate users than MOET in Fig. 4. According
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FIGURE 3. The CDFs of EEs for different offloading mechanisms under
w = 0.5 and distinct M.

FIGURE 4. The CDFs of data rates for different offloading mechanisms
under M = 100 and distinct w .

to the association rules, we can easily find that MOET can be
converted intoMOwith rate constraints ifw = 1. Under some
rate constraints, MOET with w = 1 may achieve a relatively
better rate experience than MO. As illustrated in Fig. 4,
the rate experience of users may be gradually improved with
increased w. According to the formula (10), it is easy to
know that both PCOET and MOET are increasingly keen to
optimize the rate experience if w increases.
Under M = 100, Fig. 5 investigates the impacts of w

on the CDFs of EEs for different offloading mechanisms.
By employing a power coordination technique to reduce the
network interference and power consumption, PCOET may
have fewer low-EE users than MOET. Unlike the results
in Fig. 4, since MO has a better rate experience than MOET,
the former may achieve a relatively better EE experience than
the latter with w = 1. As revealed in the formula (10),
we know that both PCOET and MOET should be increas-
ingly keen to optimize the EE experience if w decreases.
Thus, the users’ EE experiences are gradually enhanced with
decreased w.
Fig. 6 investigates the impacts of w and M on the 5th

percentile average throughput (SE) for different offloading

FIGURE 5. The CDFs of EEs for different offloading mechanisms under
M = 100 and distinct w .

FIGURE 6. The 5th percentile average throughput for different offloading
mechanisms under distinct w and M.

mechanisms. Since PCOET has fewer low-rate users than
MOET, the former may have higher 5th percentile average
throughput than the latter. Similarly, MOET with w = 1 has
higher 5th percentile average throughput than MO. Accord-
ing to our association rules, we know that both PCOET and
MOET are weighted in favour of SE optimization when w
increases. Thus, the 5th percentile average throughput gradu-
ally increases with increased w in PCOET and MOET. When
w takes a relatively high value, the 5th percentile average
throughput in our offloading mechanisms may increase with
increased M . The reason for this is that many users may
select MBSs with high data rates if w is relatively high. When
w utilizes a relatively low value, the 5th percentile aver-
age throughput in our offloading mechanisms may initially
increase with increased M , but then it may be stable or even
decreasing. That’ because a smaller w may let more users
select PBSs with relatively low data rates.

Fig. 7 shows the impacts of w andM on the 5th percentile
average EE for different offloading mechanisms. Under the
power coordination, PCOET achieves a higher 5th percentile
average EE thanMOET. Aswe know, the designed offloading
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FIGURE 7. The 5th percentile average energy efficiency for different
offloading mechanisms under distinct w and M.

FIGURE 8. The convergence of proposed algorithms.

mechanisms should pay more attention to optimizing users’
EE experiences when w takes a smaller value. Therefore,
the 5th percentile EE should increase with decreased w.
In PCOET, MOET and MO, more users are attracted by
massive MIMO MBSs. An increased M may result in the
increased power consumption and thus a decreased EE for
users associated with MBSs. That means the 5th percentile
EEs in all offloading mechanisms almost decrease with
increased M in the high M domain. In the low M domain,
the 5th percentile EEs in MOET and MO may initially
increase with increasedM since the data ratemay have amore
rapid growth than power consumption. However, the power
coordination in PCOET reduces the transmit power of MBSs,
which may slow the growth of data rate and thus results in an
increased EE.

Fig. 8 shows the convergence of designed Algorithms.
Specifically, Fig. 8 (a) illustrates the convergence of Algo-
rithm MOET; Fig. 8 (b), Fig. 8 (c) and Fig. 8 (d) show
the convergence of offloading loop, outer loop and power
coordination loop in Algorithm PCOET. Similar to most
existing works, we cannot prove the convergence of outer
loop in Algorithm PCOET, but we find that it converges

after very few iterations in the simulation, which is illustrated
in Fig. 8 (c). In addition, other loops in Algorithm PCOET
also converge after a relatively few iterations, which are
shown in Fig. 8 (b) and Fig. 8 (d). In the power coordi-
nation loop of Algorithm PCOET, it is easy to find that
J (p) has no significant fluctuation at each iteration. The
reason for this may be that the power coordination loop of
Algorithm PCOET gradually converges after a few alternate
iterations.

V. CONCLUSION
In this paper, we design two types of offloading mecha-
nisms (including PCOET and MOET) to achieve a trade-
off between EE and SE experiences for massive MIMO
enabled HCNs. Such two mechanisms have a key difference
on whether or not a power coordination technique is involved,
and they are finally formulated as network-wide utility max-
imization problems. As for these problems, we design a
distributed algorithm and a two-layer iterative algorithm for
mechanisms PCOET and MOET respectively. Then, we give
some corresponding computation complexity and conver-
gence analyses for the designed algorithms. The simulation
results show that the designed mechanisms can achieve a
tradeoff between EE and SE experiences by properly adjust-
ing users’ weighting parameters. Future works can include
the resource partitioning, ultra-dense networks and so on.
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