
Received August 23, 2019, accepted September 4, 2019, date of publication September 30, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944483

MDS Symbol-Pair Repeated-Root Constacylic
Codes of Prime Power Lengths Over Fpm + uFpm

H. Q. DINH1,2, P. KUMAM 3,4,, P. KUMAR5, S. SATPATI5, A. K. SINGH5, AND W. YAMAKA6
1Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
3KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, Department of Mathematics, Faculty of Science,
King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
4Center of Excellence in Theoretical and Computational Science (TaCS-CoE), SCL 802 Fixed Point Laboratory, King Mongkut’s University of Technology
Thonburi (KMUTT), Bangkok 10140, Thailand
5Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad 826004, India
6Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand

Corresponding author: P. Kumam (poom.kum@kmutt.ac.th)

This work was supported by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. The work of
H.Q. Dinh and W. Yamaka were supported in part by the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai
University.

ABSTRACT MDS codes have the highest possible error-detecting and error-correcting capability among
codes of given length and size. Let p be any prime, and s, m be positive integers. Here, we consider all
constacyclic codes of length ps over the ring R = Fpm + uFpm (u2 = 0). The units of the ring R are of
the form α + uβ and γ , where α, β, γ ∈ F∗pm , which provides pm(pm − 1) constacyclic codes. We acquire
that the (α + uβ)-constacyclic codes of ps length over R are the ideals 〈(α0 x − 1)j〉, 0 ≤ j ≤ 2 ps, of the
finite chain ring R[x]/〈xp

s
− (α + uβ)〉 and the γ -constacyclic codes of ps length over R are the ideals of

the ring R[x]/〈xp
s
− γ 〉 which is a local ring with the maximal ideal 〈u, x − γ0〉, but it is not a chain ring.

In this paper, we obtain all MDS symbol-pair constacyclic codes of length ps over R. We deduce that the
MDS symbol-pair constacyclic codes are the trivial ideal 〈1〉 and the Type 3 ideal of γ -constacyclic codes
for some particular values of p and s. We also present several parameters including the exact symbol-pair
distances of MDS constacyclic symbol-pair codes for different values of p and s.

INDEX TERMS Repeated-root codes, constacyclic codes, MDS codes, symbol-pair distance, finite chain
ring.

I. INTRODUCTION
Initially, in the theory of error correcting codes, the message
communicated in a noisy channel was divided into infor-
mation units which were called individual symbols, and the
operations of reading and writing were performed on these
individual symbol. But due to the recent development of
emerging technologies, symbol can be written and read in
possible overlapping group. This method was first proposed
by Cassuto and Blaum [1] in which the outputs (possibly cor-
rupted) produced by a sequence of read operations are over-
lapping pairs of adjacent symbols, called pair-read symbols.
These pair-read symbols were further developed to compute
the symbol-pair distances of the generated codes in order to
obtain the optimal codes. The method was further advanced
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by Cassuto and Blaum [2] in which they studied the pair error
coding theory with algebraic cyclic-code constructions and
asymptotic bounds on code rates.

After the celebrating result of Cassuto and Blaum [1]
and Cassuto and Blaum [2], symbol-pair read channels
gains the attraction of many coding theorists. Chee et al. [5]
established the Singleton-type bound on symbol pair codes,
and showed that the length of q-ary MDS symbol pair

codes are �(q2) corresponding to the length O(q) of q-ary
classical MDS codes. They also constructed infinite fam-
ilies of optimal symbol-pair codes, where the optimality
obtained when the maximum distance of the symbol-pair
codes meet the Singleton type bound of symbol-pair codes.
Maximum distance separable (MDS) codes are optimal in
the sense that they have the highest possible error-detecting
and error-correcting capability for given code length and code

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 145039

https://orcid.org/0000-0002-5463-4581
https://orcid.org/0000-0002-6206-083X


H. Q. Dinh et al.: MDS Symbol-Pair Repeated-Root Constacylic Codes of Prime Power Lengths Over Fpm + uFpm

size. This encourages numerous investigations regarding con-
struction of MDS codes with respect to symbol-pair metric
like [7], [8], [15], [18], [19].

In particular, Kai et al. [17] extended the result of Cassuto
and Litsyn [3, Th. 10] for the case of simple-root constacyclic
codes. Since then symbol-pair distances over constacyclic
codes are an interesting topic to study and under scrutiny in
series of papers like [6], [10], [12]–[14], [19]. Constacyclic
codes play a significant role in coding theory because of
their rich algebraic structure and practical implementations.
Repeated-root constacyclic codes were first initiated in the
most generality by Castagnoli in [4] and Van Lint in [22].
They found that the repeated-root constacyclic codes have
a concatenated construction and are asymptotically bad but
the optimal repeated-root constacyclic codes still exist, which
motivated the researchers to further study these codes.

For a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈
4n, where 4 is a code alphabet, the symbol-pair distance is
defined in [1] as follows:

dsp(a,b) = |i : (ai, ai+1) 6= (bi, bi+1)|.

Then dsp(C) = mina,b∈C, a 6=b{dsp(a,b)} is the symbol-pair
distance of code C. Generally, the determination of
symbol-pair distnace of a code C is very difficult. Recently,
Dinh et al. computed the Hamming and symbol-pair distances
of repeated root constacyclic codes of prime power lengths
over Fpm in [12] and over R = Fpm + uFpm in [14].
In [12], Dinh et al. obtained MDS symbol-pair

λ-constacyclic codes of prime power length over Fpm , by sat-
isfying the Singleton bound of symbol-pair codes. Moti-
vated by the concept, in this paper, we determine all MDS
symbol-pair constacyclic codes of length ps over the ring
R = Fpm + uFpm .

The paper is organized as follows. In Section 2, we discuss
some preliminary results. In Section 3, the MDS symbol-pair
constacyclic codes of all length ps are identified over the ring
Fpm + uFpm . Section 4 contains some examples in which we
discuss the parameter of someMDS constacyclic symbol-pair
codes for different values of p and s. We conclude the paper
in Section 5.

II. PRELIMINARIES
Let R = Fpm + uFpm , u2 = 0 be a finite commutative ring
with p2m elements, where p is a prime andm is a positive inte-
ger. An ideal generated by one element is called a principal
ideal and if all the ideals are principal, then the ring is called
principal ideal ring. A local ring is defined if the ring has a
unique maximal ideal. Further, a ring is called a chain ring if
the set of all ideals of R is linearly ordered under set-theoretic
inclusion. From [11], we have the following proposition for
the class of finite commutative rings.
Proposition 1 [11]: Let R be a finite commutative ring,

then the following conditions are equivalent:
(i) R is a local ring and the maximal ideal M of R is

principal, i.e., M = 〈r〉 for some r ∈ R,
(ii) R is a local principal ideal ring,

(iii) R is a chain ring with ideals 〈ri〉, 0 ≤ i ≤ N (r), where
N (r) is the nilpotency of r.

Let λ be an invertible element of R. The λ-constacyclic
shift τλ on Rn is defined as

τλ(c0, c1, . . . , cn−1) = (λcn−1, c0, . . . , cn−2).

If τλ(C) = C, then C is called a λ-constacyclic code. In the
case λ = 1, those λ-constacyclic codes are called cyclic
codes, and when λ = −1, then the λ-constacyclic codes are
called negacyclic codes.
Consider the polynomial c(x) = c0 + c1 x + c2 x2 + . . .+

cn−1xn−1 in the ringR[x]/〈xn−λ〉. The polynomial c(x) can
be used to express the codeword c = (c0, c1, . . . , cn−1) of the
code C. And xc(x) corresponds to λ-constacyclic shift of c(x).
We have a well-known result about λ-constacyclic codes.
Proposition 2 [9], [16], [20]: A linear code C is an ideal

of R[x]/〈xn − λ〉 if and only if C is a λ-constacyclic code of
length n overR.
So, for any invertible element λ of Fpm , λ-constacyclic

codes of length ps over Fpm are precisely the ideals of
Fpm [x]/〈xp

s
− λ〉.

Let α, β, γ be non-zero elements of the field Fpm . In [9],
Dinh provided the construction of all constacyclic codes of ps

length over R as follows.
Theorem 3 [9]: Let λ be a unit of the ring R, i.e., λ is of

the form α + uβ or γ , where 0 6= α, β, γ ∈ Fpm .
• If λ = α + uβ, then the ring R[x]/〈xp

s
− (α + uβ)〉 is

a finite chain ring with maximal ideal 〈α0 x − 1〉, and
〈(α0 x−1)p

s
〉 = 〈u〉. The (α+uβ)-constacyclic codes of

ps length overR are the ideals 〈(α0 x−1)j〉, 0 ≤ j ≤ 2 ps,
of the finite chain ring R[x]/〈xp

s
−(α+uβ)〉. The number

of codewords in each code Cj = 〈(α0x−1)j〉 is pm(2p
s
−j).

• If λ = γ ∈ F∗pm , then the ring R[x]/〈xp
s
− γ 〉 is a local

ring with the maximal ideal 〈u, x − γ0〉, but it is not a
chain ring. The γ -constacyclic codes of ps length over
R, i.e., ideals of the ring R[x]/〈xp

s
− γ 〉, are given by

four types
◦ Type 1 are the trivial ideals, i.e., C = 〈0〉, C = 〈1〉.
Number of codewords in theses codes are 1 and
p2 mp

s
respectively.

◦ Type 2 are the principal ideals generated by non-
monic polynomials, i.e., Cj = 〈u(x − γ0)j〉, where
0 ≤ j ≤ ps − 1. In this case, |Cj| = pm(p

s
−j)

◦ Type 3 are the principal ideals generated by monic
polynomials, i.e., Cj = 〈(x− γ0)j+ u(x− γ0)th(x)〉,
where 1 ≤ j ≤ ps − 1, 0 ≤ t < j, and either h(x) is
0 or h(x) is a unit in

Fpm [x]
〈xps−γ 〉

. In this case,

|Cj| =
{
p2m(p

s
−j), if 1 ≤ j ≤ ps−1 + b t2c

pm(p
s
−t), if ps−1 + b t2c < j ≤ ps − 1.

◦ Type 4 are the nonprincipal ideals, i.e., 〈(x−γ0)j+
u(x − γ0)th(x), u(x − γ0)κ 〉, with h(x) as in Type 3,
deg h(x) ≤ κ − t − 1, and κ < T , where T is the
smallest integer such that u(x−γ0)T ∈ 〈(x−γ0)j+
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u(x − γ0)th(x)〉; and T = j, if h(x) = 0, otherwise
T = min{j, ps− j+ t}. The cardinality of C is given
by |C| = pm(2p

s
−j−κ).

In [21, Section 5], Norton and Sălăgean provided the Sin-
gleton bound for finite chain ring R which is given by |C| ≤

|R|n−d(C)+1 or d(C) ≤ n − 1
ν

ν−1∑
i=0

(ν − i)ki(C) + 1, where ν

is the nilpotency index of the fixed generator of the maximal
ideal of R and ki(C) are the sizes of blocks of columns in
standard form of generator matrix. A linear code C for which

d(C) = n − k(C) + 1 where k(C) = 1
ν

ν−1∑
i=0

(ν − i)ki(C),

is called an MDS code. Since MDS codes have the best
error-correcting capabilities, they form an optimal class of
codes making it one of the central topics in the study of
error-correcting codes. In [5], Chee et al. initiated the study
of the Singleton bound for symbol-pair codes over Fpm . They
determined the Singleton bound for any symbol-pair code C
of length n over Fpm with symbol-pair distance dsp(C) such
that 2 ≤ dsp(C) ≤ n, |C| ≤ pm(n−dsp(C)+2) [5, Th. 1].
A symbol-pair code is known asmaximum distance separable
code (MDS) symbol-pair code if it attains the Singleton bound
for symbol-pair codes, i.e., |C| = pm(n−dsp(C)+2). Singleton
bound for symbol-pair codes over the finite chain ring R is
as follows.
Theorem 4: Let C be a symbol-pair code over the finite

chain ring R and let dsp(C) be the minimum symbol-pair
distance of C, then |C| ≤ |R|n−dsp(C)+2.

Proof: Let C be a symbol-pair code over the finite chain
ringR. By deleting the last dsp(C)−2 coordinates from all the
codewords of C, we observe that any dsp(C) − 2 consecutive
coordinates contribute at most dsp(C)−1 to the pair-distance.
And since C has pair-distance dsp(C), the resulting vectors of
length n − dsp(C) + 2 remain distinct after deleting the last
dsp(C) − 2 coordinates from all codewords. The maximum
number of distinct vectors of length n− dsp(C)+ 2 overR is
|R|n−dsp(C)+2. Hence, |C| ≤ |R|n−dsp(C)+2. �
Using the results of Theorem 3 and 4 and considering

the symbol-pair distances of constacyclic codes of length ps

over Fpm + uFpm provided in [14], we compute the MDS
symbol-pair constacyclic codes of length ps over Fpm+uFpm .

III. MDS SYMBOL-PAIR CONSTACYCLIC CODES
In this section, we will use the determination of symbol-pair
distance constacyclic codes over Fpm + uFpm in [14, Sec. 4]
to identify all MDS symbol-pair constacyclic codes of length
ps over Fpm + uFpm .

A. (α + uβα + uβα + uβ)-CONSTACYCLIC CODES
Theorem 5: Let Cj = 〈(α0x − 1)j〉 ⊆ R[x]

〈xps−(α+uβ)〉
be a

(α + uβ)-constacylcic code of length ps over R, for j ∈
{0, 1, . . . , 2ps}. Then Cj is a MDS symbol-pair code if and
only if j = 0, then dsp(Cj) = 2.

Proof: For (α + uβ)-constacyclic codes, we have
|C| = pm(2p

s
−j) [9, Th. 4.2]. By Singleton bound, Cj is the

symbol-pair MDS code if and only if 2ps − j = 2(ps −
dsp(Cj) + 2), i.e., j = 2dsp(Cj) − 4. The symbol-pair dis-
tance dsp(Cj) for all j ∈ {0, 1, . . . , 2ps} is established in
[14, Th. 11]. We consider cases according to the range of j.
Case 1: 0 ≤ j ≤ ps. Then dsp(Cj) = 2, so obviously, MDS

symbol-pair code can be obtained when j = 0.
Case 2: j = 2ps − ps−k + 1, where 0 ≤ k ≤ s − 2. Then

dsp(Cj) = 3pk , and

j = 2ps − ps−k + 1

= ps−k (2pk − 1)+ 1

≥ p2(2pk − 1)+ 1

× (equality when k = s− 2, or k = 0)

≥ 4(2pk − 1)+ 1

× (equality when p = 2, or k = 0)

= 6pk + 2pk − 3

≥ 6pk − 1

× (equality when k = 0)

> 2dsp(Cj)− 4.

Therefore, no MDS symbol-pair code can be obtained in this
cas.
Case 3: 2ps− ps−k + 2 ≤ j ≤ 2ps− ps−k + ps−k−1, where

0 ≤ k ≤ s− 2. Then dsp(Cj) = 4pk , and

j ≥ 2ps − ps−k + 2

= ps−k (2pk − 1)+ 2

≥ 4(2pk − 1)+ 2

× (equality when k = s− 2 and p = 2, or k = 0)

= 8pk − 2

> 2dsp(Cj)− 4.

Therefore, no MDS symbol-pair code can be obtained in this
case.
Case 4: 2ps − ps−k + δps−k−1 + 1 ≤ j ≤ 2ps − ps−k +

(δ+1)ps−k−1, where 0 ≤ k ≤ s−2 and 1 ≤ δ ≤ p−2. Then
dsp(Cj) = 2(δ + 2)pk , and

j ≥ 2ps − ps−k + δps−k−1 + 1

= ps−k (2pk − 1)+ δps−k−1 + 1

≥ p2(2pk − 1)+ δp+ 1

× (equality when k = s− 2, or s = 2)

≥ (δ + 2)2(2pk − 1)+ δ(δ + 2)+ 1

× (equality when δ = p− 2, or s = 2)

= 2(δ + 2)2 pk − 2δ − 3

= 4(δ + 2)pk + 2δ(δ + 2)pk − 2δ − 3

≥ 4(δ + 2)pk + 2δ(δ + 2)− 2δ − 3

× (equality when k = 0, or s = 2)

= 4(δ + 2)pk + 2δ(δ + 1)− 3

≥ 2dsp(Cj)+ 1 (equality when δ = 1)

> 2dsp(Cj)− 4.
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Therefore, no MDS symbol-pair code can be obtained in this
case.
Case 5: j = 2ps − p + δ, where 0 ≤ δ ≤ p − 2. Then

dsp(Cj) = (δ + 2)ps−1, and

j = 2ps − p+ δ

= p(2ps−1 − 1)+ δ

≥ (δ + 2)(2ps−1 − 1)+ δ

× (equality when δ = p− 2, or s = 1)

= 2(δ + 2)ps−1 − 2

> dsp(Cj)− 4.

Therefore, no MDS symbol-pair code can be obtained in this
case.
Case 6: j = 2ps− 1. Then dsp(Cj) = ps, and j = 2ps− 1 =

2dsp(Cj)− 1 > dsp(Cj)− 4.
Since, j > ps + dsp(Cj) − 2, no MDS symbol-pair code can
be obtained in this case.
Case 7: j = 2ps. Then dsp(Cj) = 0, and j = 2dsp(Cj) +

2ps > 2dsp(Cj)− 4.
Since, j > ps+ dsp(Cj)− 2, no MDS symbol-pair code exists
in this case.

Thus, we obtain only one MDS symbol-pair (α + uβ)-
constacylcic codes of length ps over R, i.e., 〈1〉. �

Now, we consider the case where the unit λ = γ ∈ F∗pm .
From [9], we acquire that for a γ -constacyclic code, there are
four types of ideals and the dimension of the code Cj is varies
with each ideal. Here, we will discuss the symbol-pair MDS
codes for each type of ideal.

B. γγγ -CONSTACYCLIC CODES
1) TYPE 1 (TRIVIAL IDEALS)
If C = 〈0〉, then |C| = 1 and dsp(〈0〉) = 0. Thus by Singleton
bound, C is a symbol-pair MDS code if and only if 0 = 2(ps−
dsp(C)+ 2), i.e., ps = −2, which is not possible.

Again, if C = 〈1〉, then |C| = p2mp
s
and dsp(〈1〉) = 2. Thus

by Singleton bound, C is a symbol-pair MDS code if and only
if 2ps = 2(ps − dsp(C)+ 2), i.e., dsp(C) = 2.
Thus, MDS symbol-pair codes for trivial ideals is 〈1〉.

2) TYPE 2 (PRINCIPAL IDEALS GENERATED BY
NONMONIC POLYNOMIAL)
Here, we have Cj = 〈u(x − γ0)j〉, where 0 ≤ j ≤ ps − 1 and
|C| = pm(p

s
−j). Thus by Singleton bound, Cj is a symbol-pair

MDS code if and only if ps− j = 2ps− 2dsp(Cj)+ 4, i.e., j =
2dsp(Cj)− ps − 4. Hence, follows the theorem.
Theorem 6: Let Cj = 〈u(x − γ0)j〉 ⊆

R[x]
〈xps−γ 〉

be
a γ−constacyclic code of length ps over R, for j ∈
0, 1, . . . , ps − 1. Then no MDS symbol-pair constacyclic
code exists.

Proof: We get MDS code for j = 2dsp(Cj) − ps − 4.
The symbol-pair distance dsp(Cj) for all κ ∈ {1, . . . , ps − 1}
of type 2 λ-constacyclic code is established in [14, Th. 12].
Now, we consider the cases according to the range of j.

Case 1: j = 0, then dsp(Cj) = 2, and j = 2dsp(Cj) − 4 >
2dsp(Cj) − ps − 4. Thus, no MDS symbol-pair constacyclic
code exists in this case.
Case 2: j = ps − ps−k + 1, where 0 ≤ k ≤ s − 2. Then

dsp(Cj) = 3pk , and

j = ps − ps−k + 1

= ps−k (2pk − 1)− ps + 1

≥ p2(2pk − 1)− ps + 1

× (equality when k = s− 2, or s = 2)

≥ 4(2pk − 1)− ps + 1 (equality when p = 2)

= 2dsp(C)− ps + 2pk − 3

≥ 2dsp(Cj)− ps − 1 (equality when k = 0)

> 2dsp(Cj)− ps − 4.

Since, j > 2dsp(Cj)−ps−4, noMDS symbol-pair constacyclic
code exists in this case.
Case 3: ps − ps−k + 2 ≤ j ≤ ps − ps−k + ps−k−1, where

0 ≤ k ≤ s− 2. Then dsp(Cj) = 4pk , and

j = ps − ps−k + 2

= ps−k (2pk − 1)− ps + 2

≥ p2(2pk − 1)− ps + 2

× (equality when k = s− 2, or s = 2)

≥ 4(2pk − 1)− ps + 2 (equality when p = 2)

= 2dsp(Cj)− ps − 2

> 2dsp(Cj)− ps − 4.

Since, j > 2dsp(Cj)−ps−4, noMDS symbol-pair constacyclic
code can exist in this case.
Case 4: ps − ps−k + δps−k−1 + 1 ≤ j ≤ ps − ps−k + (δ +

1)ps−k−1, where 0 ≤ k ≤ s − 2 and 1 ≤ δ ≤ p − 2. Then
dsp(Cj) = 2(δ + 2)pk , and

j ≥ ps − ps−k + δps−k−1 + 1

= ps−k (2pk − 1)− ps + δps−k−1 + 1

≥ p2(2pk − 1)− ps + δp+ 1

× (equality when k = s− 2, or s = 2)

≥ (δ + 2)2(2pk − 1)− ps + δ(δ + 2)+ 1

× (equality when δ = p− 2)

= 2(δ + 1)(δ + 2)pk − ps + 2(δ + 2)(pk − 1)+ 1

≥ 4(δ + 2)pk − ps + 6(pk − 1)+ 1

× (equality when δ = 1)

≥ 2dsp(Cj)− ps + 1 (equality when k = 0)

> 2dsp(Cj)− ps − 4.

Since, j > 2dsp(Cj)−ps−4, noMDS symbol-pair constacyclic
code exists in this case.
Case 5: j = ps − p + δ, where 0 ≤ δ ≤ p − 2. Then

dsp(Cj) = (δ + 2)ps−1, and

j = ps − p+ δ

= p(2ps−1 − 1)− ps + δ
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≥ (δ + 2)(2ps−1 − 1)− ps + δ

× (equality when δ = p− 2)

= 2(δ + 2)ps−1 − ps − 2

= 2dsp(C)− ps − 2

> 2dsp(Cj)− ps − 4.

Since, j > 2dsp(Cj)−ps−4, noMDS symbol-pair constacyclic
code exists in this case.
Case 6: j = ps − 1. Then dsp(Cj) = ps, and j = 2ps − ps −

1 = 2dsp(Cj) − ps − 1 > 2dsp(Cj) − ps − 4. Thus, no MDS
symbol-pair constacyclic code exists in this case.

Hence, MDS symbol-pair code does not exist for
γ -constacyclic codes of Type 2. This completes the proof. �

3) TYPE 3 (PRINCIPAL IDEALS GENERATED BY
MONIC POLYNOMIAL)
Here, we have Cj = 〈(x − γ0)j + u(x − γ0)th(x)〉, where 1 ≤
j ≤ ps−1, 0 ≤ t < j, and either h(x) is 0 or a unit in

Fpm [x]
〈xps−γ 〉

.
Thus, we get the following two cases:
Case 1: When h(x) is 0 then, |Cj| = p2m(p

s
−j). Thus by

Singleton bound, Cj is a symbol-pair MDS code if and only if
ps−j = ps−dsp(Cj)+2, i.e., j = dsp(Cj)−2. Hence, the MDS
symbol-pair codes for Type 2 ideals are similar to the MDS
λ-constacyclic symbol-pair codes over Fpm . Hence, we have
the following theorem:
Theorem 7: Let Cj = 〈(x − γ0)j〉 ⊆

R[x]
〈xps−γ 〉

be
a γ−constacyclic code of length ps over R, for j ∈
1, . . . , ps − 1. Then Cj is a MDS symbol-pair code if and only
if one of the following conditions holds:
• If s = 1, then j = δ, for 0 ≤ δ ≤ p − 2, then dsp(Cj) =
δ + 2.

• If s ≥ 2, then
◦ j = 1, dsp(Cj) = 3,
◦ j = 2, dsp(Cj) = 4,
◦ s = 2, p = 3, j = 4, dsp(Cj) = 6,
◦ j = ps − 2, dsp(Cj) = ps.

Case 2:When h(x) is a unit [9] then,

|Cj| =
{
p2m(p

s
−j), if 1 ≤ j ≤ ps−1 + b t2c

pm(p
s
−t), if ps−1 + b t2c < j ≤ ps − 1.

Therefore, when 1 ≤ j ≤ ps−1 + b t2c, MDS symbol-pair
constacyclic codes can be obtained when j = dsp(Cj) − 2,
which is similar to the result in case 1. But j ≤ ps−1 + b t2c,
where 0 ≤ t < j, which implies that ps−1 ≤ j < 2ps−1,
i.e., when s = 1, j = 1 and when s ≥ 2, j ≥ 2. Hence,
we conclude the following theorem.
Theorem 8: Let Cj = 〈(x − γ0)j + u(x − γ0)th(x)〉 ⊆
R[x]
〈xps−γ 〉

be a γ−constacyclic code of length ps over R, for
j ∈ 1, . . . , ps − 1. Then Cj is a MDS symbol-pair code if and
only if one of the following conditions holds:
• If s = 1, then j = 1, dsp(Cj) = 3.
• If s ≥ 2, then
◦ j = 2, dsp(Cj) = 4,
◦ s = 2, p = 3, j = 4, dsp(Cj) = 6,

◦ j = ps − 2, dsp(Cj) = ps.
When ps−1 + b t2c < j ≤ ps − 1, i.e., when 0 ≤ t < 2j −

2ps−1, MDS symbol-pair constacyclic codes can be obtained
when t = 2dsp(Cj)−ps−4, i.e., when 2j−2ps−1 > 2dsp(Cj)−
ps − 4. In the following theorem we are going to discuss the
case when 2j > 2dsp(Cj)− ps−1(p− 2)− 4.
Theorem 9: Let Cj = 〈(x − γ0)j + u(x − γ0)th(x)〉 ⊆
R[x]
〈xps−γ 〉

be a γ−constacyclic code of length ps over R, for
j ∈ 1, . . . , ps − 1. Then Cj is a MDS symbol-pair code if and
only if one of the following conditions holds:
• If s ≥ 1 and p ≥ 5, then
◦ j = ps − 1, dsp(Cj) = ps,
◦ j = ps − 2, dsp(Cj) = ps.

• If s ≥ 2, then
◦ j = 2s − 1, dsp(Cj) = 2s,
◦ j = 3s − 1, dsp(Cj) = 3s,
◦ j = 3s − 2, dsp(Cj) = 3s.

• If s ≥ 3, then
◦ j = 2s − 3, dsp(Cj) = 3 · 2s−2,
◦ j = 3s − 5, dsp(Cj) = 2 · 3s−1.

Proof: Here, the MDS symbol-pair constacyclic code
can be obtained if and only if 2j > 2dsp(Cj)−ps−1(p−2)−4
and t = 2dsp(Cj) − ps − 4 ≥ 0. When p = 2, then the
condition for a symbol-pair constacyclic code to be MDS
becomes 2j > 2dsp(Cj) − 4 and t = 2dsp(Cj) − 2s − 4 ≥ 0.
The symbol-pair distance dsp(Cj) for all j ∈ {1, . . . , ps − 1}
of type 3 λ-constacyclic code is established in [14, Th. 12].
We consider cases according to the range of j.
Case 1: Here, j = ps − ps−k + 1, where 0 ≤ k ≤ s − 2.

And dsp = 3pk , then

2j = 2ps − 2ps−k + 2

= 2ps−k (pk − 1)+ 2

≥ 2p2(pk − 1)+ 2 (equality when k=s− 2 or k=0).

Now, we consider the following sub-cases:
Subcase 1.1:When p = 2, we get

2j ≥ 8(pk − 1)+ 2

= 6pk + 2pk − 6

= 2dsp(Cj)− 4+ 2pk − 2

Now, 2j > 2dsp(Cj) − 4 if and only if 2pk − 2 > 0,
i.e., k ≥ 1. Thus, equality occurs when k = s− 2, k ≥ 1 and
p = 2 and we have t = 2dsp(Cj)− 2s − 4 = 2s−1 − 4. Now,
2s−1 − 4 ≥ 0, i.e., s ≥ 3, satisfying the previous condition.
Therefore, MDS symbol-pair constacyclic code is obtained
when k = s− 2, k ≥ 1, s ≥ 3 and p = 2, i.e., j = 2s− 3 and
dsp(Cj) = 3 · 2s−2, where s ≥ 3.
Subcase 1.2:When p ≥ 3, we get

2j ≥ 18pk − 16 (equality when p = 3)

= 6pk + 12pk − 16

= 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)+12pk−12

≥ 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)

× (equality when k = 0)
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> 2dsp(Cj)− ps−1(p− 2)− 4.

Here, 2j > 2dsp(Cj)−ps−1(p−2)−4, with equality p = 3 and
k = s−2. Thuswe have t = 2·3k+1−3s−4 = −3s−1−4 < 0,
i.e., a contradiction, since t ≥ 0. Thus, we can not obtain any
MDS symbol-pair constacyclic code in this case.
Case 2:Here, ps−ps−k+2 ≤ j ≤ ps−ps−k+ps−k−1, where

0 ≤ k ≤ s−2. And dsp = 4pk . We consider j = ps−ps−k+r ,
where 2 ≤ r ≤ ps−k−1, and we get

2j = 2ps − 2ps−k + 2r

= 2ps−k (pk − 1)+ 2r

≥ 2p2(pk − 1)+ 2r (equality when k=s− 2 or k=0).

Now, we consider the following sub-cases:
Subcase 2.1:When p = 2, we get

2j ≥ 8pk + 2r − 8

= 2dsp(Cj)− 4+ 2r − 4.

Now, 2j > 2dsp(Cj)−4 if and only if 2r−4 > 0, i.e., if r > 2,
which is a contradiction, since for p = 2 and k = s−2, r = 2.
Thus, noMDS symbol-pair constacyclic code can be obtained
in this case.
Subcase 2.2:When p ≥ 3, we get

2j ≥ 18pk + 2r − 18 (equality when p = 3)

= 8pk + 10pk + 2r − 18

= 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)

+ 10pk + 2r − 14

≥ 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)

× (equality when k = 0 and r = 2)

> 2dsp(Cj)− ps−1(p− 2)− 4.

Thus, 2j > 2dsp(Cj) − ps−1(p − 2) − 4 with equality k =
s−2, p = 3. Then t = 8·3k−3s−4 = −3s−2−4 < 0, which
is contradiction, since t ≥ 0. Thus, no MDS symbol-pair
constacyclic code can be obtained in this case.
Case 3: ps − ps−k + δps−k−1 + 1 ≤ j ≤ ps − ps−k + (δ +

1)ps−k−1, where 0 ≤ k ≤ s − 2 and 1 ≤ δ ≤ p − 2. Then
dsp = 2(δ+ 2)pk . We consider j = ps − ps−k + δps−k−1 + r ,
where 1 ≤ r ≤ ps−k−1, and we get

2j = 2ps − 2ps−k + 2δps−k−1 + 2r

= 2ps−k (pk − 1)+ 2δps−k−1 + 2r

≥ 2p2(pk − 1)+ 2δp+ 2r

× (equality when k = s− 2 or k = 0)

≥ 2(δ + 2)p(pk − 1)+ 2δp+ 2r

× (equality when δ = p− 2)

= 2(δ + 2)pk+1 − 4p+ 2r .

Now, we consider two sub-cases:
Subcase 3.1:When p = 2, we get

2j ≥ 4(δ + 2)pk + 2r − 8

= 2dsp(Cj)− 4+ 2r − 4.

Now, 2j > 2dsp(Cj) − 4 if and only if 2r − 4 > 0, i.e., if
r > 2, which is a contradiction, since for p = 2 and k = s−2,
1 ≤ r ≤ 2. Thus, noMDS symbol-pair constacyclic code can
be obtained in this case.
Subcase 3.2:When p ≥ 3, we get

2j ≥ 6(δ + 2)pk + 2r − 12 (equality when p = 3)

= 4(δ + 2)pk + 2(δ + 2)pk + 2r − 12

= 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)

+ 2(δ + 2)pk + 2r − 8

≥ 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)

× (equality when k = 0, δ = 1 and r = 1)

> 2dsp(Cj)− ps−1(p− 2)− 4.

Thus, 2j > 2dsp(Cj)− ps−1(p− 2)− 4 with the equality k =
s − 2, p = 3 δ = 1 and r = 1. Then t = 12pk − ps −
2 ≥ 0, i.e., 3s−1 ≥ 4, i.e., s ≥ 3. Thus, MDS symbol-pair
constacyclic codes can be obtained at j = 3s−5 and dsp(Cj) =
2 · 3s−1, where s ≥ 3.
Case 4: j = ps − p + δ, where 0 ≤ δ ≤ p − 2. Then

dsp = 2(δ + 2)ps−1 and,

2j = 2ps − 2p+ 2δ

= 2p(ps−1 − 1)+ 2δ

≥ 2(δ + 2)(ps−1 − 1)+ 2δ (equality when δ = p− 2)

= 2(δ + 2)ps−1 − 4

= 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)

≥ 2dsp(Cj)− ps−1(p− 2)− 4 (equality when p = 2).

Thus, 2j > 2dsp(Cj)− ps−1(p− 2)− 4 with the equality δ =
p−2 and p ≥ 3. Now, t = ps−4 ≥ 0, i.e., when p = 3, s ≥ 2
and when p ≥ 5, s ≥ 1. Thus MDS symbol-pair constacyclic
code exist when j = 3s − 2, dsp(Cj) = 3s, where s ≥ 2 and
j = ps − 2, dsp(Cj) = ps, where p ≥ 5, s ≥ 1.
Case 5: Here, j = ps − 1. Then dsp = ps and,

2j = 2ps − 2

= 2dsp(Cj)− ps−1(p− 2)− 4+ ps−1(p− 2)+ 2

≥ 2dsp(Cj)− ps−1(p− 2)− 4

Now, 2j > 2dsp(Cj)− ps−1(p− 2)− 4 and MDS symbol-pair
constacyclic codes can be obtained if t = ps − 4 ≥ 0,
i.e., when p = 2, s ≥ 2, when p = 3, s ≥ 2 and when
p ≥ 5, s ≥ 1.
This completes the proof. �

4) TYPE 4 (NONPRINCIPAL IDEALS)
Here, we have C = 〈(x − γ0)j + u(x − γ0)th(x), u(x − γ0)κ 〉,
where 1 ≤ j ≤ ps − 1, 0 ≤ t < j, and either h(x) is either 0
or a unit in

Fpm [x]
〈xps−γ 〉

, deg(h) ≤ κ − t − 1, and

κ < T =

{
j, if h(x) = 0
min{j, ps − j+ t}, if h(x) 6= 0.

In this case, |C| = pm(2p
s
−j−κ). Thus by Singleton bound, C is

a symbol-pair MDS code if and only if 2ps − j− κ = 2(ps −
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dsp(C)+ 2), i.e., κ = 2dsp(C)− 4− j. Let j = ps −m, where
1 ≤ m ≤ ps−1. Thus, the condition for C to be a symbol-pair
MDS constacyclic code becomes κ = 2dsp(C)− 4− ps +m.
Hence, we can conclude the following theorem:
Theorem 10: Let C = 〈(x − γ0)j + u(x − γ0)th(x),

u(x − γ0)κ 〉 ⊆
R[x]
〈xps−γ 〉

be a γ−constacyclic code of length
ps over R, for j ∈ 1, . . . , ps − 1, 0 ≤ t < j, and either h(x)
is either 0 or a unit in

Fpm [x]
〈xps−γ 〉

, deg(h) ≤ κ− t−1 and κ < T ,
where

T =

{
j, if h(x) = 0
min{j, ps − j+ t}, if h(x) 6= 0.

Then, no MDS symbol-pair constacyclic code exists.
Proof: We get MDS code for κ = 2dsp(C)−4−ps+m,

where 1 ≤ m ≤ ps − 1. The symbol-pair distance dsp(C)
for all κ ∈ {1, . . . , ps − 1} of type 4 λ-constacyclic code
is established in [14, Th. 12]. Now, we consider the cases
according to the range of κ .
Case 1: κ = ps − ps−k + 1, where 0 ≤ k ≤ s − 2. Then

dsp(C) = 3pk , and

κ = ps − ps−k + 1

= ps−k (2pk − 1)− ps + 1

≥ p2(2pk − 1)− ps + 1

× (equality when k = s− 2, or s = 2)

≥ 4(2pk − 1)− ps + 1 (equality when p = 2)

= 2dsp(C)− ps + 2pk − 3

≥ 2dsp(C)− ps − 1 (equality when k = 0).

Now, κ ≥ 2dsp(C) − 4 − ps + m if and only if 3 ≥ m
i.e., equality whenm = 3. Thus, equality occurs when p = 2,
k = s − 2, i.e., κ = 2s − 3 and j = 2s − 3, which is
a contradiction, since κ < j. Thus, no MDS symbol-pair
constacyclic code exists in this case.
Case 2: ps − ps−k + 2 ≤ κ ≤ ps − ps−k + ps−k−1, where

0 ≤ k ≤ s− 2. Then dsp(C) = 4pk , and

κ = ps − ps−k + 2

= ps−k (2pk − 1)− ps + 2

≥ p2(2pk − 1)− ps + 2

× (equality when k = s− 2, or s = 2)

≥ 4(2pk − 1)− ps + 2 (equality when p = 2)

= 2dsp(C)− ps − 2.

Now, κ ≥ 2dsp(C) − 4 − ps + m if and only if 2 ≥ m
i.e., equality whenm = 2. Thus, equality occurs when p = 2,
k = s − 2, i.e., κ = 2s − 2 and j = 2s − 2, which is
a contradiction, since κ < j. Thus, no MDS symbol-pair
constacyclic code can exist in this case.
Case 3: ps − ps−k + δps−k−1 + 1 ≤ κ ≤ ps − ps−k + (δ+

1)ps−k−1, where 0 ≤ k ≤ s − 2 and 1 ≤ δ ≤ p − 2. Then
dsp(C) = 2(δ + 2)pk , and

κ ≥ ps − ps−k + δps−k−1 + 1

= ps−k (2pk − 1)− ps + δps−k−1 + 1

≥ p2(2pk − 1)− ps + δp+ 1

× (equality when k = s− 2, or s = 2)

≥ (δ + 2)2(2pk − 1)− ps + δ(δ + 2)+ 1

× (equality when δ = p− 2)

= 2(δ + 1)(δ + 2)pk − ps + 2(δ + 2)(pk − 1)+ 1

≥ 4(δ + 2)pk − ps+6(pk − 1)+1 (equality when δ=1)

≥ 2dsp(C)− ps + 1 (equality when k = 0).

Now, κ ≥ 2dsp(C) − 4 − ps + m if and only if 5 ≥ m
i.e., equality when m = 5. Thus, equality occurs when δ = 1,
p = 3, k = 0, s = 2, m = 5, i.e., κ = 4 and j = 4, which is a
contradiction. Thus, no MDS symbol-pair constacyclic code
exists in this case.
Case 4: κ = ps − p + δ, where 0 ≤ δ ≤ p − 2. Then

dsp(C) = (δ + 2)ps−1, and

κ = ps − p+ δ

= p(2ps−1 − 1)− ps + δ

≥ (δ + 2)(2ps−1 − 1)− ps+δ (equality when δ=p−2)

= 2(δ + 2)ps−1 − ps − 2

= 2dsp(C)− ps − 2.

Now, κ ≥ 2dsp(C) − 4 − ps + m if and only if 2 ≥ m
i.e., equality when m = 2. Thus, equality occurs when δ =
p − 2, i.e., when κ = ps − 2 and j = ps − 2. Thus, no MDS
symbol-pair constacyclic code exists in this case.
Case 5: κ = ps−1. Then dsp(C) = ps, and κ = 2ps−ps−

1 = 2dsp(C)− ps − 1.
Now, κ ≥ 2dsp(C)−ps+m−4 if and only if 3 ≥ m i.e.,m = 3.
Thus, j = ps−3 < κ , which is a contradiction. Thus, noMDS
symbol-pair constacyclic code exists in this case.

Hence, MDS symbol-pair code does not exist for
γ -constacyclic codes of Type 4. This completes the proof. �

Consequently, we have the list of all MDS symbol-pair
constacyclic codes of length ps overR = Fpm + uFpm .
Theorem 11: All MDS symbol-pair λ-constacyclic codes

of length ps overR are determined as follows:
• (α + uβ)-constacyclic codes: C = 〈(α0 x − 1)j〉 ⊆

R[x]
〈xps−(α+uβ)〉

, where 0 ≤ j ≤ 2ps. Then C is a MDS

symbol-pair constacyclic code if and only if j = 0, i.e.
〈1〉, in such case dsp(C) = 2.

• For γ -constacyclic codes, there are four types of ideals:
◦ Type 1 (trivial ideals): 〈1〉 is the only symbol-pair
constacyclic code with dsp(C) = 2.

◦ Type 2 (principal ideals generated by nonmonic
polynomial): C = 〈u(x − γ0)j〉, where 0 ≤ j ≤
ps−1. NoMDS symbol-pair constacyclic codes can
be obtained in this case.

◦ Type 3 (principal ideals generated by monic poly-
nomial): C = 〈(x − γ0)j + u(x − γ0)th(x)〉, where
1 ≤ j ≤ ps − 1, 0 ≤ t < j, and either h(x) is 0 or a
unit in

Fpm [x]
〈xps−γ 〉

.
When h(x) = 0, then C is a MDS symbol-pair code
if and only if one of the following conditions holds:
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� If s = 1, then j = δ, for 0 ≤ δ ≤ p − 2, then
dsp(Cj) = δ + 2.

� If s ≥ 2, then
◦ j = 1, dsp(Cj) = 3,
◦ j = 2, dsp(Cj) = 4,
◦ s = 2, p = 3, j = 4, dsp(Cj) = 6,
◦ j = ps − 2, dsp(Cj) = ps.

When h(x) is a unit and 1 ≤ j ≤ ps−1+b t2c. Then C is a
MDS symbol-pair code if and only if one of the following
conditions holds:
� If s = 1, then j = 1, dsp(Cj) = 3.
� If s ≥ 2, then
◦ j = 2, dsp(Cj) = 4,
◦ s = 2, p = 3, j = 4, dsp(Cj) = 6,
◦ j = ps − 2, dsp(Cj) = ps.

When h(x) is a unit and ps−1 + b t2c < j ≤ ps − 1. Then,
C is a MDS symbol-pair code if and only if one of the
following conditions holds:
� If s ≥ 1 and p ≥ 5, then
◦ j = ps − 1, dsp(Cj) = ps,
◦ j = ps − 2, dsp(Cj) = ps.

� If s ≥ 2, then
◦ j = 2s − 1, dsp(Cj) = 2s,
◦ j = 3s − 1, dsp(Cj) = 3s,
◦ j = 3s − 2, dsp(Cj) = 3s.

� If s ≥ 3, then
◦ j = 2s − 3, dsp(Cj) = 3 · 2s−2,
◦ j = 3s − 5, dsp(Cj) = 2 · 3s−1.

• Type 4 (nonprincipal ideals): C = 〈(x − γ0)j + u(x −
γ0)th(x), u(x − γ0)κ 〉, where 1 ≤ j ≤ ps − 1, 0 ≤ t < j,
and either h(x) is either 0 or a unit in

Fpm [x]
〈xps−γ 〉

, deg(h) ≤
κ − t − 1, and

κ < T =

{
j, if h(x) = 0
min{j, ps − j+ t}, if h(x) 6= 0.

NoMDS symbol-pair constacyclic code can be obtained
in this case.

IV. EXAMPLES
In this section, we present some examples of constacyclic
codes of length ps over Fpm + uFpm .
Example 12: Consider the ring F2 + uF2, where p = 2,

m = 1. The units in the ring F2 + uF2 of the form α + uβ is
1+ u and of the form γ is 1. For (1+ u)-constacyclic codes,
the generators are of the form 〈(x − 1)j〉, where 0 ≤ j ≤
2s+1. The only MDS symbol-pair constacyclic codes in this
case has the parameters (2s, 42

s
, 2) with the Singleton bound

j = 2dsp(Cj)− 4.
We obtain cyclic codes corresponding to the unit γ = 1.

Different generators of the cyclic codes and their correspond-
ing conditions to be MDS symbol-pair codes are given as
follows:
• Type 1: 〈0〉, 〈1〉. For these codes the condition for MDS
code are given by ps = dsp(C) − 2 and 2 = dsp(C).

As mentioned in Section 3, the only MDS symbol-pair
constacyclic codes in this case is 〈1〉with the parameters
(2s, 42

s
, 2).

• Type 2: 〈u(x−1)j〉, where 0 ≤ j ≤ 2s−1. The condition
for MDS code is given by j = 2dsp(C) − ps − 4. MDS
symbol-pair constacyclic codes are non-existent in this
case.

• Type 3: 〈(x−1)j+u(x−1)th(x)〉, where 1 ≤ j ≤ 2s−1,
0 ≤ t < j, and either h(x) is 0 or h(x) is a unit in F2[x]

〈x2s−1〉
.

For h(x) = 0, the MDS code condition is given by j =
dsp(Cj)− 2. And if h(x) is unit, the MDS code condition
are j = dsp(Cj) − 2, when 1 ≤ j ≤ ps−1 + b t2c and
t = 2dsp(Cj) − ps − 4, when ps−1 + b t2c < j ≤ ps − 1.
We present some parameters of MDS codes for h(x) = 0
in Table 1.

TABLE 1. Examples of γ -constacyclic codes over F2 + uF2.

• Type 4: 〈(x − 1)j + u(x − 1)th(x), u(x − 1)κ 〉, with h(x)
as in Type 3, deg h(x) ≤ κ − t − 1, and κ < T ,
where T is the smallest integer such that u(x − 1)T ∈
〈(x − 1)j + u(x − 1)th(x)〉; and T = j, if h(x) = 0,
otherwise T = min{j, 2s − j + t}. The MDS code
condition is given by κ = 2dsp(Cj) − j − 4. In this case
also, no MDS symbol-pair constacyclic code exists.

Example 13: Consider the ring F4 + uF4, where p = 2,
m = 2. The units in the ring F4 + uF4 of the form α + uβ
is 1 + u and of the form γ is 1. For (1 + u)-constacyclic
codes, the generators are of the form 〈(x − 1)j〉, where 0 ≤
j ≤ 2s+1. The only MDS symbol-pair constacyclic codes in
this case has the parameters (2s, 22

s+2
, 2). We also provide

some parameters of MDS symbol-pair codes in Table 2 for
γ -constacyclic codes.
Example 14: Consider the ring F3 + uF3. Here p = 3,

m = 1. The units in the ring F3 + uF3 of the form α + uβ
are 1+ u, 1+ 2u, 2+ u, 2+ 2u and of the form γ are 1, 2.
For units (1+ u) and (1+ 2u) the generators of constacyclic
codes are given by 〈(x − 1)j〉, where 0 ≤ j ≤ 2 · 3s and
for units (2+ u) and (2+ 2u), the generators of constacyclic
codes are of the form 〈(2x − 1)j〉, where 0 ≤ j ≤ 2 · 3s. For
γ = 1, we obtain cyclic code of length 3s over F3+ uF3. The
only MDS symbol-pair (α + uβ)-constacyclic code has the
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TABLE 2. Examples of γ -constacyclic codes over F4 + uF4.

TABLE 3. Examples of γ -constacyclic codes over F3 + uF3.

TABLE 4. Examples of γ -constacyclic codes over F5 + uF5.

parameters (3s, 93
s
, 2). We also provide some parameters of

MDS symbol-pair codes in Table 3 for γ -constacyclic codes.
Example 15: Consider the ring F5 + uF5. Here p = 5,

m = 1. The units in the ring F3 + uF3 of the form α + uβ
are a + ub, where a, b ∈ F5 − {0} and of the form γ are
1, 2, 3, 4. For units a + ub the generators of constacyclic
codes are given by 〈(ax − 1)j〉, where 0 ≤ j ≤ 2 · 5s. For
γ = 1, we obtain cyclic code of length 5s over F5+ uF5. The
only MDS symbol-pair (α + uβ)-constacyclic code has the
parameters (5s, 52·5

s
, 2). We also provide some parameters of

MDS symbol-pair codes in Table 4 for γ -constacyclic codes.

V. CONCLUSION
Motivated by the work of Dinh et al. [12], we determine all
MDS symbol-pair codes among repeated-root constacyclic
codes of prime power length over the ring Fpm + uFpm .
We know that the units of the ring Fpm + uFpm are of the
form α + uβ and γ , where 0 6= α, β, γ ∈ Fpm . MDS
symbol-pair codes from (α + uβ)-constacyclic codes Cj =
〈(α0 x − 1)j〉 over the ring Fpm + uFpm are obtained when
j = 2dsp(Cj)−4. We obtained that the only MDS symbol-pair
(α + uβ)-constacyclic code is the trivial code 〈1〉. For
γ -constacyclic codes there are four types of ideals. Type 1
consists of trivial ideals for which we point out that only 〈1〉
is a MDS symbol pair code. Type 2 consists of the principal
ideals generated by non monic polynomial which are of the
form Cj = 〈u(x − γ0)j〉. MDS symbol-pair codes for these
codes can not be obtained in this case, with the Singleton
bound j = 2dsp(Cj)−ps−4. Type 3 is the principal ideals gen-
erated by the monic polynomials which are of the form Cj =
〈(x− γ0)j+ u(x− γ0)th(x)〉, where 0 ≤ t < j, and either h(x)
is 0 or a unit in

Fpm [x]
〈xps−γ 〉

. The condition for MDS symbol-pair
codes varies here and depends on both t and j. We find the
constraints on s, j and t to obtain MDS symbol-pair codes for
this type. Finally, Type 4 contains non-principal ideals of the
form C = 〈(x − γ0)j + u(x − γ0)th(x), u(x − γ0)κ 〉, where
1 ≤ j ≤ ps− 1, 0 ≤ t < j, and either h(x) is either 0 or a unit
in

Fpm [x]
〈xps−γ 〉

, deg(h) ≤ κ − t − 1, and

κ < T =

{
j, if h(x) = 0
min{j, ps − j+ t}, if h(x) 6= 0.

MDS symbol-pair codes in this case depend on κ , which is
given by κ = 2dsp(Cj) − ps + m − 4, for 1 ≤ m ≤ ps − 1.
We found out that the condition for κ < T , is contradicted
at every interval of κ . Thus, no MDS symbol-pair consta-
cyclic codes can be deduced in this type. Codes satisfying the
Singleton bound form an optimal class of codes with respect
to symbol-pair metric, and we obtained some parameters of
such codes for different types of units.

These results can be further generalized for computing
MDS b-symbol constacyclic codes of length ps over R.
Though it is presumed to give a similar conclusion, it will
be interesting to observe the outcome for some new MDS
constacyclic codes. Similarly, MDS symbol-pair constacyclic
codes of length 2ps over R can be computed to obtain some
more optimal codes.
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