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ABSTRACT Prompted by the remarkable progress in both cloud computing and GPU virtualization, cloud
gaming has become increasingly more popular in the gaming industry. In cloud gaming, games are stored
and run on cloud servers and the gamers interact with games through thin clients. Cloud gaming service
providers generally employ multiple geographically distributed data centers to deliver their services. The
main challenge for cloud gaming service providers is to find the best tradeoff between two contradicting
objectives: reducing the infrastructure operating costs and increasing the quality of player’s experience.
In this paper, we address a virtual machine provisioning problem for multiplayer cloud gaming with the
objective of minimizing both the inter-player delay among interacting players and the electricity costs of
cloud gaming service providers, while providing the good-enough response delay to gamers. We formulate
the problem into a constrained multiobjective optimization problem and propose an improved grey wolf
algorithm to solve the problem. The performance of our proposed algorithm are assessed by simulation
experiments based on the real-world parameters. The results show the superior performance of the proposed
approach in comparison with the state-of-the-art approaches applied to similar problems.

INDEX TERMS Cloud gaming, distributed data center, grey wolf algorithm.

I. INTRODUCTION
As the gaming industry matures, games became more and
more complex and thus demand for the latest hardware
such as multicore processors and high-end graphic cards for
fluent game playing. For example, the recent release of a
multiplayer first-person shooter game Call of Duty: Black
Ops 4 [1], which requires minimum specifications of a dual
core CPU at 3.6 GHz, a graphics card with at least 2 GB
RAM, 8 GB of memory space, and 60 GB of storage space.
In addition, the new gamemay be incompatible with the com-
puter configuration and thus gamers have to reconfigure their
computers. To make matters worse, the computer may be
abandoned since it cannot meet the requirements of new
games, even though it work well. These issues impose heavy
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burdens on gamers and thus force some potential gamers to
stay away from computer games. It is urgent and essential for
the game industry to seek solutions to attract more gamers.

Cloud gaming, as a flourishing gaming model, is a solution
for easing the burdens on gamers, which frees gamers from
downloading or installing the game and constantly upgrading
their computers. In cloud gaming, games are stored and run
on cloud servers and the gamers interact with games through
thin clients. Specifically, the cloud servers are responsible for
the interpretation of gamer input, the execution of game code,
the graphics rendering, the transmission of game scenes to
clients over the Internet, while the thin clients are in charge of
decoding and displaying game scenes to gamers, and captur-
ing and sending gamers’ inputs to cloud servers in real time.
Prompted by the remarkable progress in both virtualization
and GPU technology, cloud gaming has become increasingly
more popular in the gaming industry. Many companies have
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started to provide cloud gaming services, such as OnLive,
Gaikai, CiiNow, and Ubitus. The cloud gaming market has
been forecasted to reach 6.944 billion US dollars in 2026 [2].

Cloud gaming service providers generally utilizes multiple
geographically distributed data centers to deliver their ser-
vices. In this paper, we consider a multiplayer cloud gam-
ing (MCG) as illustrated in Fig. 1, which is a new form
of multiplayer online gaming in the cloud computing envi-
ronment. The remote game server is identical to that in tra-
ditional multiplayer online gaming and only responsible to
keep consistent game states among multiple game clients.
After receiving a gamer request, the matchmaking server will
assign the gamer request to a certain data center and then start
a rendering server or a virtual machine (VM) with specialized
graphic hardware to execute the requested game. On one
hand, the rendering servers appear as the ‘‘clients’’ that are
connected to the remote game server to exchange game states.
On the other hand, the rendering servers function as the cloud
servers which are responsible for processing game graphics
and logics, and then streaming encoded game frames back to
the gamer via the Internet. The clients running on gamer’s
device are called as ‘‘thin-clients’’ which transfer gamer’s
command to the rendering server and play the game frames
sent back by the rendering server. Many MCG systems have
emerged in recent years [3].

FIGURE 1. Typical multiplayer cloud gaming architecture.

The main challenge for MCG providers is to find the best
tradeoff between two contradicting objectives: reducing the
infrastructure operating costs and increasing the quality of
player’s experience (QoE). On the one hand, they need to
provide enough high-performance servers that enable high
QoE that lead to player satisfaction and loyalty. On the other
hand, they have to reduce the operating costs as much as
possible in order to increases the return on investment of
cloud infrastructures.MCGdemands for highQoE in terms of
responsiveness and fairness. The responsiveness is assessed
by the response delay, i.e. the time duration between the
player issuing a command and the corresponding game frame
being displayed on the screen. The fairness is evaluated by the

inter-player delay, i.e. the difference of response delay among
interacting players. It is worth pointing out that high inter-
player delay can result in worse QoE than the high response
delay [4]. The operating costs for MCG providers is mainly is
determined by the electricity cost incurred due to energy con-
sumption. The electricity costs involved in operating a large
infrastructure of multiple data centers may vary depending on
several factors. First, the electricity pricemay vary at different
locations. Second, power usage effectiveness (PUE)may vary
for different data centers. Finally, the power consumption of
data centers may vary significantly depending on the number
of active servers.

In this paper, we focus on the provisioning of the rendering
servers (VMs) for MCG in geographically distributed data
centers with the objective of minimizing both the inter-player
delay among interacting players and the electricity costs of
MCG providers, while providing the good-enough response
delay to gamers. To the best of our knowledge, there is no
previous work on simultaneously optimizing both QoE and
electricity cost. Our main contributions are summarized as
follows.
• We formulate the VM provisioning problem into a con-
strained multiobjective optimization problem to answer
the following questions: a) how to provision VMs with-
out violating the resource capacity and responsiveness
constraints, b) how to adjust the number of active servers
in each data center, c) how to fully exploit the geograph-
ical heterogeneity of electricity prices and data center
PUEs and d) how to achieve a trade-off between the
fairness and the electricity cost.

• We propose an improved grey wolf algorithm
(MGWAM) to solve the problem. In the MGWAM,
a modified social hierarchy is designed to improve
its exploration and exploitation abilities. To further
enhance the exploration, an adaptive mutation operator
is integrated into the MGWAM. In addition, a mixed
population containing both random and heuristic initial
solutions is employed to accelerate the search progress.

• We conduct extensive simulations to verify the effective-
ness of the proposed algorithm in the practical settings.
Our simulation results show that, compared with other
alternatives, our proposed algorithm can achieve lower
electricity costs and better fairness, while providing the
good-enough response delay to gamers.

The rest of this paper is organized as follows. The related
works are summarized in Sect. II. Sect. III describes the
system models and problem formulation. Our proposed
MGWAM algorithm is presented in Sect. IV and Sect. V.
In Sect. VI, the experimental evaluations and results are dis-
cussed. Finally, concluding remarks are given in Section VII.

II. RELATED WORK
Many efforts have been devoted to cloud gaming in recent
years. Since cloud gaming is delay sensitive, a huge body
of work focus on reducing the latency in cloud gam-
ing platforms. AMIRI et al. [5] proposed a Lagrangian
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Relaxation (LR) time-efficient heuristic algorithm to min-
imize the end-to-end latency within a cloud gaming data
center. Wu et al. [6] proposed a delay-aware quality optimiza-
tion framework called DAVIS to improve video streaming
quality against burst packet losses in cloud-assisted real-time
video delivery. Chen et al. [7] addressed the VM provisioning
problem that aims at minimizing the inter-player delay, while
preserving good-enough response delay experienced by play-
ers. These studies are different from our work because they
focus solely on improving the performance of cloud gaming
systems and thus cannot provide cost savings.

There is also some work focusing on reducing the opera-
tional cost of the cloud gaming service provides. Li et al. [8]
proposed a play request dispatching algorithm to optimize
the total service cost of a cloud gaming system using public
cloud resources. Wang et al. [9] studied how to combine dif-
ferent virtual machine pricing models to serve time-varying
demands at minimum cost. Li et al. [10] addressed the server
provisioning problem for cloud gaming using public cloud
resources, with the goal of minimizing the total server run-
ning cost and software storage cost. However, these studies
only consider reducing the operational cost of the cloud gam-
ing service provides and thus cannot provide QoE guarantees
to gamers.

In addition to the above studies, there are also research
efforts on minimizing the cloud gaming provider’s cost while
satisfying the QoE requirement of gamers. Hong et al. [11]
proposed a VM placement algorithm that can minimize the
operation cost of the cloud gaming platform while maintain
good-enough experience. Deng et al. [3] investigated the
server allocation problem forMCGwith the objective of min-
imizing the total server rental and bandwidth cost under real-
time latency constraint. Tian et al. [12] studied the selection of
data centers, virtual machine allocation, and video streaming
bit rate settings jointly in a multiregion multidatacenter cloud
gaming system, which aims to minimize the overall service
cost and ensure good-enough QoE. Different from these stud-
ies, our work focuses on minimizing both the inter-player
delay among interacting players and the electricity costs of
MCG providers, while providing the good-enough response
delay to gamers.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
Fig. 1 illustrates the system architecture of MCG plat-
form, which includes multiple matchmaking servers, mul-
tiple gamer servers, S gamers dispersed at different
regions and N geographically distributed data centers in
a multielectricity-market environment. Each data center is
equipped with M physical servers (PMs) and has a unique
PUE value. Each physical server hosts several VMs. Each
VM have diverse resource requirements, including CPU and
GPU. The matchmaking server monitors system resources
and implements theVMprovisioning algorithm.More specif-
ically, it is responsible for monitoring network delay, and
locating and launching VMs for multiplayer game session.

The information of interaction pattern among gamers can be
obtained based on the locations of their avatars in the game
scene. Each VM can handle the rendering and streaming
workloads of up to k gamers.

B. DELAY MODEL
The QoE of game players is sensitive to response delay of
MCG. Response delay mainly consists of network delay,
processing delay and playout delay [13]. Network delay is
essentially the network round-trip time, which can be mea-
sured by tools such as Ping. Processing delay represents the
time needed by VM to process a player’s input and generate
the game frames, which accounts for 30% of the response
delay. Playout delay is the time for the client to decode and
play the received game frames, which only occupies 10% of
processing delay. Because playout delay is usually fixed and
occurs at the client side, we do not consider it in our model for
the sake of brevity. Therefore, the response delay RDp,i,j of a
gamer p connected to a VM running on PM j at data center i
is calculated as follows:

RDp,i,j = NDp,i + PDi,j + CDi (1)

where NDp,i represents the network delay between gamer
p and data center i and CDi represents the network delay
between data center i and the remoting game server. PDi,j is
the processing delay of a VM running on PM j at data center i
and is defined by

PDi,j = α1
/
(1+ e−α2·vi,j+α3 ) (2)

where α1, α2 and α3 are model parameters, and vi,j is the
number of VMs running on physical server j at data cen-
ter i. This sigmoid function has been adopted by other works
such [7] and [11].

C. ELECTRICITY COST MODEL
For geo-distributed data centers, the electricity cost is related
to the electricity price, the amount of power consumption and
the PUE. Therefore, the electricity cost Ci of a data center i
can be expressed as

Ci = PUE i · [
∑M

j=1
Pi,j] · bi (3)

where PUE i denotes the energy efficiency of a data center i
and its value is defined as a ratio of the total amount of
power consumed by the entire datacenter facility (including
cooling, lighting, etc.) over the power delivered to the com-
puting equipment. Ideally, all power entering the data center
is being used to power the computing equipment (PUE = 1).
On average, conventional data centers have a PUE of 1.7,
whereas leading industry datacenter facilities have a PUE
of 1.18 [14].

In (3), bi represents the electricity price at data center i
and Pi,j denotes the power consumed by a server j at data
center i. Some research show that CPU and GPU are the
major components consuming most of the system’s power.
In order to save power, servers are put into low-power sleep
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modes when they are idle. Because today’s server consumes
very little power when in sleep mode, we neglect the power
consumption during sleep mode. Finally, the server power
consumption can be modeled as

Pi,j =

{
0, when being sleep mode
PCPUi,j + P

GPU
i,j + P

oth
i,j , otherwise

(4)

where Pothi,j denotes the power consumption of all components
except CPU and GPU. PCPUi,j and PGPUi,j represent CPU and
GPU power consumption, respectively. Inspired by the linear
model in [15], [16], we can define the power consumption of
these hardware components as follows

PCPUi,j = PCPU_idle
i,j +

(
PCPU_max
i,j − PCPUidlei,j

)
· UCPU

i,j (5)

PGPUi,j = µ3
i,j ·f

GPU
i,j ·UGPU

i,j +µ
2
i,j ·f

GPU
i,j +µ1

i,j ·U
GPU
i,j +µ

0
i,j

(6)

where µ0
i,j, µ

1
i,j, µ

2
i,j and µ3

i,j are training parameters.
PCPU_idle
i,j and PCPU_max

i,j represent CPU idle power and CPU
peak power, respectively. f GPUi,j denotes the GPU frequency.
UCPU
i,j and UGPU

i,j represent the utilization of CPU and GPU,

respectively. We employ the sigmoid function revealed by
Hong et al [11] to compute system resource utilization and
thus their formulas are defined as follows.

UCPU
i,j = β1

/
(1+ e−β2·vi,j+β3 ) (7)

UGPU
i,j = γ1

/
(1+ e−γ2·vi,j+γ3 ) (8)

where β1 − β3 and γ1 − γ3 are training parameters.

D. MULTIOBJECTIVE OPTIMIZATION MODEL
Let G be the set of gamers, E be the set of data centers and
Fi be the set of servers in data center i. Let RCPU and RGPU

be the CPU and GPU demand of each VM, respectively. Let
TCPUi,j , and TGPUi,j be the CPU and GPU capacity of each PM,

respectively. The interact state between gamer i and gamer j is
denoted by Ii,j. The binary variable xp,i,j indicates whether a
gamer p is assigned to a server j at data center i. Our objective
is to minimize both the inter-player delay among interacting
players and the electricity costs of MCG providers, while
maintaining the good-enough response delay. The VM pro-
visioning problem can therefore be formulated as:

Minimize max
p,q∈G

{∣∣Dp − Dq∣∣ · Ii,j} (9)

Minimize
∑N

i=1
Ci (10)

vi,j · RCPU ≤ TCPUi,j ∀i ∈ E, ∀j ∈ Fi (11)

vi,j · RGPU ≤ TGPUi,j ∀i ∈ E, ∀j ∈ Fi (12)

vi,j =
⌈
Li,j
/
k
⌉
∀i ∈ E, ∀j ∈ Fi (13)

Li,j =
∑S

p=1
xp,i,j ∀i ∈ E, ∀j ∈ Fi (14)∑N

i=1

∑M

j=1
xp,i,j = 1 ∀p ∈ G (15)

Dp =
∑N

i=1

∑M

j=1
(xp,i,j · RDp,i,j) ∀p ∈ G

(16)

Dp ≤ D∗ ∀p ∈ G (17)

xp,i,j ∈ {0, 1} ∀p ∈ G, ∀i ∈ E, ∀j ∈ Fi (18)

Constraints (11)-(12) avoid the resources used by VMs
exceed the capability of the physical server. Constraint (13)
derives the total number vi,j of VMs running on each server.
Constraint (14) derives the total number Li,j of gamers allo-
cated to each physical server. Constraint (15) ensures that
each gamer is served by one physical server. Constraint (16)
derives the response delay Dp of each gamer. Constraint (17)
ensures that the response delay perceived by all players does
not exceed the threshold D∗. Constraint (18) defines the
domain of the variables of the problem. Because the pro-
posed VM provisioning problem is NP-hard [3], it is typically
impractical to make a complete enumeration of all possi-
ble solutions to find the best solutions when the amount of
gamers increases to a large scale. The grey wolf algorithm has
advantages of high convergence speed, few parameters and
ease of implementation and it has been demonstrated to be
superior or competitive to other classical metaheuristics such
as genetic algorithm, particle swarm optimization algorithm
and ant colony optimization algorithm. Therefore, the later
section will show how to apply a grey wolf algorithm to
efficiently search for good solutions in large solution spaces.

IV. THE ORIGINAL GREY WOLF ALGORITHM
Grey Wolf algorithm (GWA) is a recently developed meta-
heuristic search algorithm inspired by the leadership hierar-
chy and hunting mechanism of grey wolves in nature [17].
Grey wolves tend to live in packs. Wolf pack sizes is an
average of 5–12 wolves. Fig. 2 describes the social hierarchy
of the grey wolves in nature. The top of the hierarchy is
occupied by alpha (α) wolf which is known as leaders of
the pack. The α wolf is responsible for making decisions in
a pack. The next level of hierarchy after α wolf is occupied
by beta (β) wolf which helps α wolf in decision making and
takes charge of the pack in absence of α wolf. The last level
of the hierarchy is comprised of omega (ω) wolves which
submit to all the other dominant wolves and play a role of
scapegoats in the pack. The third level of the hierarchy is
occupied by delta (δ) wolf which is in charge of scouting to
protect and guarantee the safety of the pack. δ wolf respects
to α wolf and β wolf, but dominates ω wolf. In addition to
the social hierarchy of wolves, cooperative hunting is another
important social behavior of grey wolves. Hunting process of
grey wolves mainly consists of four phases: searching for the
prey; approaching the prey; encircling the prey and attacking
towards the prey.

In the mathematical model of the social hierarchy for the
GWA, the fittest solution is considered as the α wolf while the
second and third best solutions are termed as β and δ wolfs,
respectively. The remaining solutions are assumed to be ω
wolves. Hunting is guided by the α, β and δ wolfs while ω
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FIGURE 2. Social hierarchy of the grey wolves.

wolfs iteratively improved their location by following these
three wolves.

During the hunting, the encircling behavior of grey wolves
is mathematically modeled by using the following equations:

ED =
∣∣∣ EC · −→Xp (t)− EX (t)∣∣∣ (19)

EX (t + 1) =
−→
Xp (t)− EA · ED (20)

where t denotes the current iteration, EX and
−→
Xp indicate the

position vector of gray wolf and prey respectively. EA and EC
denote coefficient vectors which are calculated as follows:

EA = 2Ea · Er1 − Ea (21)
EC = 2 Er2 (22)

where Er1 and Er2 are random vectors within the range [0,1].
Approaching a prey is modeled by linearly decreasing the
elements of Ea from 2 to 0 over the course of iteration. The
vector EA is utilized to balance exploration and exploitation.
When

∣∣∣EA∣∣∣ > 1, the grey wolves are obliged to diverge
from the prey to search for better prey, which stands for an
exploration process. When

∣∣∣EA∣∣∣ < 1, the grey wolves attack
towards the prey, which stands for an exploitation process.

The hunting process is usually directed by the α wolf while
the β and δ wolfs can occasionally participate in hunting.
In the mathematical model of hunting behavior for the GWA,
the α, β and δ wolfs are supposed to have better knowledge
about the potential position of prey and thus their positions are
employed to update the positions of all the other (ω) wolves
as shown in (23).

EX (t + 1) = (
−→
X1 +

−→
X2 +

−→
X3)/3 (23)

where
−→
X1,
−→
X2 and

−→
X3 are calculated as in (24), (25) and (26)

respectively.
−→
X1 =

∣∣∣−→Xα −−→A1 · −→Dα∣∣∣ (24)
−→
X2 =

∣∣∣−→Xβ −−→A2 · −→Dβ ∣∣∣ (25)
−→
X3 =

∣∣∣−→Xδ −−→A3 · −→Dδ∣∣∣ (26)

where
−→
Xα ,
−→
Xβ and

−→
Xδ are the first three best solutions in the

population at a given iteration t.
−→
A1 ,
−→
A2 and

−→
A3 are calculated

using (21).
−→
Dα ,
−→
Dβ and

−→
Dδ are calculated using (27), (28)

and (29) respectively.
−→
Dα =

∣∣∣−→C1 ·
−→
Xα − EX

∣∣∣ (27)

−→
Dβ =

∣∣∣−→C2 ·
−→
Xβ − EX

∣∣∣ (28)
−→
Dδ =

∣∣∣−→C3 ·
−→
Xδ − EX

∣∣∣ (29)

where
−→
C1,
−→
C2 and

−→
C3 are calculated using (22).

V. THE PROPOSED MGWAM
The original GWA is designed mainly to handle the single
objective optimization problem in the continuous domain.
However, the VM provisioning problem for MCG is a
discrete multiobjective combinatorial optimization problem.
In order to extend the GWA algorithm for single objective
optimization to solve multiobjective problems, we propose
an improved multiobjective GWA algorithm to solve the
VM provisioning problem for MCG. The basic steps of the
proposed MGWAM algorithm are described as follows:

1. Initialize the parameters of the MGWAM algorithm
2. Generate the initial population (see Section V Part B

for details)
3. Choose three best solutions from the population and set

as
−→
Xα ,
−→
Xβ and

−→
Xδ respectively (see Section V Part C for

details).
4. Update the position of the individual by (23) (when

the value computed by (23) exceed its predetermined
boundaries, it is set to its boundaries.)

5. Apply the mutation operator to each individual wolf in
the population with an adaptive mutation probability
(see Section V Part D for details)

6. Update the population according to fast non-dominated
sorting and crowding distance (see Section V Part E for
details)

7. If the maximum number of iterations is reached, stop
this algorithm. Otherwise, return to Step 3

The key components of the proposed MGWAM algorithm
are the encoding and decoding schemes, the population ini-
tialization, the social hierarchy of grey wolves, the adaptive
mutation operator and the population update strategy. The
following subsections give a detailed description of these
components.

A. ENCODING AND DECODING
A suitable encoding and decoding scheme can affect the
performance of the MGWAM algorithm. Our goal is to
select appropriate PM for each player to minimize both the
inter-player delay among interacting players and the elec-
tricity costs of MCG providers while providing the good-
enough response delay to gamers. To define the encoding of
the problem, we need to establish the meaning and dimension
of the grey wolf individual. A grey wolf individual in the pro-
posed algorithm is illustrated as a row vector with continuous
values. The dimensions of the vector are equal to the number
of gamers in cloud gaming. The value of each element in the
vector is a real number between 0 and the number NP of PMs
in all the data centers. We index all PMs from different data
centers using integers from 0 to NP-1. The core idea of the
original GWA is to search the optimal solution by updating
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FIGURE 3. Encoding and Decoding.

the position of the grey wolf individual which is a continuous
variable. However, the VM provisioning problem for MCG
is a typical discrete problem. Therefore, it is a very important
issue to solve the VM provisioning problem by mapping the
continuous position of the grey wolf individual to the discrete
assignment of players in MCG. In this paper, we adopt the
floor function as a mechanism of transferring a continuous
representation to an integer representation. The integer value
corresponds to an index of PM and represents the PM serving
the gamer defined by that element location. At the evolution
stage, grey wolf individuals in continuous representation are
used to search for the non-dominated solutions. At the decod-
ing stage, grey wolf individuals in integer representation are
used to determine the number of players allocated to each PM,
the number of VMs running on each PM and the number of
active PMs in each data center. As an example, Fig. 3 shows
both the encoding scheme and the decoding scheme for the
VM provisioning problem using 7 gamers, VM capacity of
one gamer and 4 PMs dispersed at 2 different data centers.

B. POPULATION INITIALIZATION
In the VM provisioning problem, the search space of possible
solutions is typically huge, especially when the amount of
gamers increases to a large scale, which could cause the
MGWAM algorithm extremely slow to converge. In order to
accelerate the search progress, the initial population in our
algorithm is composed of the individuals generated by differ-
ent initialization approaches. Assuming that the population
size is SN, these individuals include
• An initial individual generated by a QoE-aware heuristic
algorithm, which is treated as the VM provisioning with
high gaming QoE.

• An initial individual generated by a cost-aware heuristic
algorithm, which is treated as the VM provisioning with
low electricity cost.

• SN-2 randomly generated individual.
The QoE-aware heuristic algorithm assigns every gamer to

a server with the minimal inter-player delay among all of its
eligible servers. The cost-aware heuristic algorithm allocates
every player to a server in the data center with the minimum
combined cost among all of its eligible datacenters. The com-
bined cost Ed associated with each datacenter d is defined as
Ed = PUEd/PUEmax + bi/bmax , where PUEmax and bmax
represent the maximum value of the PUE and the electricity
price among all data centers respectively.We utilize these two

heuristic-generated individuals to approximate two endpoints
of the Pareto front. Other initial individuals are generated
by randomly choosing a real number from (0, NP) for the
element of each encoding.

C. SOCIAL HIERARCHY OF GREY WOLVES
Because of the presence of constraints, each gray wolf indi-
vidual can be either feasible solution or infeasible solution.
It is difficult to directly determine the α, β and δ wolfs based
on Pareto dominance relationship. The constraint-domination
principle proposed byDeb et al. [18] is used to handle the con-
straints. We utilize the fast non-dominated sorting approach
to divide the population into several level ranks. All feasible
solutions are ranked according to Pareto dominance relation-
ship while all infeasible solutions are ranked according to the
constraint violation value. Any feasible solution has a better
rank than any infeasible solution. When multiple individuals
are having the same rank, the crowding distance is employed
to assess the quality of gray wolf individual.

In order to maintain an appropriate balance between explo-
ration and exploitation, the α, β and δ wolfs are determined
using a mixed operator based on binary tournament and elitist
selection. In binary tournament selection, a pair of individuals
are chosen at random from the population. The individual
with the lower front is chosen if they are from different
fronts. The solution with the higher crowding distance is
chosen if they are from the same front. The number (BTN)
of individuals selected by binary tournament is dynamic and
it is defined as follows.

BTN = 3(1− PR(n)2) (30)

where PR(n) represents the progress rate in the evolutionary
search and it is given by

PR (n) = NewSlo(n)
/
AllSlo(n) (31)

where NewSlo(n) denotes the number of new non-dominated
solutions discovered in generation n, and AllSlo(n) denotes
the total number of non-dominated solutions in generation n.
At the same time, the number of individuals chosen by elitist
selection is also dynamic and it is given by 3 − BTN . Elitist
selection is based on individual’s rank and crowding distance.

The rationale behind the mixed operator is intuitive. When
PR(n) is small, it means that either the generated Pareto front
is approaching the true front or the search process is not
discovering new solutions and wolf packs need to explore
unknown areas of the search space. When PR(n) is large,
it means that the new solutions are being discovered and wolf
packs need to perform exploitation in neighborhood of the
known good solution.

D. ADAPTIVE MUTATION OPERATOR
In order to avoid losing diversity of wolf packs and reduce
the risk of trapping in local optimum, an adaptive mutation
operator is introduced in evolution process. The well-known
inversion mutation is applied to each individual wolf in the
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FIGURE 4. Inversion mutation.

population with an adaptive mutation probability. The inver-
sion mutation is performed by choosing two positions within
a solution at random and then inverts the elements between
these two positions. Fig. 4 shows how the inversion muta-
tion operates. Since the mutation probability has an impor-
tant effect on the performance of the MGWAM algorithm,
the inversion mutation operator adapts the mutation probabil-
ity with time along the whole evolution process to maintain a
balance between exploitation and exploration. The mutation
probability Pm in the MGWAM algorithm is calculated using
the following equation.

Pm =

h1 ·
[
1−

(
n
/
maxgen

)2]
, 0 ≤ n ≤ w

h2 ·
[
1−

(
n
/
maxgen

)2]
, w ≤ n ≤ maxgen

(32)

where n denotes the current iteration, maxgen represents the
maximum number of iterations carried out, and w(0 ≤ w ≤
maxgen), h1(0 ≤ h1 ≤ 1) and h2(0 ≤ h2 ≤ 1) are parameters
which are selected depending on the problem. In this paper,
w, h1 and h2 are set as maxgen

/
4, 0.8 and 0.05, respec-

tively. Unlike many other adaptive mutation operators where
mutation probability decreases gradually along the evolution
process, the mutation operator that we adopted focuses on
producing a diverse set of solutions in the initial stage and
then improving them in the later stage.

E. POPULATION UPDATE
Given an initial parent population Pt with SN individuals,
the MGWAM algorithm proceeds by applying the social
hierarchy, hunting and mutation operator to compute an off-
spring population Qt composed of SN individuals. In order
to preserve the better solutions appeared during the evolution
process, the parent and offspring population after evolution
are combined into a population Rt with 2∗SN individuals.
If the number Nf of the feasible solutions in Rt is less than
SN, all feasible solutions are put into the next population and
the remaining (SN-Nf ) individuals are chosen from the infea-
sible solutions according to the constraint violation value.
Otherwise, SN feasible solutions are selected from Pt as the
next population according to fast non-dominated sorting and
crowding distance.

VI. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
The performance of the proposed MGWAM algorithm
was evaluated by conducting simulation experiments using
an extension of CloudSim [19] called the GPUCloudSim
toolkit [20], which is a modern framework aimed for model-
ing and simulating GPU-enabled data centers in cloud com-
puting environments. It provides multilevel scheduling and

TABLE 1. Data center configuration.

provisioning of GPU resources and also adds functionali-
ties required to support the analysis of GPU virtualization
and power consumption overheads. Our experiments were
conducted for two geo-distributed data center configurations
containing ten and sixteen data centers. Locations of the
data centers in the two configurations are chosen from major
cities in the continental United States. Table 1 shows the
price of electricity at different locations [21] and the PUE
values of different data centers [22]. Each data center is
composed of 10 homogeneous PMs with two dimensional
resource capacities: CPU andGPU, and for each PM, the total
resource capacities of these resources are set as 6200 MIPS
and 32 vGPU with 750MHz, respectively. Each PM can host
multiple VMs and each VM requires one CPU core with
1000 MIPS and 4 vGPU with 750 MHz.

Table 2 summarizes the values of the parameters used in the
various formulations for the electricity cost and inter-player
delay estimation presented in Section III. Specifically, the
values of the coefficients for computing the processing delay,
CPU utilization and GPU utilization are taken as reported
in a previous experimental study [11]. The response delay
threshold is set to 500ms as used by Chen et al. [7]. The values
of the coefficients for computing GPU, CPU and PM power
consumption are taken as reported by Guan et al. [15] and
Meisner et al. [23].

We derive the interaction pattern between players and the
distribution of players from the avatar history dataset of
World of Warcraft (WoW) collected by Lee et al. [24]. The
network delay between players and data centers varies from
5 to 200ms, while the network delay between data centers and
remote game servers from 10 to 50ms [7].

The settings for various parameters in MGWAM have
a direct effect on the algorithm performance. Appropriate
parameter values were determined on the basis of preliminary
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TABLE 2. The related parameters used in the simulation.

experiments. The final parameter settings were as follows: the
population size is 100 and the maximum number of iterations
is 50.

To evaluate the algorithm performance, we take into
account different problem sizes from small to large scales.
The problem size is defined as a three-tuple (k, s, t), where k
is the number of gamers served by each VM, s is the number
of data centers, and t is the number of gamers.

B. COMPARISON OF MGWAM WITH TWO
SINGLE-OBJECTIVE APPROACHES
In the first set of simulation experiments, we compared
the proposed approach with two single-objective algorithms,
an IDO algorithm [7] and a LCC approach. IDO is a
two-phase heuristic algorithm that aims to minimize the
inter-player delay between interacting players while main-
taining good-enough response delay experienced by players.
LCC is an extension of the LCW proposed by Deng et al. [3]
with the aim of minimize the electricity cost while achiev-
ing just-good-enough response delay of gaming, in which
every player is allocated to the data center with the low-
est capacity wastage. if a gamer has more than one eligi-
ble datacenters providing the same lowest capacity wastage,
the gamer is assigned to the one with the lowest combined
cost in terms of PUE and electricity price. The optimal result
obtained by the proposed algorithm is usually a set of non-
dominated solutions, where each objective function value of
any non-dominated solution can only be improved by degrad-
ing at least one of its other objective function values. Because
of the lack of information about the preferences of objectives,
we utilize a Fuzzy-based approach [25] to generate the best
compromised solution from the obtained Pareto set. For each
objective function fk , a linear membership function µk is

defined as follows:

µk =


1 fk ≤ f mink

(f maxk − fk )
/
(f maxk − f mink )f mink < fk < f maxk

0fk ≥ f maxk

(33)

where f mink and f maxk represent the maximum and min-
imum values of the kth objective function among all
non-dominated solutions, respectively. Correspondingly,
the normalized membership functionµi is calculated for each
non-dominated solution as

µi =
∑OB

k=1
µik

/∑ND

j=1

∑OB

k=1
µik (34)

where OB and ND represent the number of objectives func-
tions and non-dominated solutions, respectively. The solution
with the maximum membership µi is chosen as the best
compromise solution.
Figs. 5, 6 and 7 show the maximal inter-player delay,

the electricity cost and the cumulative distribution func-
tion (CDF) of response delay provided by three algorithms
for various problem sizes, respectively. From these figure,
we have the following results:

1. Compared to IDO, LCC performs better in terms of
the electricity cost but worse in terms of the maximum
inter-player delay; the reason is that it only optimizes
the electricity cost and does not take the difference of
response delays among players into account.

2. Compared to LCC, IDO performs better in terms of the
maximum inter-player delay but worse in terms of the
electricity cost; the reason is that it only optimizes
the inter-player delay among players, and it does not
consider the electricity cost.

3. MGWAM performs best in terms of the maximum
inter-player delay and the electricity cost; the reason is
that it simultaneously optimizes the inter-player delay
among interacting players and the electricity costs of
MCG providers.

4. All the three algorithms can maintain the response
delay experienced by players below a tolerable thresh-
old. Among these algorithms, IDO has the minimum
boundary of the response delay, LCC has the medium
boundary of the response delay, and MGWAM has the
maximum boundary of the response delay.

C. COMPARISON OF MGWAM WITH ITS VARIANTS
To evaluate the efficiency of the improved initialization strat-
egy, the improved social hierarchy strategy and the adap-
tive mutation strategy in MGWAM, we compare MGWAM
with its variants, including MGWAMran, MGWAMbtou, and
MGWAMfixm. In the second set of simulation experiments,
MGWAMran, MGWAMbtou and MGWAMfixm denote the
algorithm with the random population initialization, the algo-
rithm with three best solutions selected using the binary
tournament, and the algorithm with a fixed mutation rate
0.5, repectively. We use the hypervolume (HV) measure [26]
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FIGURE 5. Maximum inter-player delays of three algorithms for different problem sizes.

FIGURE 6. Costs of three algorithms for different problem sizes.

to assess the performance of four multiobjective optimiza-
tion algorithms. The HV metric is defined as the volume
of the dominated portion of the objective space relative to
a reference point. Mathematically, for each non-dominated
solution i ∈ X found by the algorithms, a hypercube hvi is
established with the reference point and the solution i as the
diagonal corners of the hypercube. The reference point can be
obtained by constructing a vector of worst objective function
values. The HV of the non-dominated solution set X is then
calculated as

HV =
⋃|X |

i=1
hvi (35)

A larger HV value is preferable as it reveals that the
obtained solutions are close to the true Pareto front and
also has a good distribution. For the purpose of comparison
between algorithms, we use the non-dominated solutions
in the merging solutions of algorithms over 10 runs as an
approximation of the true Pareto front and then normal-
ize the obtained solutions by dividing their upper bounds
of the approximation. After all the solutions are normal-
ized, a reference point (1,1) is used in the calculations
of HV.

Fig. 8 shows the non-dominated solutions produced by
four algorithms for various problem sizes. As can be seen
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FIGURE 7. CDF of response delay under different problem sizes.

FIGURE 8. Non-dominated solutions obtained by four algorithms under different problem sizes.

in the figure, the Pareto fronts obtained by our MGWAM
are superior to those obtained by the comparative algorithms.
The better performance of our MGWAM compared to the
comparative algorithms is also confirmed by a larger value
of HV shown in Table 3. For a more intuitive comparison, the

table also shows the performance improvement IM (oth) of
MGWAM over the comparative algorithms which is defined
as follows

IM (oth) =
HV our − HV oth

HV oth
(36)
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TABLE 3. Comparison of the HV metric for three algorithms under different problem sizes.

where HV oth denotes the HV value achieved by the
comparative algorithms, i.e. MGWAMran, MGWAMbtou,
or MGWAMfixm, and HV our is the HV value achieved
by MGWAM. From the table, we can also find that
our MGWAM always have a better performance than
MGWAMran, MGWAMbtou, and MGWAMfixm regardless
of which problem sizes used in the experiment. The per-
formance improvements achieved by our MGWAM over
MGWAMran, MGWAMbtou, and MGWAMfixm can be up
to 14.66%, 38.39% and 27.42%, respectively. The major
reasons for the superiority performance of MGWAM are as
follows: First, the search process in MGWAM is guided by
three good solutions selected based on binary tournament and
elitist selection, which improve the quality of population and
maintain diversity of population. Second, the search operator
of GWA and the adaptive mutation operator is combined to
diversify the search to unvisited areas of the solution space,
which give theMGWAMa better chance to explore the search
space efficiently. Third, the mixed population containing both
random and heuristic initial solutions can lead to high-quality
solutions in a relatively small number of generations.

VII. CONCLUSION
In this paper, we model the VM provisioning problem for
MCG in geographically distributed data centers as a con-
strained multiobjective optimization problem and present an
improved grey wolf algorithm to solve the problem. The
performance of our proposed algorithm is assessed through
extensive simulation based on the real-world parameters. The
results show that, compared with other alternatives, our pro-
posed algorithm performs better in terms of the maximum
inter-player delay and the electricity cost, while provide the
good-enough response delay to gamers.
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