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ABSTRACT Space mapping (SM) methodology has been recognized as a powerful tool for accelerating
electromagnetic (EM)-based yield optimization. This paper proposes a novel parallel space-mapping based
yield-driven EM optimization technique incorporating trust region algorithm and polynomial chaos expan-
sion (PCE). In this technique, a novel trust region algorithm is proposed to increase the robustness of the
SM surrogate in each iteration during yield optimization. The proposed algorithm updates the trust radius of
each design parameter based on the effectiveness of minimizing the l1 objective function using the surrogate,
thereby increasing the robustness of the SM surrogate. Moreover, for the first time, parallel computation
method is incorporated into SM-based yield-driven design to accelerate the overall yield optimization process
of microwave structures. The use of parallel computation allows the surrogate developed in the proposed
technique to be valid in a larger neighborhood than that in standard SM, consequently increasing the speed of
finding the optimal yield solution in SM-based yield-driven design. Lastly, the PCE approach is incorporated
into the proposed technique to further speed up yield verification on the fine model. Compared with
the standard SM-based yield optimization technique with sequential computation, the proposed technique
achieves a higher yield increase with shorter CPU time by reducing the number of SM iterations. The
proposed technique is illustrated by two microwave examples.

INDEX TERMS Electromagnetic optimization, parallel computation, polynomial chaos expansion, space
mapping, trust region, yield optimization.

I. INTRODUCTION
Yield optimization, also called design centering, is an opti-
mization process that aims to find a nominal design solution
with the maximum yield [1]. Direct electromagnetic (EM)-
based yield optimization does not appear to be feasible as a
significantly large number of EM simulations are typically
required during the whole optimization process [2]. As a
recognized engineering optimization methodology, space
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mapping (SM) holds a great potential to accelerate yield-
driven EM optimization [3]–[5]. The basic concept of SM
is to replace EM-based fine models with fast yet not so
accurate coarse models and calibrate the coarse models with
certain mapping (linear or nonlinear) structures in each itera-
tion during optimization. Such mapping structures construct
a mathematical link between a coarse model and a fine
model. Through SM, the original CPU-intensive evaluations
on the fine model are replaced by fast computations on the
coarse model, while the accuracy of the fine model is still
maintained [3].

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 143673

https://orcid.org/0000-0002-3536-5777
https://orcid.org/0000-0002-3569-8782
https://orcid.org/0000-0001-9775-5124
https://orcid.org/0000-0002-1991-3526
https://orcid.org/0000-0001-7852-5331
https://orcid.org/0000-0002-7431-8121


J. Zhang et al.: Parallel Space-Mapping Based Yield-Driven EM Optimization Incorporating Trust Region Algorithm and PCE

In the last two decades, a great amount of research efforts
have been devoted to developing SM-based approaches to
facilitate yield optimization ofmicrowave structures [6], [11].
For example, neural space-mapping models have been
exploited in [6] to perform EM-based yield optimization
efficiently. The sensitivity formulas of the surrogate model
responses have also been derived, which are then used in
approximating the sensitivities of the fine model responses.
In [7], a tuning space-mapping surrogate based yield esti-
mation and optimization technique has been presented. The
responses of the surrogate are further corrected to obtain
improved yield accuracy, facilitating the overall yield opti-
mization process. However, in these two methods, the SM
surrogate is not updated during yield optimization, which
means that a large amount of EM data are required to train the
surrogate to be valid in a large region. Some other research
works exist in the literature that update the SM surrogate
in each iteration during yield optimization. For example,
in [8], a modified ellipsoidal technique has been incorporated
into space mapping and then applied to the yield optimiza-
tion problem of microwave circuits. The mapping structure
between coarse and fine models is updated iteratively in
yield optimization using the EM responses at all the nom-
inal points in the preceding iterations. In [9], a derivative-
free trust region approach has been presented to maximize
the yield of microwave circuits, where the generalized SM
surrogate is used and updated at each SM iteration in yield
optimization. For both [8] and [9], Jacobian matrices of the
finemodel responses are also used in the parameter extraction
process to enhance the accuracy of the surrogate model.
Recently, SM approaches exploiting response features have
also been investigated with the objective of achieving more
efficient yield estimation and/or optimization of microwave
structures [10], [11].

All the aforementioned SM-based methods do not use
parallel computation, which holds a great potential to speed
up EM design optimization. Parallel computation is an effi-
cient technique to speed up EM optimization by accelerating
EM data generation [12] and surrogate model training [13].
Recently, a parallel SM approach has been presented in [14],
where the parallel computation mechanism has been com-
bined with SM, to facilitate EM-based nominal optimization.
It has been shown that with parallel computation, the SM
surrogate can be trained to be valid in a relatively larger neigh-
borhood and the optimal nominal design can be obtained in
shorter time and fewer SM iterations [14].

Yield estimation is an indispensable component of yield
optimization. Traditional Monte Carlo (MC) method for EM-
based yield estimation is computationally expensive as a large
number of EM simulations are required to achieve desired
yield estimation accuracy. Recently, the polynomial chaos
expansion (PCE) approach [15] has emerged as a powerful
tool for statistical analysis and yield estimation in microwave
design [16]–[20]. Existing studies have shown that PCE has
significant benefits over the traditional Monte Carlo anal-
ysis in terms of reduced computational costs and shorter

CPU time for yield estimation of microwave structures [20].
In [2], a PCE-based approach has been presented to solve the
challenging problem of EM-based yield optimization. In this
paper, we explore the possibility of combining SM and PCE
to solve the EM-based yield optimization problem.

This paper proposes a novel parallel space-mapping based
yield-driven EM optimization technique incorporating trust
region algorithm and PCE. In this technique, a novel trust
region algorithm designed specifically for EM-based yield-
driven design is proposed to increase the robustness of the SM
surrogate. The proposed algorithm updates the trust radius
of each design parameter in each SM iteration based on the
effectiveness of minimizing the l1 objective function using
the surrogate. Moreover, for the first time, we incorporate the
parallel computation method to SM-based yield optimization
of microwave structures. Specifically, parallel computation
method is used to generate fine model EM responses at
multiple geometrical samples simultaneously and to train
the surrogate model to match the fine model over multiple
geometrical samples. The use of parallel computation allows
the surrogate to be trained in a larger neighborhood in the
design parameter space than that in standard SM, conse-
quently increasing the speed of finding the optimal yield solu-
tion in yield-driven design. Lastly, we propose to incorporate
the PCE approach, which is an efficient alternative method
for EM-based yield estimation, into the proposed technique
to further accelerate the overall yield optimization process.
Compared with the standard SM-based yield optimization
technique, the proposed technique reduces the number of SM
iterations to achieve a desired yield value, thereby accelerat-
ing the overall EM-based yield optimization process.

This paper is organized as follows. In Section II, we review
the formulations of the original EM-based yield optimiza-
tion problem. In Section III, the proposed parallel space-
mapping based yield optimization technique is presented in
detail. In Section IV, we perform yield optimization on two
microwave examples to demonstrate the advantages of the
proposed technique. In Section V, we conclude the paper.

II. FORMULATION OF THE ORIGINAL EM-BASED YIELD
OPTIMIZATION PROBLEM
Let x be a n-dimensional vector containing n design parame-
ters (e.g., geometrical/physical parameters) of the microwave
structure under consideration. Let x0 denote the nomi-
nal point of x. In the approaches to statistical design of
microwave structures, the uncertainties introduced by the
manufacturing process make the actual values of x be dis-
tributed around x0. The distribution is usually considered to
follow some kind of distribution, e.g., uniform, Gaussian, etc.

Microwave design typically involves goals in terms of a
number of design specifications applied on the responses of
microwave structures. In practice, the design specifications
are sampled at a number of frequency points in the whole
frequency bands of interest. Let Ns denote the total number
of design specification samples, which usually consist of both
the upper and the lower ones. Let the jth design specification
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sample be denoted by Sj, where j = 1, . . . ,Ns. Let N u
s and N l

s
(N l

s = Ns−N u
s ) be the number of upper specification samples

and the number of lower specification samples, respectively.
Without the loss of generality, we assume that the first N u

s
samples, S1, . . . , SN u

s
, represent upper design specification

samples, and that the remaining N l
s samples, SN u

s +1, . . . , SNs ,
are lower design specification samples. Let Rfj (x) represent
the response of the fine model at the frequency of interest cor-
responding to Sj. Let e(x) be an error vector used to indicate
how well the response vector of the fine model satisfies the
design specifications. Specifically, e(x) is defined as follows:

e(x) = [e1 e2 · · · eN u
s
· · · eNs ]

T , (1)

where the jth element in the above vector, ej(x), is given by

ej(x) =

{
Rfj (x)− Sj, if 1 ≤ j ≤ N u

s ,

Sj − R
f
j (x), if N u

s < j ≤ Ns.
(2)

Yield refers to the percentage of non-defective designs of
all produced designs. To realize EM-based yield analysis and
optimization, a sufficiently large number of randomoutcomes
of the design parameters are typically generated, represented
by

xm = x0 +1xm, m = 1, 2, . . . ,Nmc, (3)

where xm represents the deviation between the mth out-
come and the nominal point, and Nmc is the total number
of random outcomes for yield analysis. In this paper, m
(m = 1, . . . ,Nmc) is used to represent the index of random
outcomes in Monte Carlo analysis. Due to the uncertainties
in the manufacturing process, the EM responses at some
outcomes may satisfy design specifications while others may
not. Let the yield at nominal point x0 be denoted as Y (x0).
Then, Y (x0) can be approximated as the number of acceptable
designs over the total number of design outcomes, i.e.,

Y (x0) ≈ Nacpt/Nmc, (4)

where Nacpt represents the total number of acceptable
designs.

Let Hp(·) represent the one-sided least pth function.
According to [1], the following objective function U (x0) can
be used to solve the original EM-based yield optimization
problem

U (x0) = Hp(u(x0)), (5)

where u = [u1, u2, . . . , uNmc ]
T . The mth component in u is

found from

um = αmHq(e(xm)), m = 1, . . . ,Nmc, (6)

where q and p are two parameters indicating the norms used
for e and u, respectively. A smaller value of U (x0) indi-
cates a higher yield. Following the suggestion in [1], we set
p = q = 1 and the weighting factor αm = 1 in this paper.

These settings lead to an objective function in the following
form [2]:

U (x0) =
∑
m∈M

∑
j∈J(xm)

ej(xm). (7)

J(xm) = {j|ej(xm) > 0} (8)

M = {m|J(xm) 6= ∅} (9)

In most practical cases, a reasonably large number of ran-
dom comes are required to achieve an effective minimization
of the objective function defined in (1)-(9).

III. PROPOSED PARALLEL SPACE-MAPPING BASED
YIELD OPTIMIZATION TECHNIQUE INCORPORATING
TRUST REGION ALGORITHM AND PCE
Adirect application of the objective functionU (x0) is feasible
if the responses are computed by circuit simulations. When
the responses are obtained from EM simulations, it appears
to be computationally expensive to applyU (x0) to EM-based
yield optimization directly [2]. Therefore, in this paper, for
the first time, we propose a parallel SM based yield-driven
EM optimization technique incorporating trust region algo-
rithm and PCE. In the following section, we describe the
proposed yield optimization technique in detail.

The proposed technique mainly consists of five parts,
namely, fine model data generation with parallel computa-
tional method, surrogate modeling over multiple geometrical
samples with parallel computation method, the l1 design
centering algorithm to optimize the yield using the surrogate
model, a novel trust region algorithm to update the trust
region of the surrogate, and the PCE approach to yield ver-
ification on the fine model. We provide the descriptions for
these five parts in the subsequent sections.

A. FINE MODEL DATA GENERATION WITH PARALLEL
COMPUTATION METHOD
Parallel computation is a powerful tool to speed up the EM
data generation process. Here, we propose to use parallel
computational method to evaluate the fine model responses
using multiple processors in parallel, thereby reducing the
total CPU time of EM-based yield optimization. Let N be
the number of data points generated using the fine model.
The fine model responses atN data points are evaluated using
N parallel processors. Let Sp and η represent the parallel
speedup factor and the parallel efficiency, respectively. The
communication time between multiple processors running in
parallel produces an overhead cost to the EM data generation
process in each iteration. The speedup is defined as the ratio
of the data generation time on a single processor over that on
N processors running in parallel [14], i.e.,

Sp =

∑N
j=1 Tj

To +max1≤j≤N Tj
, (10)

where To represents the additional communication time for
data generation using N processors, and Tj denotes the
time for each fine model evaluation on the jth processor.
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The parallel efficiency η is defined as the ratio of the speedup
factor over the total number of processors [14], i.e.,

η =
Sp
N
. (11)

Obviously, when all the N processors have similar evaluation
time Tj and the overhead cost To is much smaller than Tj,
a large speedup and a high parallel efficiency can be achieved.

B. SURROGATE MODELING OVER MULTIPLE
GEOMETRICAL SAMPLES USING PARALLEL
COMPUTATION METHOD
Direct EM-based yield optimization with accurate full-wave
EM simulations is computationally prohibitive. Therefore,
the first step in the proposed technique is to develop a surro-
gate model to replace the fine model to achieve high-quality
yield optimization solutions in an efficient manner. Same as
all the SM-based approaches, we assume the availability of a
computationally fast but not so accurate coarse model and an
accurate but computationally expensive fine model. LetRc(x)
and Rf (x) denote the response vectors of the coarse and fine
models corresponding to x, respectively. We first establish a
surrogate model combining the coarse model with a linear
input mapping as follows:

xc = Bxf + c, (12)

Rs(xf ,w) = Rc (xc) = Rc(Bxf + c), (13)

where xc and xf are two vectors containing all the design
variables of the coarsemodel and the finemodel, respectively.
Rc(xc) is the response vector of the coarse model correspond-
ing to xc, while Rs(xf ,w) represents the response vector of
the SM surrogate. w is a vector of mapping parameters which
contain all the elements in B and c, where B and c represent
the coefficients in the linear mapping function.

The surrogate in the proposed technique is trained over
multiple geometrical samples. The purpose is to make the
surrogate valid in a relatively larger neighborhood in the
design parameter space, thereby reducing the SM iterations
in the whole optimization process. Let the nominal point at
the kth (k = 1, 2, . . . ) iteration during yield optimization
be denoted by x0,k , where x0,1 is initialized as the optimal
solution from nominal optimization. In each iteration, a set
of geometrical samples are generated in the neighborhood of
x0,k in the design parameter space. The fine model responses
at these geometrical samples are to be used to train the
surrogate model. In this paper, star distribution is used as the
sampling method to generate the geometrical samples around
x0,k in the design parameter space. Let X kTr represent the set
of geometrical samples in iteration k , then,

X kTr = {x
(1),k , x(2),k , . . . , x(2n+1),k}. (14)

Next, the fine model are evaluated at all these 2n+1 geomet-
rical samples by using 2n+ 1 processors in parallel

{Rf (x(i),k )|i = 1, 2, . . . , 2n+ 1}

= {Rf (x(1),k ),Rf (x(2),k ), . . . ,Rf (x(2n+1),k )}. (15)

In each iteration (say iteration k), the surrogate model
is trained by using an optimization formulation with the
objective of minimizing an error function. Let E(w) be the
error function. E(w) is defined as the sum of the squared
differences between the responses of the finemodel and those
of the surrogate at all the 2n+ 1 geometrical samples, i.e.,

E(w) =
2n+1∑
l=1

e(l),k (w)

=

2n+1∑
l=1

∥∥∥Rf (x(l),k )− Rs(x(l),k ,w)∥∥∥2 , (16)

where Rf (x(l),k ) and Rs(x(l),k ) denote the response vectors
of the fine and coarse models corresponding to the lth
(l = 1, 2, . . . , 2n + 1) training sample x(l),k , respectively.
The training process of the surrogate model can be denoted
by

wk = argmin
w
E(w), (17)

where wk contains the optimal parameters of the mapping
function after training. Similar to the fine model data gen-
eration process, in this paper, the training process of the
surrogate model to match the fine model at 2n + 1 data
points also uses the parallel computation method [14]. This
reduces the surrogate modeling time in each iteration, thereby
further accelerating the overall yield optimization process.
Once the training procedure is finished, a new set of mapping
parameters is obtained. Next, we perform yield optimization
using the updated surrogate to obtain the next optimal yield
solution x0,k+1.

C. THE ONE-SIDED L1 CENTERING ALGORITHM FOR
YIELD OPTIMIZATION USING THE PARALLEL SM
SURROGATE
Once the development of the surrogate is done, we next per-
form yield optimization on the surrogate model with the same
statistical distributions and design specifications as those in
the original EM-based yield optimization problem. The yield
optimization on the surrogate is effective provided that the
surrogate model is well trained over a number of geometrical
samples and that a suitable region of interest is defined for
the surrogate.

In this paper, we use the one-sided l1 design centering
algorithm [6] to optimize the yield of the surrogate. Let
es(x) represent the error vector used to indicate how well the
response vector of the surrogate model satisfies the design
specifications. Similar to (1), we have

es(x) = [es1 e
s
2 · · · e

s
N u
s
· · · esNs ]

T . (18)

For each random outcome xm, we have a corresponding error
vector es(xm). The value of esj (x

m), where j = 1, . . . ,Ns,
indicates the violation degree of the surrogate model response
for the jth design specification sample (Sj). A larger value of
esj (x

m) implies that Sj is violated to a larger degree.

143676 VOLUME 7, 2019



J. Zhang et al.: Parallel Space-Mapping Based Yield-Driven EM Optimization Incorporating Trust Region Algorithm and PCE

To optimize the yield of the microwave structure at x0,
the l1 design centering algorithm minimizes the following
objective function using a certain gradient-based optimiza-
tion algorithm:

U s(x0) =
∑
m∈M

∑
j∈J(xm)

esj (x
m),

J(xm) = {j|esj (x
m) > 0}

M = {m|J(xm) 6= ∅} (19)

where esj (x
m) is defined in the same way as that in (2), but this

time the responses are evaluated from the surrogate model
instead of the fine model, i.e.,

esj (x) =

{
Rsj (x,w)− Sj, if 1 ≤ j ≤ N u

s ,

Sj − Rsj (x,w), if N u
s < j ≤ Ns.

(20)

It is seen that the yield objective function defined in (19)
is closely related to the number of failed designs. By min-
imizing (19), the yield of the fine model is expected to be
increased. Therefore, the new nominal point used for yield
verification on the fine model, x0,k+1, is obtained as follows:

x0,k+1 = argmin
x0

U s(x0). (21)

Note that by replacing the EM-based fine model by a compu-
tationally efficient surrogate model, and applying (19)-(21)
on the surrogate, we avoid the large number of computation-
ally expensive EM simulations and thus the EM-based yield
optimization procedure is greatly accelerated.

D. PROPOSED TRUST REGION ALGORITHM FOR
PARALLEL SM BASED YIELD OPTIMIZATION
Since the surrogate model can only learn the EM behavior
of the fine model in a certain region in the design parameter
space, a trust region has to be defined for the surrogate in
each iteration during yield optimization. The trust region is a
region in the design parameter space beyond which the sur-
rogate become unreliable and cannot represent the behavior
of the fine model well. Therefore, the l1 design centering
algorithm should only explore the parameter space inside the
trust region in order to have an effective minimization of
the objective function defined in (19). Based on this idea,
we propose a novel trust region algorithm to update the trust
radius of each design parameter in each iteration in yield-
driven design.

Let �k be the trust region of the surrogate model in itera-
tion k , defined as follows:

�k
= {x|x0,ki − δ

k
i ≤ xi ≤ x

0,k
i + δ

k
i , ∀i = 1, . . . , n}, (22)

where δki represents the trust radius for the ith design variable
in iteration k . Let δk = {δk1 , δ

k
2 , . . . , δ

k
n} be the set containing

the trust radii for all the design variables. The update of the
trust radius for each design parameter depends on the ratio of
yield improvements of the surrogate model over that of the
fine model between two consecutive iterations. Specifically,
between iteration k and iteration k + 1, we evaluate the yield

values of the fine model (denoted by Yf (x0,k ) and Yf (x0,k+1))
and the yield value of the surrogate model (denoted by
Ys(x0,k+1)) via the PCE approach. Define a parameter r to
be the ratio of yield increase on the surrogate model over that
on the fine model as follows:

r =


Yf (x0,k+1)−Yf (x0,k )
Ys(x0,k+1)−Yf (x0,k )

, if Yf (x0,k+1)≥Yf (x0,k ),

−1, otherwise.
(23)

The parameter r can be used as an indicator to update the
trust radius of each design parameter due to the following
reasons: 1) when Yf (x0,k+1) < Yf (x0,k ), this means that yield
optimization on the surrogate is not effective, i.e., it cannot
increase the yield of the fine model. Therefore, the trust
radius of each design parameter should shrink; 2) when
Yf (x0,k+1) ≥ Yf (x0,k ), this implies that the yield of the fine
model is increased after performing yield optimization on the
surrogate. Depending on how large the yield improvement on
the fine model is, one can choose to keep, enlarge, or shrink
the current trust radius. In this paper, we use the following
formulas to update the trust radii of the design parameters in
the kth iteration [21]:

δk+1 =


0.69δk , if r < 0.1,
min{1.3δk ,1max}, if r > 0.75,
δk , otherwise,

(24)

where 1max denotes the maximal allowed trust radii for the
design variables. In this paper,1max is set as 50%of the initial
nominal values of the design variables.

E. INCORPORATING THE PCE APPROACH FOR YIELD
VERIFICATION ON THE FINE MODEL
In each iteration, after the yield optimization on the surrogate
is done and a new nominal point is found, the yield value
on the fine model at the new nominal point has to be ver-
ified. To further speed up the overall optimization process,
we propose to use the PCE approach to verify the yield
of the fine model in each iteration during yield optimiza-
tion. To realize PCE-based yield estimation, one has to first
transform the original random parameters x to independent
standard random parameters ξ . Next, the stochastic expan-
sion has to be applied in the ‘‘ξ -space’’ [22] to express the
function between the stochastic quantity and ξ . In the kth
iteration, let Rfj (x

0,k , ξ ) be the response of the fine model at
the frequency point where the jth design specification sample
exists. Via PCE, the relationship between Rfj (x

0,k , ξ ) and ξ is
represented by the weighted sum of a set of orthogonal basis
functions as follows:

Rfj (x
0,k , ξ ) =

P∑
i=0

aij(x0,k )8i(ξ ), (25)

where8i(·) represents the generalized basis function in PCE.
The total number of terms in (25) is P+ 1. aij represents the
PCE coefficients, which are also the weighting coefficients
for different basis functions at different EM responses.
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Given that the basis functions8i(ξ ) are orthogonal to each
other, the coefficients of PCE, aij, are evaluated as follows:

aij(x0,k ) =

∫
�n R

f
j (x

0,k , ξ )8i(ξ )ρ(ξ )dξ∫
�n 8

2
i (ξ )ρ(ξ )dξ

, (26)

where �n represents the n-dimensional random space of ξ .
ρ(ξ ) represents the joint probability density function (PDF) of
the transformed parameters ξ . Numerical quadrature based on
sparse grid techniques [20] are typically used to evaluate the
multi-dimensional integrations in (26). LetNsg be the number
of samples in sparse grid techniques.

To perform yield estimation of the fine model, a number
of PCE models have to be constructed at all the frequencies
of interest. More specifically, a single PCE model has to
be constructed for each frequency point under consideration.
In other words, the total number of PCE models is equal to
the total number of frequency points in the whole frequency
range of interest. Then, anMC analysis needs to be performed
on the PCE models taking into consideration all the design
specifications [20]. We summarize the yield verification on
the fine model via PCE at iteration k as follows:
Step 1) Generate Nsg samples of the transformed parame-

ters ξ , i.e., {ξ (1), ξ (2), · · · , ξ (Nsg)}, in the ‘‘ξ -space’’
following the rules of the sparse grid technique.

Step 2) Transform the Nsg samples in the ‘‘ξ -space’’ back
into the ‘‘x-space’’, to obtain a set of geometrical
parameter samples around the nominal point x0,k .

Step 3) Evaluate the responses of the fine model at the Nsg
geometrical parameter samples in parallel.

Step 4) Numerically evaluate the PC coefficients aij using
numerical quadrature based on the sparse grid tech-
nique [2].

Step 5) Perform an MC analysis on the PCE models taking
into consideration all the design specifications to
obtain the yield verification result on the fine model
at x0,k .

As demonstrated in [17], the PCE approach to EM-based
yield estimation is much more computationally efficient than
traditional MC analysis, since an accurate evaluation of PCE
coefficients typically requires much fewer EM samples than
the MC analysis does.

F. THE PROPOSED YIELD OPTIMIZATION ALGORITHM
The overall yield optimization procedure terminates if the dif-
ference of x0,k between subsequent iterations is sufficiently
small or the yield value of the fine model at the new nominal
point is higher than a user-defined threshold, i.e.,∥∥∥x0,k+1 − x0,k∥∥∥ ≤ ε, (27)

or Y (x0,k+1) ≥ Yth, (28)

where ε and Yth are both user-defined criteria. The flow
chart of the proposed yield optimization algorithm is shown
in Fig. 1, which can also be summarized as follows:
Step 1) Set iteration counter k = 1. Initialize the termi-

nation criteria ε and Yth (the desired yield value).

FIGURE 1. Flow chart of the proposed yield optimization technique.

Initialize the trust radius for each design parameter.
Set the perturbation sizes in star distribution for the
design parameters the same as their trust radius.

Step 2) Initialize the nominal point x0,k to be the optimal
solution from nominal optimization x0ini. Estimate
the yield of the fine model at x0,k using the PCE
approach described in Section III-E.

Step 3) If k ≥ 2, update the trust radius for each design
parameter using (23) and (24), and update the pertur-
bation size to be the same as the updated trust radius.

Step 4) Generate 2n+1 geometrical samples,X kTr , following
star distribution based on the updated trust region for
training the surrogate.

Step 5) Build a new surrogate model Rs(x,w) using
(14)-(17) and obtain the optimal mapping parame-
ters B and c.

Step 6) Perform yield optimization on the new surrogate by
solving (21) using a gradient-based algorithm, e.g.,
the quasi-Newton method, to find the next optimal
yield solution x0,k+1.

Step 7) Estimate the yield of the fine model at the new
nominal point x0,k+1 using the PCE approach.

Step 8) If
∥∥x0,k+1 − x0,k∥∥ ≤ ε or Y (x0,k+1) ≥ Yth is

satisfied, go to Step 9), otherwise, set k = k + 1
and go to Step 3).
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FIGURE 2. The structure of the low-pass elliptic microstrip filter used in
EM simulation and yield optimization, from [14].

Step 9) Output the final optimal yield solution x∗ = x0,k

and the final yield value Y ∗ = Yf (x0,k ).

G. DISCUSSION
In this paper, we choose to use the PCE approach to verify the
yield of the fine model during the overall yield optimization
process. The PCE approach serves as an efficient vehicle to
further speed up the proposed technique. There also exist
some other methods in the literature that can avoid the high
computational costs in traditional Monte Carlo based anal-
ysis, such as the stochastic testing method [23], the poly-
nomial chaos-Kriging (PC-Kriging) method [24], and the
neural network based technique [25]. They all perform well
for statistical analysis and/or yield estimation in different
applications. Considering that the main focus of this work is
yield-driven EM optimization, a comprehensive comparison
between these methods and the PCE approach is beyond
the scope of this paper. However, upon being used properly,
other efficient methods such as those in [23]–[25] can also be
incorporated in the proposed technique to achieve efficient
yield optimization of microwave structures.

IV. APPLICATION EXAMPLES
A. YIELD OPTIMIZATION OF A LOW-PASS ELLIPTIC
MICROSTRIP FILTER
In this example, we aim to perform yield optimization
for a two-section low-pass elliptic microstrip filter [14],
as shown in Fig. 2. We consider six design variables,
i.e., x = [L1,L2,Lc1,Lc2,Wc,Gc]T (mil), and assume
that the variables have independent normal distributions to
allow yield optimization. The initial nominal point obtained
from nominal EM optimization is x0ini = [44.79825
171.68189 165.44252 45.05873 6.06197 3.36753]T (mil).
The standard deviation of each design variable is 0.5% of
its mean value. The design specifications for the filter are

defined as

|S21| ≥ 0.9, for 1.0 GHz ≤ ω ≤ 2.0 GHz

|S21| ≤ 0.1, for 2.3 GHz ≤ ω ≤ 4.0 GHz

The HFSS EM simulator with a fast simulation feature is
used to perform fine model evaluations. The coarse model
is the equivalent circuit for the low-pass filter using simple
transmission lines [14]. NeuroModelerPlus software is used
to program the coarse model, implement surrogate model
training over multiple geometrical samples, and perform
yield optimization on the surrogate model. The initial yield
value of the finemodel at the initial nominal point is 36%. The
initial trust radius of each design parameter is set as 5% of its
nominal value, i.e., δ1 = 0.05× x0ini. The stop criteria of the
propose yield optimization algorithm are set as ε = 1.0e− 5
and Yth = 90%. A cluster of computers is used to allow
parallel processing for parallel data generation.

The proposed yield optimization technique stops after
two SM iterations, meeting the user-defined yield crite-
rion Yth. The final optimal yield solution is x∗ = [43.91140
158.20101 163.80511 46.46544 6.23598 3.22687]T (mil)
with a yield value of 90% of the fine model. The yield value
of the fine model during yield optimization is verified by
the PCE approach. For a further verification, we evaluate the
responses of the fine model at a sufficiently large number
(Nmc) of random outcomes around the initial and final design
solutions, and obtain the corresponding yield values using
Monte Carlo analysis, as shown in Fig. 3. To obtain the
reasonable value of Nmc in Monte Carlo analysis, the yield at
the initial nominal point is estimated with different number
of random samples. We gradually increase the value of Nmc
until a convergence on the yield value is observed (which
happens when Nmc = 100). The same value is used for the
number of random outcomes during yield optimization on the
surrogate model. It is observed from Fig. 3 that a significant
increase on the yield value is obtained, which demonstrates
the effectiveness of the proposed technique.

For this example, we have 2n + 1 = 13 data samples,
so 13 processors are used to perform fine model evaluations
in parallel. The time for fine model evaluations using the
parallel computation method is 32 min, while that using the
sequential computation method is 372 min. This results in a
speedup of 11.6 and a parallel efficiency (η) of about 89.5%.
This speedup contributes to the total CPU time reduction of
the proposed yield optimization technique. For the purpose
of comparison, we also apply the standard SM approach to
optimize the yield for this example. For the standard SM,
the surrogate model is built at only one geometrical sample
in each SM iteration without using the parallel computation
method. Specifically, in each iteration, the response of the
fine model at the current nominal point is used to train the
surrogate model. The comparison between the standard SM
based yield optimization technique and the proposed yield
optimization technique in terms of the yield improvement and
total CPU time is shown in Table 1. Note that the CPU time for
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FIGURE 3. Yield optimization results of the low-pass microstrip filter
using the proposed technique: (a) Before and (b) After yield optimization.
In both figures, the grey dashed lines indicate 100 random samples in
Monte Carlo analysis, while the black solid line indicates the nominal
response.

yield verification on the finemodel in each iteration is omitted
for both methods. As can be seen in the table, the standard
SM based yield optimization terminates after four iterations,
achieving a small yield increase of the fine model. The reason
behind this is that standard SM builds the surrogate model
over a single point. Hence, the surrogate model is valid in a
smaller region than that built with the parallel SM approach,
making it difficult to achieve an effective yield optimization
of the surrogate. It is also seen from the table that, compared
with the standard SM based yield optimization technique,
the proposed yield optimization technique achieves a much
greater yield increase in shorter CPU time. This is because our
proposed technique builds the surrogate model over multiple
geometrical samples, which enables the surrogate to be valid
in a larger neighborhood. Therefore, the proposed technique
is able to find the optimal yield solution in fewer SM itera-
tions, accelerating the overall yield optimization process.

TABLE 1. Comparison of standard SM based yield optimization technique
and the proposed yield optimization technique for the lowpass microstrip
filter.

B. YIELD OPTIMIZATION OF A BANDSTOP MICROSTRIP
FILTER WITH OPEN STUBS
In the second example, we perform yield optimization
for a bandstop microstrip filter with quarter-wave reso-
nant open stubs [14], as shown in Fig. 4. The filter has
five design variables, i.e., x = [W1,W2,L0,L1,L2]T

(mil). We assume independent normal distributions for the
design variables to realize yield estimation and optimiza-
tion, with the standard deviation of each design variable
being 0.5% of its mean value. The initial nominal point
obtained from nominal EM optimization is x0ini = [5.83198
14.68157 120.06024 119.10691 110.10827]T (mil). The
design specifications for the filter are defined as

|S21| ≥ 0.9, for 5.0 GHz ≤ ω ≤ 8.0 GHz

|S21| ≤ 0.05, for 9.3 GHz ≤ ω ≤ 10.7 GHz

|S21| ≥ 0.9, for 12.0 GHz ≤ ω ≤ 15.0 GHz

The HFSS EM simulator with a fast simulation feature is
used to perform fine model evaluations. The coarse model
is the equivalent circuit for the bandstop filter using simple
transmission lines based on ADS [14]. NeuroModelerPlus
software is used to program the coarse model, implement
surrogate model training, and perform the yield optimiza-
tion on the surrogate model. The yield value of the fine
model at the initial nominal point is 22%. The initial trust
radius of each design parameter is set as 5% of its nominal
value, i.e., δ1 = 0.05 × x0ini. The stop criteria of the pro-
pose yield optimization algorithm is set as ε = 1.0e − 5
and Yth = 90%. The proposed yield optimization tech-
nique terminates after two SM iterations, satisfying the user-
defined stopping criterion

∥∥x0,k+1 − x0,k∥∥ ≤ 1.0e − 5.
The final optimal yield solution is x∗ = [5.86118 14.59794
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FIGURE 4. The structure of the bandstop microstrip filter defined for EM
simulation and yield optimization, from [14].

TABLE 2. Comparison of standard SM based yield optimization technique
and the proposed yield optimization technique for the bandstop
microstrip filter.

117.55622 121.90948 107.62781]T (mil) with a yield value
of 46% of the fine model. The yield values at the initial
nominal solution and the final optimal yield solution are both
further verified by the Monte Carlo-based yield estimation,
as shown in Fig. 5.

For this example, we have 2n + 1 = 11 data samples,
so 11 processors are used to perform fine model evaluations
in parallel. The time for fine model evaluations using the
parallel computation method is 16 min, while that using the
sequential computation method is 157 min. This results in a
speedup of 9.8 and a parallel efficiency (η) of about 89.2%.
This speedup contributes to the total CPU time reduction
of the proposed yield optimization technique. For compari-
son purposes, the standard SM approach is also applied to
optimize the yield for this example. In each iteration during

FIGURE 5. Yield optimization results of the bandstop microstrip filter
using the proposed technique: (a) Before and (b) After yield optimization.
In both figures, the grey dashed lines indicate 100 random samples in
Monte Carlo analysis, while the black solid line indicates the nominal
response.

yield optimization, the surrogate model is trained with the
EM response at the current nominal point. Table 2 compares
the standard SM based yield optimization technique and the
proposed technique in terms of the yield improvement and the
total CPU time. It is observed from the table that, the proposed
yield optimization technique achieves a higher yield increase
using fewer SM iterations compared with the standard SM
based yield optimization technique. Specifically, the standard
SM optimization terminates after five SM iterations with a
yield value of 39% of the finemodel, while the proposed tech-
nique terminates after two SM iterations with a yield value of
46% of the fine model. This is because the surrogate model in
the proposed technique is trained to be valid in larger neigh-
borhood than that in the standard SM. Therefore, the trust
region defined for the surrogate in the proposed technique
can be larger than that in the standard SM, which increases
the ability of improving the yield of the fine model for the
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proposed technique. These advantages ultimately allow the
proposed technique to achieve a greater yield increase of
the microwave structure in shorter CPU time compared with
the standard SM based yield optimization technique.

V. CONCLUSION
This paper has proposed a novel parallel space-mapping
based yield-driven EM optimization technique incorporating
trust region algorithm and PCE. A trust region algorithm
has been proposed to update the trust radius of each design
parameter in each space mapping iteration during optimiza-
tion. Parallel computation method has been used to generate
the EM data in parallel and enable surrogate modeling over
multiple geometrical samples. The trained surrogate has been
used to find the new yield optimal solution using the l1 cen-
tering algorithm. The PCE approach has been incorporated
to further speed up the yield verification on fine models. The
proposed technique helps achieve high-quality solutions to
the challenging problem of EM-based yield optimization in
shorter time. As a possible future direction, we would like to
apply the proposed technique to yield-driven design problems
involving high-dimensional design parameter spaces.
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