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ABSTRACT A continuous wave, switchable multi-wavelength, thulium-doped fiber laser (TDFL) with a
polarization-maintaining sampled fiber Bragg grating (PM-SFBG) is proposed and demonstrated for the first
time. A length of 150 m highly-nonlinear fiber (HNLF) was used to introduce the four-wave mixing effect for
the efficient suppression of the wavelength competition existing in the gain medium of thulium-doped fiber.
By adjusting the state of polarization (SOP) of light in the laser cavity, two six-wavelength operations at two
orthogonal SOPs and a ten-wavelength operation were obtained. When the TDFL ran at the six-wavelength
operation mode with a pump power of 4.11 W, there were at least four lasing wavelengths with an optical
signal-to-noise ratio (OSNR) higher than 30 dB, and when it ran at the ten-wavelength operation mode with
a pump power of 4.60 W, there were nine lasing wavelengths with an OSNR higher than 30 dB. Regardless

of the operation mode, the TDFL exhibited high stability.

INDEX TERMS Multi-wavelength, sampled fiber Bragg grating, thulium-doped fiber laser.

I. INTRODUCTION

Thulium-doped fiber lasers (TDFLs), especially narrow-
linewidth and wavelength-tunable TDFLs, have recently
become a research focus because they work at the eye-safe
2 pum band in which an atmospheric window exists, and they
can be applied in free-space optical communication (FSOC),
fiber optical sensors, optical measurement, and medical treat-
ment [1]-[6]. Among the different kinds of reported TDFLs,
the multi-wavelength TDFL can stably and simultaneously
output numerous wavelengths, and because of its merits of
high beam quality, low cost and compact structure, it can be
widely used in wavelength-division-multiplexing FSOC [7].
It meets the requirements of reducing the cost and improving
the communication capacity of FSOC networks, and has
therefore attracted increasingly more and more attention. In
addition, a switchable multi-wavelength fiber laser can easily
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change the number and wavelength of the lasing output,
which is conducive to the flexible channel allocation for
FSOC.

As one of the most important components inside a multi-
wavelength TDFL cavity, the multi-wavelength filter has
been studied extensively. Different filter structures have
been utilized in reported TDFL systems, such as the Mach-
Zehnder interferometer [8], the Sagnac loop filter [9], the
cascaded Sagnac loop filter [10], the fiber-based Lyot filter
[11], the multimode interferometer [12], and the micro fiber-
optic Fabty-Perot interferometer [13]. Fiber Bragg grating
(FBG) has also been used as a filter in fiber laser sys-
tems due to its simple structure, small size, and flexible
tunability. We have proposed dual-wavelength TDFLs using
a high-birefringence FBG-based filter and a polarization-
maintaining, chirped-moiré FBG-based filter, respectively
[14], [15]. Recently, we have studied the transmission char-
acteristics of the sampled FBGs in the 2 um band in detail
[16]. However, a multi-wavelength TDFL using a sampled
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FIGURE 1. The experimental schematic of the proposed TDFL.

FBG-based filter has not yet been reported in the existing
literature.

Additionally, in order to achieve a stable multi-wavelength
operation in a TDFL, the wavelength competition caused
by the homogeneous gain-broadening effect in the thulium-
doped fiber should be efficiently suppressed. Several methods
have been used to achieve multi-wavelength lasing in rare-
earth doped fiber lasers, such as frequency shift modulation,
polarization hole burning, and nonlinear effects [13], [15],
[17]-[21]. Nonlinear effects, such as the nonlinear optical
loop mirror (NOLM), nonlinear polarization rotation (NPR),
and four-wave mixing (FWM), are typically the most often
used [13], [18], [19], [21]. After the introduction of the
FWM effect, the power redistribution among all the lasing
wavelengths inside the laser cavity can be achieved; part of
the energy of the lasing wavelengths with greater power is
transferred to those with lesser power to achieve a dynamic
power balance, which can effectively reduce the severe com-
petition between different lasing wavelengths.

In this paper, a continuous wave (CW), switchable multi-
wavelength TDFL with polarization-maintaining sampled
fiber Bragg gratings (PM-SFBG) has, to the best of the
authors’ knowledge, been proposed and demonstrated exper-
imentally for the first time. The PM-SFBG was used as an
excellent multi-wavelength filter, and a section of highly-
nonlinear fiber (HNLF) was employed to introduce the FWM
effect. The output characteristics of the TDFL with and with-
out the HNLF were investigated and analyzed. By adjusting
the state of polarization (SOP) of light in the laser cavity, the
switchable multi-wavelength operations in different modes
were obtained and studied in detail.

Il. EXPERIMENTAL SETUP

Figure 1 presents the experimental schematic of the proposed
fiber laser. The gain medium was a 4.5 m double-cladding
TDF with a core/cladding diameter of 10/130 pm, and was
made by Nufern Corporation. A multimode 793 nm laser
diode was injected into the laser cavity through a (6 + 1)x 1
fiber combiner (FC) as the pump source. Only one pump input
port of the FC was used. The core/cladding diameter of the
pump input fiber of the FC was 105/125 um with a 0.22
numerical aperture (NA), and the signal input/output fiber
was a 6/125 um germanium-doped fiber. The 150 m HNLF
with a cladding diameter and NA of 125 pm and 0.35, respec-
tively, was used to suppress the gain competition via the
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FIGURE 2. The transmission and reflection spectra of PM-SFBG.

FWM effect. An optical circulator (OC) connected the fiber
grating filter to the laser cavity. Two polarization controllers
(PCs) were used in the cavity. The PC1 was primarily used to
adjust the intensity-dependent gain and the polarization of the
cavity, and the PC2 mainly adjusted the polarization of the
filter to achieve wavelength switching. Finally, 10% power
was output through a 90:10 coupler.

The fiber grating filter was a 20 mm PM-SFBG, which
was fabricated on hydrogen-loaded Nufern PM-TDF (the
core/cladding diameter was 10/130 ptm) using the phase mask
method [14], [15], [20]-[22]. The tail fiber of the PM-SFBG
in the laser cavity was a 150 mm unpumped PM-TDEF. As
a saturable absorber [23], this section of thulium doped fiber
contributed to narrowing the laser linewidth and steadying the
laser output. During the fabrication, a uniform phase mask
(the period A = 1347.3 nm), a sampled mask (the sampled
period d = 2 mm, the duty cycle t = 0.5), and a 248 nm
KrF excimer laser were used. The focal point diameter of the
ultraviolet laser was 5 mm, the pulse frequency was 25 Hz
with an energy of 60 mJ, and the exposure processed con-
tinuously through the optical lens fixed on the displacement
platform. The velocity and minimum step of the platform
were 0.05 mm and 0.1 pm, respectively. According to the
phase mask method, the center wavelength of the grating
was around 1950 nm, corresponding to the large gain range
of the amplified spontaneous emission (ASE) of the TDF.
The transmission and reflection spectra of the PM-SFBG
at two orthogonal SOPs are presented in Fig. 2, and were
measured by an optical spectrum analyzer (OSA, YOKO-
GAWA AQG6375) with a resolution of 0.05 nm. During the
measurement, a PC and a polarizer were used to select one
of the two polarization directions for measurement. The solid
line and dashed line denote the measured X-polarization and
Y-polarization, respectively. For each SOP, the reflectivities
of the three peaks in the middle were 90%, 99.7%, and 99%,
respectively. Note that the reflectivities of the peaks on the
two sides are not the same because of the errors introduced
by the placement of the mask and fiber, as well as the jitters of
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FIGURE 3. The output spectra of TDFL without HNLF. (a)
single-wavelength and (b) dual-wavelength output.

the displacement platform and laser energy during the grating
fabrication.

IIl. RESULTS AND DISCUSSION

First, the TDFL without the HNLF or the PC2 was inves-
tigated at room temperature (24 °C), and this TDFL, with
a threshold of 2.34 W, could be switched between single-
wavelength and dual-wavelength operations. This TDFL was
not a multi-wavelength laser because there was no mech-
anism to suppress the gain competition; however the PM-
SFBG had several reflective peaks, and the laser outputted
at the wavelength with the highest reflective value of each
SOP. The pump power was fixed at 4.11 W to observe
the output characteristics. As shown in Fig. 3(a), the TDFL
was in the single-wavelength operation. The output laser
(X-polarization, the magenta solid curve) was 1949.18 nm,
and the optical signal-to-noise ratio (OSNR) was about 65 dB.
Then, the output wavelength was switched by adjusting the
SOP through the PC1, and the laser (Y-polarization, the blue
dashed curve) outputted at a wavelength of 1949.56 nm with
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an OSNR of ~61 dB. The spectra obtained by repeatedly
scanning within 50 min of the two polarizations indicated
that the TDFL worked stably at both single-wavelength oper-
ations. With the help of the PC1 to adjust the polarization
of the light inside the laser cavity to balance the loss and
gain between two orthogonal polarizations, the switching
between two orthogonal polarized single-wavelength oper-
ations and between single- and dual-wavelength operations
were realized. As Fig. 3(b) presents, when the TDFL was in
the dual-wavelength operation, the laser wavelengths were
1949.18 nm and 1949.56 nm, and the OSNRs were 56 and
58 dB, respectively. As demonstrated by the spectra obtained
by repeatedly scanning within 50 min, the TDFL also worked
stably at dual-wavelength operation.

The HNLF was then employed in the cavity to provide
the intensity-dependent gain to suppress the gain competi-
tion by introducing the FWM effect, and the PC1 helped
to balance the intensity-dependent gain between different
lasing wavelengths. In order to realize the efficient FWM to
simultaneously stabilize the multi-wavelength lasing and the
SOP switching, the PC2 was introduced to adjust the SOP of
light propagating to the PM-SFBG. The PCs, unlike a variable
optical attenuator, were not used to directly cause an inter-
cavity loss. Due to the power exchange caused by the FWM
effect, the dominant wavelength in free competition transfers
energy to the weaker wavelength, and multi-wavelength las-
ing can be achieved. The principle is as follows. Assuming
that the power at frequency w; is P; and the power at frequency
wi+1 18 Pit1, the power variations at w; and w;4+1 can be
respectively expressed as

AP =« (iml = 2P,~> : (1)
Wi+1

APiy) =« (%Pi - 2Pi+l> , )
1

where « is the efficiency of the FWM process [24]. The
variation of P;/Pj4 is
Piyy

1
A <Tz> = 1712 (PiAPit1 — Pit1AP)

_ aa),'_H 1— (a)iPi+l>2 (3)
w; wi+1P; '

From Eq. (3), it can be determined that when w;Piy1 >
wi+1Pi(Piy1 > Pj, approximately), A(P;i+1/P;) < 0, and the
energy transfers from the wave at w;y to the wave at w;. By
contrast, when w;Piy| < wiy1P; (Piy1 < P;, approximately),
A(Pi+1/P;) > 0, and the energy transfers from the wave at
w; to the wave at w;y1. When w;Piy1 = wir1P; (Piy1 = Pj,
approximately), A(P;y1/P;) = 0, and the powers of the two
frequencies are balanced by the FWM effect.

The threshold of the multi-wavelength TDFL was 2.86 W,
which is higher than that of the TDFL without HNLF due
to the strong loss caused by the HNLF. By adjusting the
PCs, the gain and loss of different lasing wavelengths were
changed, as were the laser OSNRs of different wavelengths.
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FIGURE 4. The output spectra of multi-wavelength TDFL. (a)
X-polarization, State 1. (b) X-polarization, State 2.

To investigate the output characteristics, two typical different
states of output OSNRs were chosen in X-polarization, as pre-
sented in Fig. 4. In Fig. 4(a), the laser at 1949.22 nm had the
highest power, and six lasing channels were observed in total.
The lasers were at 1946.72 nm, 1947.97 nm, 1949.22 nm,
1950.46 nm, 1951.73 nm, and 1953.00 nm, respectively, and
the OSNRs were 27 dB, 45 dB, 58 dB, 47 dB, 30 dB, and
20 dB, respectively. In Fig. 4(b), the lasers at 1947.97 nm and
1949.22 nm had the same power. The OSNRs of the lasers
at the six wavelengths were 33 dB, 54 dB, 54 dB, 37 dB,
30 dB, and 20 dB, respectively. The wavelength interval was
around 1.26 nm. To investigate the stability of the multi-
wavelength operation, the output spectra of the two states
were scanned 10 times with intervals of 5 min, as shown
in Figs. 4(a) and 4(b). During the measurement, no obvious
wavelength fluctuation was observed within the resolution of
the OSA, and the center-wavelength power fluctuations of the
six channels of State 1 and State 2 are presented in Figs. 5
and 6, respectively. As Fig. 5 indicates, the fluctuations at the
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FIGURE 7. The output spectra of multi-wavelength TDFL (X-polarization,
State 1))when the pump power was (a) 2.86 W, (b) 3.20 W, (c) 3.52 W and
(d) .11 W.

six center-wavelengths of State 1 were 0.418 dB, 0.920 dB,
0.049 dB, 0.483 dB, 0.325 dB, and 0.423 dB, respectively.
The power fluctuations of the six wavelengths of State 2
were 0.668 dB, 0.739 dB, 0.796 dB, 0.975 dB, 0.281 dB,
and 0.659 dB, respectively, as shown in Fig. 6. The above
results indicate that the proposed multi-wavelength TDFL
can operate stably at X-polarization.

The characteristics of multi-wavelength operations with
different launched pump powers were then studied.
Figs. 7(a-d) present the output spectra of State 1 with different
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pump powers. When the pump power was 2.86 W, the laser
at 1949.22 nm began to output, and when the pump power
was 3.20 W, the lasers at 1947.97 nm and 1950.46 nm started
lasing. After increasing the pump power to 3.52 W, the lasers
at 1946.72 nm and 1951.73 nm started lasing, and when
the 4.11 W pump power was launched, simultaneous six-
wavelength lasing was achieved. The 3 dB linewidths of the
lasers were 0.20 nm, 0.08 nm, 0.06 nm, 0.07 nm, 0.08 nm,
and 0.07 nm, respectively. Note that the 3 dB linewidths of
the lasers became wider with the increase of pump power.
This is because the proposed laser is not a single-longitudinal
mode laser; when the pump power increased, the number of
the longitudinal mode also increased, and the 3 dB linewidths
widened. The output spectra of State 2 with different pump
powers are exhibited in Figs. 8(a-d). As can be seen, unlike
in State 1, when the pump power reached the threshold, the
lasers at 1947.97 nm and 1949.22 nm emerged together. The
3 dB linewidths of the lasers were 0.06 nm, 0.05 nm, 0.05 nm,
0.06 nm, 0.07 nm, and 0.06 nm, respectively. Also, the 3 dB
linewidths widened as the pump power increased. Note that
if a greater pump power is employed, the laser OSNRs will
be higher, and peaks, corresponding to the low-reflective
peaks of the PM-SFBG, will appear in the output spectrum.
However, a greater pump power will result in a severe thermal
effect at the splicing point a, so the pump power of 4.11 W
was used.

To further study the switching characteristic of the pro-
posed TDFL, two PCs were adjusted, and the Y-polarization
output operations of different states were obtained. In
Fig. 9(a), the laser at 1950.86 nm achieved the highest power,
and a total of five lasing channels was observed. The lasers
were at 1948.19 nm, 1949.51 nm, 1950.86 nm, 1952.15 nm,
and 1953.42 nm, respectively, and the OSNRs were 31 dB,
49 dB, 55 dB, 42 dB, and 24 dB, respectively. In Fig. 9(b),
the laser at 1949.51 nm had the highest power, and the lasing
channel at 1946.90 nm was achieved. The OSNRs of the
lasers at the six wavelengths were 35 dB, 47 dB, 57 dB, 47 dB,
37 dB, and 21 dB, respectively. The wavelength interval was
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FIGURE 9. The output spectra of multi-wavelength TDFL. (a)
Y-polarization, State 1. (b) Y-polarization, State 2.

around 1.30 nm, which is reasonable within the OSA reso-
lution of 0.05 nm compared with the X-polarization interval
of 1.26 nm. To study the stability of the multi-wavelength
operation with Y-polarization, the output spectra of the two
states were scanned 10 times with intervals of 5 min, and are
displayed in Figs. 9(a) and 9(b). During the test, no obvious
wavelength fluctuation was observed within the resolution
of the OSA, and the output power fluctuations of the six
wavelengths of the two states are presented in Figs. 10 and 11,
respectively. As Fig. 10 shows, the power fluctuations of the
five-wavelength laser of State 1 were 0.678 dB, 0.785 dB,
0.116 dB, 0.138 dB, and 0.848 dB, respectively. In Fig. 11,
the power fluctuations of the six-wavelength laser of State 2
were 1.615 dB, 0.605 dB, 0.19 dB, 0.82 dB, 1.568 dB, and
1.838 dB, respectively.

Figs. 12(a-d) present the Y-polarization output spectra of
State 1 with different pump powers. When the pump power
was 2.86 W, the laser at 1950.86 nm appeared. As the pump
power increased, multi-wavelength lasers emerged. When the
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pump power was 4.11 W, the lasers of five wavelengths were
output (1948.19 nm, 1949.51 nm, 1950.86 nm, 1952.15 nm,
and 1953.42 nm). The 3 dB linewidths of the lasers were
0.13 nm, 0.07 nm, 0.07 nm, 0.06 nm, and 0.08 nm, respec-
tively, which were widened as the pump power increased.
Figs. 13(a-d) display the output spectra of State 2 with differ-
ent pump powers. Unlike in State 1, the laser at 1949.51 nm
emerged first, and when the pump power was 4.11 W, lasers
of six wavelengths were achieved. The 3 dB linewidths of the
lasers were 0.06 nm, 0.08 nm, 0.06 nm, 0.07 nm, 0.06 nm, and
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0.07 nm, respectively. If a greater pump power is employed,
the laser OSNRs will be higher, and corresponding peaks with
the low-reflective peaks of the PM-SFBG will appear on the
output spectrum.

Next, we adjusted the PCs to make the X- and Y-polarized
lasers emerge together, and lasers with more wavelengths
were achieved, as is evident in Fig. 14. The wavelengths and
the OSNRs of the ten output lasers are listed in Table. 1. The
highest OSNR was 53 dB at 1949.50 nm. Then, to study the
stability of multi-wavelength operation, the output spectra
were scanned 10 times at intervals of 5 min. No obvious
wavelength draft was observed within the resolution of the
OSA, and the power fluctuations of each wavelength are
presented in Fig. 15 and Table. 1. The power fluctuations were
less than 0.787 dB, which indicated that the proposed TDFL
can stably work at ten-wavelength operation.

The output spectra with different pump powers were
obtained, and are presented in Fig. 16. When the pump power
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TABLE 1. Wavelength, OSNR and power fluctuation of TDFL output (X-
and Y-polarization).

Wagiﬁ;‘gth 194642 1946.87 194776 1948.19  1949.06
OSNR (dB) 25 32 38 44 52
Power

fluctuation (dB) 0.787 0.403 0.548 0.197 0.117

Wavelength

(om) 1949.50 195038  1950.81 195170  1952.12
OSNR (dB) 53 45 43 33 34
Power
fluctuation (dB) 0.117 0.139 0.175 0.627 0.216

E

31.50]1946.42 nm 26.10]1946.87 nm -19.41947.76 nm
3175 262 1o
-32.00
3225 264 2
203
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FIGURE 15. The laser power fluctuation of ten wavelength versus time (X-
and Y-polarization).
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FIGURE 16. The output spectra of multi-wavelength TDFL (X- and
Y-polarization) when the pump power was (a) 2.86 W, (b) 3.52 W, (c) 4.11
W and (d) 4.60 W.

was 2.86 W, lasers at 1949.06 nm and 1949.50 nm outputted.
The number of laser wavelengths increased as the pump
power increased. When the pump power was 4.60 W, ten-
wavelength operation was obtained. The 3 dB linewidths
of the lasers were 0.10 nm, 0.08 nm, 0.13 nm, 0.13 nm,
0.07 nm, 0.08 nm, 0.06 nm, 0.06 nm, 0.06 nm, and 0.06 nm,
respectively. The 3 dB linewidths were widened as the pump
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FIGURE 17. The laser output power variation with pump power (X- and
Y-polarization).

power increased. Finally, the average output power of the ten-
wavelength TDFL was measured by the power meter (Ophir
StarLite) through the 10% output end of the coupler, as shown
in Fig. 17. Due to the 150 m HNLF and the mode field
mismatching loss caused by ion diffusion and size mismatch
at the spliced points a, b, ¢, and d, the output power of the
proposed TDFL was relatively low. The output power notably
and near-linearly increased with the pump power, and the
TDFL was not saturated. The output power increased with
a higher pump power, and the number of laser wavelengths
increased simultaneously. However, considering the bearing
capacity of the injection point b, the highest pump power of
4.60 W was employed.

Note that the proposed TDFL performs as a switchable
multi-wavelength laser. However, the wavelength of the out-
put laser could be tunable if a wavelength tuning mechanism
is employed, such as a stress regulator [25], curvature adjuster
[26], displacement platform [27], and solutions with different
refractive indices [28], and thus a wavelength-switchable and
tunable TDFL can be obtained.

IV. CONCLUSION

In conclusion, a CW switchable multi-wavelength TDFL
employing a PM-SFBG was proposed and demonstrated for
the first time. The 150 m long HNLF was used to efficiently
suppress the gain competition based on the FWM effect. By
adjusting the SOP of light inside the laser cavity, two six-
wavelength lasing modes and a ten-wavelength lasing mode
were obtained. When the laser ran at any one of the six-
wavelength operations with a pump power of 4.11 W, the
OSNRs of at least four wavelengths were higher than 30 dB,
and when the laser ran at the ten-wavelength operation with
a pump power of 4.60 W, the OSNRs of nine wavelengths
were higher than 30 dB. At all operation modes, the TDFL
exhibited high medium-term stability. The proposed TDFL
can be applied in DWDM and FSOC systems as the seed laser.
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