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ABSTRACT New approaches have been proposed to detect and exploit sparsity in adaptive systems.
However, the sparsity is not always explicit among the system coefficients, thus requiring some tools to
reveal it. By means of the so-called feature function, we propose the low-complexity feature stochastic
gradient (LF-SG) algorithm to exploit hidden sparsity. The proposed algorithm aims at reducing the
computational load of the learning process, as compared to the least-mean-square (LMS) algorithm.We focus
on block-lowpass systems, but the proposed approach can easily be adapted to exploit other kinds of features
of the unknown system, e.g., highpass and bandpass characteristics. Then, we analyze some properties of the
LF-SG algorithm, namely its steady-state mean squared error (MSE), its bias, and the choice of the step-size
parameter. Simulation results illustrate the competitive MSE performance of the LF-SG in comparison
with the LMS, but the former algorithm requires much fewer multiplication operations to identify lowpass
systems. For instance, to identify a measured room impulse response, the LF-SG algorithm realized less than
half of the multiplication operations required by the LMS algorithm.

INDEX TERMS Adaptive filtering, block-lowpass systems, computational complexity, feature, LMS,
sparsity.

I. INTRODUCTION
Sparse signals and models have received great attention
from researchers working in the adaptive filtering field in
the last years. Different approaches have been utilized to
exploit sparsity, such as the l1-norm regularization [1], [2], the
l0-norm regularization [3]–[7], the proportionate tech-
nique [8], [9], the thresholding and shrinkage strate-
gies [10]–[12], and the oracle algorithm [11], [12]. The
interest to exploit sparsity has been increased in the last years
due to several practical issues that make sparsity more likely
to happen [13], [14]. For example, increasing of the sam-
pling rate of speech/audio signals leads to long room impulse
responses and echo paths, whose energies mostly concentrate
in a few coefficients. Moreover, with the huge increase in
computational power, researchers are using more complex
models (i.e., models with more coefficients), thus frequently
requiring the usage of a sparsity-promoting regularization to
accelerate convergence and/or prevent overfitting [15], [16].
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All sparsity-aware adaptive filtering algorithms mentioned
in the last paragraph assume that sparsity is directly observed
in the impulse response of the system to be identified.
Recently, the feature LMS (F-LMS) algorithm has been
proposed to exploit the hidden sparsity of systems [17].
More precisely, the F-LMS algorithm uses prior information
about a given characteristic of the unknown system, herein
called feature, to map the filter coefficients to a different
domain. This feature domain of the coefficients admits sparse
representation. After this transformation of variables, the
so-called hidden sparsity is revealed, and the F-LMS algo-
rithm capitalizes on it by applying some sparsity-promoting
regularization. In [17], [18], features frequently found in
practical systems (like lowpass and highpass frequency
responses [19]–[23]) have been exploited in order to accel-
erate convergence or reduce steady-state mean squared error
(MSE). The price to be paid is an increase in computational
complexity in comparison with the LMS algorithm.

In this paper, we propose a new algorithm, called
low-complexity feature stochastic gradient (LF-SG) algo-
rithm that exploits the system feature to reduce the number
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of arithmetic operations while obtaining similar accuracy,
as compared to the LMS algorithm. Due to its practical
appeal, we focus on lowpass and block-lowpass systems,
but adapting the proposed approach to other kinds of fea-
ture is straightforward. Block-lowpass systems have impulse
responses comprised of several blocks of coefficients with a
smooth variation. That is, each block individually has lowpass
frequency response, but abrupt transitions may occur from
one block to another. In this view, a lowpass system is a
particular case of a block-lowpass system in which there is
a single block of smoothly-varying coefficients. The LF-SG
algorithm reveals the hidden sparsity within block-lowpass
systems by using the first coefficient of a given block to
‘‘predict’’ the remaining coefficients of the same block. Then,
it quantizes the residuals when they are very small, thus gen-
erating a sparse set of coefficients. Besides to proposing a new
algorithm, we also analyze some of its properties concerning
the step-size, its bias and steady-state MSE performance.

This paper is organized as follows. Section II presents the
proposed LF-SG algorithm. Some properties related to the
bias, the step-size, and the steady-state MSE of the LF-SG
algorithm are analyzed in Section III. Simulation results con-
sidering both synthetic and measured unknown systems are
shown in Section IV. The conclusions are drawn in Section V.
Notation: Scalars are represented by lowercase letters.

Vectors (matrices) are denoted by lowercase (uppercase)
boldface letters. The ith element of a given vector z is pre-
sented by zi. At iteration k , the input vector and the weight
vector are represented by x(k),w(k) ∈ RN+1, respectively,
where N is the adaptive filter order. We define the usual
adaptive filter output and error as y(k) , wT (k)x(k) and
e(k) , d(k) − y(k), respectively, where d(k) ∈ R is the
desired signal.

II. THE LF-SG ALGORITHM
In this section, we propose the low-complexity fea-
ture stochastic gradient (LF-SG) algorithm to exploit the
block-lowpass feature of the system to be identified aiming
at reducing the computational cost of calculating the output
signal, in comparison with the LMS algorithm. As previ-
ously explained, we have chosen to address the block-lowpass
feature due to its high practical appeal, but generalizing the
approach proposed here to other features is straightforward.

The key idea is to reduce the number of multiplication
operations required for computing the output signal when
there is a strong relation between neighboring coefficients.
In block-lowpass systems, for example, the neighboring coef-
ficients within a given block vary smoothly (see Figure 1(a)
for an example). Therefore, for a block of coefficients whose
amplitudes are similar up to a given small tolerance ε > 0,
we quantize these small differences to zero to obtain simpler
blocks (see Figure 1(d)) that admit a sparse representation
(see Figure 1(b)), thus revealing the hidden sparsity on the
coefficients and also allowing a reduction in the number of
multiplication operations required to compute the adaptive
filter output y(k) , wT (k)x(k). Mathematically, if the value
of |wm+i(k) − wm(k)| < ε for i = 1, 2, . . . , j, then in the

FIGURE 1. Toy example illustrating: (a) vector w(k); (b) ws(k), which is
the result of applying Fε to w(k); (c) auxiliary vector b(k); and (d) ŵs(k),
the estimate of w(k) by using ws(k) and b(k). Each color indicates a
group of coefficients that belong to the same block, i.e., which are
represented by a single reference coefficient in ws(k).

calculation of y(k) instead of computing part of the inner
product as follows

wm(k)xm(k)+ · · · + wm+j(k)xm+j(k), (1)

we can approximate it this way

wm(k)(xm(k)+ xm+1(k)+ · · · + xm+j(k)), (2)

where only a single coefficient wm(k) is used. As a result,
we decrease the number of multiplication operations from
j+1 to one. Hence, the first coefficient of a given block, herein
called the reference coefficient, is used to predict/approximate
the other coefficients of the same block. A given block of
coefficients ends when we find the first coefficient whose
amplitude is not ε-close to the amplitude of the reference
coefficient, i.e., the absolute value of their difference exceeds
the tolerance ε.

For each block of coefficients, the LF-SG algorithm keeps
only the reference coefficient and replaces the remaining
ones with zeros. Furthermore, when the absolute value of a
coefficient is less than ε, the LF-SG algorithm also replaces
it with zero to avoid unnecessary multiplications [24], [25].
Thus, two subsets of parameters are replaced by zero: (I) the
coefficients whose absolute values are less than ε, and (II)
the consecutive coefficients whose amplitudes are ε-close to
the reference coefficient.

The above reasoning can be implemented by means of the
feature function, Fε : RN+1

→ RN+1, applied to the weight
vector of the adaptive filter. The algorithm of the feature
function is described in Table 1.

As can be observed in Table 1, the feature function replaces
the subsets (I) and (II) of the coefficients of w(k) with zero.
Let us define ws(k) , Fε(w(k)). Figures 1(a) and 1(b) depict
an example of the impulse responses w(k) and ws(k) for
ε = 0.02, respectively. As can be observed, w(k) has
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TABLE 1. Feature function algorithm.

40 nonzero coefficients, and after using the feature function,
37 of them are replaced by zeros. In summary, the feature
function maps w(k) to another domain; if the original set of
coefficientsw(k) represents a block-lowpass system, then the
application of the feature function to w(k) results in a sparse
system ws(k).
Our goal is to utilize ws(k) in the calculation of the output

signal. To do so, we must determine from which subset of
coefficients of w(k) the zero elements of ws(k) came from,
i.e., subsets (I) or (II). In fact, for some i, wsi (k) is zero if
and only if wi(k) belongs to the subsets (I) or (II). If wi(k)
belongs to the subset (I), then we can directly apply wsi (k) to
calculate the output signal. That is, we use wsi (k)xi(k) = 0.
However, if wi(k) belongs to the subset (II), then we must
apply the last nonzero coefficient of ws(k) detected before
wsi (k) to compute the output signal. Assume that this nonzero
coefficient has index m, then we use wsm (k) instead of wi(k)
since their values are ε-close to each other. Hence, in the
calculation of the output signal, we use wsm (k)xi(k) instead
of wsi (k)xi(k).
In order to determine the origin of the zero coefficients in

ws(k), we define the binary vector b(k) ∈ {0, 1}N+1 as

b(k) , gε(w(k)) = [gε(w0(k)) · · · gε(wN (k))]T , (3)

where gε(·) : R→ {0, 1} is given by

gε(w) ,
{
1, if |w| ≥ ε,
0, if |w| < ε.

(4)

In Figure 1(c), we can observe b(k) for the given example
w(k) and ε = 0.02. Then, for some i, if wsi (k) and bi(k) are
zero, we infer that wi(k) belongs to the subset (I). However,
if wsi (k) = 0 and bi(k) = 1, then we conclude that wi(k)
belongs to the subset (II). The result of combining the pieces
of information given in Figures 1(b) and 1(c) is the ŵs(k)
depicted in Figure 1(d).

Similarly to a stochastic gradient algorithm, the objective
function of the LF-SG algorithm is

ξLF-SG(k) =
1
2
|es(k)|2, (5)

TABLE 2. Low-complexity feature stochastic gradient algorithm.

where es(k) , d(k) − ys(k) is the error signal of the LF-SG
algorithm. The LF-SG algorithm is summarized in Table 2.
It is important to observe that the LF-SG algorithm requires
fewer multiplication operations to calculate its output signal
ys(k) in comparison with the LMS algorithm, which com-
putes every multiplication related to the inner product
y(k) = wT (k)x(k). In addition, notice that the LF-SG algo-
rithm reduces to the LMS algorithm when ε = 0.

III. SOME PROPERTIES OF THE LF-SG ALGORITHM
In this section, we study the convergence behavior of the
coefficient vector and the steady-state performance of the
LF-SG algorithm. To this end, firstly, we introduce some
useful variables. Then we use the update equation of the
LF-SG algorithm to continue our analysis. We assume the
data model described in Definition 1.
Definition 1: The random processes {d(k), x(k), n(k)} sat-

isfy the following conditions:
(i) Each of them is a wide-sense stationary (WSS) process

with zero mean;
(ii) The covariance matrix of x(k) is R = E

[
x(k)xT (k)

]
;

(iii) n(k) is i.i.d. with variance σ 2
n = E[n2(k)];

(iv) n(k1) is independent of x(k2) for all k1, k2;
(v) The initial condition w(0) is independent of {d(k),

x(k), n(k)} for all k;
(vi) There exists a vector w∗ ∈ RN+1, called the optimum

weight vector, such that d(k) = wT
∗ x(k)+ n(k).

A. RELATING ws(k) WITH ŵs(k)
Table 2 presents an efficient implementation of the LF-SG
algorithm that avoids computing several multiplications by
using ws(k). This strategy can be regarded as a sparse rep-
resentation of the coefficient vector w(k). However, the if
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statement and the several auxiliary variables used in Table 2
hinder the mathematical analysis of the algorithm usingws(k)
directly. To overcome such issue, here we define ŵs(k) which
can be regarded as an estimate ofw(k) obtained viaws(k) (by
repeating the first entry of each block for the other entries
of the corresponding block, as illustrated in Figure 1(d) for
ε = 0.02). In this way, the filter output can be rewritten as

ys(k) , ŵT
s (k)x(k). (6)

Besides, we can relate w(k) with ŵs(k) as follows

wε(k) , w(k)− ŵs(k), (7)

where each entry of wε(k) belongs to the interval [−ε, ε].

B. STEP-SIZE
Let w̃s(k) , ŵs(k) − w∗ be the discrepancy between ŵs(k)
and the optimum weight vectorw∗. Thus, the error signal can
be written as

es(k) = d(k)− ys(k) = wT
∗ x(k)+ n(k)− ŵT

s (k)x(k)

= n(k)− w̃T
s (k)x(k), (8)

in which the second equality follows from Definition 1
and (6).

Now, consider the recursion given in Table 2. After
using (7), subtractingw∗ from both of its sides, and using (8),
this recursion can be rewritten as

w̃s(k + 1) =
(
I− µx(k)xT (k)

)
w̃s(k)+ µx(k)n(k)

+ (wε(k)− wε(k + 1)) . (9)

By taking the expected value of the previous equation we
obtain

E[w̃s(k+1)] =(I−µR)E[w̃s(k)]+E[wε(k)−wε(k+1)] , (10)

where we used E[x(k)n(k)] = 0, which follows from Defini-
tion 1, and assumed x(k) to be independent of w̃s(k).1 After
resolving this recursion the following relation is achieved

E[w̃s(k + 1)]

= (I− µR)k+1 E[w̃s(0)]

+

k∑
i=0

(I− µR)i E[wε(k − i)− wε(k − i+ 1)]

= Q (I− µ3)k+1QTE[w̃s(0)]︸ ︷︷ ︸
1st term

+

k∑
i=0

Q(I−µ3)iQTE[wε(k − i)−wε(k − i+ 1)]︸ ︷︷ ︸
2nd term

, (11)

where R = Q3QT (spectral decomposition), Q is a matrix
containing the orthonormal eigenvectors ofR, whereas3 is a
diagonal matrix containing the associated eigenvalues on the

1This is the so-called independence theory which provides quite accurate
analysis results [26].

main diagonal. Clearly, by setting the step-size as 0 < µ <

2/λmax , with λmax being the largest eigenvalue, the 1st term
converges to zero. However, for ε > 0 there is no choice of µ
that ensures the convergence of the 2nd term to zero, meaning
that the LF-SG algorithm provides a biased estimate of w∗
in general. Nevertheless, such bias can be negligible since

0 < µ < 2/λmax implies that (I− µ3)i
i→∞
−→ 0, meaning

that the expectation terms are attenuated more as i increases.
Besides, the LF-SG algorithm should employ small ε so that
each expectation within the 2nd term is close to zero. In this
view, the LF-SG algorithm trades off bias for complexity
reduction by means of ε.

C. MSE
Let us define the MSE of the LF-SG algorithm as follows

ζLF-SG , lim
k→∞

E[e2s (k)]. (12)

In Table 2, we can see that the update equation of the LF-SG
algorithm is similar to that of the LMS algorithm. Indeed,
by Equation (7), ŵs(k) is obtained by translating the weight
vector of the LMS algorithm by wε(k). Therefore, we can
follow the same mathematical steps in computing the MSE
of the LMS algorithm as in [26] to derive the MSE of the
LF-SG algorithm.

Also, note that the relationship between the error signals of
the LMS and the LF-SG algorithms is given by

es(k) = d(k)− ys(k) = d(k)− ŵT
s (k)x(k)

= d(k)− (w(k)− wε(k))T x(k)

= e(k)+ wT
ε (k)x(k), (13)

where e(k) is the error signal of the LMS algorithm. There-
fore, after some mathematical manipulations as in [26] pages
591-598, we obtain the MSE of the LF-SG algorithm as

ζLF-SG =
µ(σ 2

n + ε
2σ 2

x )tr(R)
2− µtr(R)

+ ε2σ 2
x + σ

2
n , (14)

where σ 2
x and σ 2

n are the variances of the input signal and the
additive noise signal, respectively, and tr(R) stands for the
trace of matrix R.

D. SELECTION OF ε
In this subsection, we propose some approaches to select an
appropriate ε, since it is a crucial parameter for the LF-SG
algorithm.

The best value of ε can be adopted by using some a priori
knowledge about the system to be identified; however, when
such a priori knowledge is not available, we may utilize one
of the following strategies.

(i) We can run the LMS algorithm until it converges. After
the convergence of the LMS algorithm, by clustering the
coefficients in lowpass blocks, the suitable value for ε can
be chosen.

(ii) Note that we infer the LF-SG algorithm reaches the
steady-state if its steady-state mean squared deviation (MSD)
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equals to theMSD of the LMS algorithm, and theMSD of the
LMS algorithm is given by [27]

MSDLMS =
1
2
µNσ 2

n . (15)

Hence, we can adopt an appropriate ε as follows

0 ≤ ε <

√
MSDLMS

N
=

√
1
2
µσ 2

n , (16)

where
√

1
2µσ

2
n expresses the average value of the steady-state

estimate deviation between each coefficient of the adaptive
filter and the optimal one.

IV. SIMULATIONS
In this section, we evaluate the performance of the LMS
and the LF-SG algorithms in some system identification sce-
narios. In all examples, the input signal is zero-mean white
Gaussian with unit variance, the initial coefficient vector
is adopted as w(0) = [0 · · · 0]T , and the signal-to-noise
ratio (SNR) is 20 dB, i.e., σ 2

n = 0.01. The MSE learning
curves are computed by averaging the outcomes of 200 inde-
pendent runs.

A. SCENARIO 1: SYNTHETIC IMPULSE RESPONSES
In this scenario, we apply the LMS and the LF-SG algo-
rithms to identify two unknown systems of order 39. The
first unknown system is the narrowband lowpass system
wl
∗ = [0.4 0.4 · · · 0.4]T . The second unknown model is

a block-lowpass model, wb
∗, whose coefficients are listed

in Table 3. For both algorithms, the step-size is µ = 0.01.
Moreover, using the a priori information, we use ε = 0.02.

TABLE 3. The coefficients of wb
∗ .

Figure 2(a) illustrates the MSE learning curves of the
LMS and the LF-SG algorithms considering the identification
of the narrowband lowpass system wl

∗. As can be verified,
both algorithms exhibit similar learning curves, but the LMS
algorithm requires much more multiplication operations. For
instance, during the steady-state, the LMS algorithm per-
formed 40 multiplications per iteration to compute its output
signal y(k), whereas the LF-SG algorithm required just one
multiplication to compute its corresponding output ys(k).

The MSE learning curves of the LMS and the LF-SG algo-
rithms, when they are employed to identify the block-lowpass
system wb

∗, are presented in Figure 2(b). Once again, the two
curves are very similar, indicating that the LF-SG algorithm
performed as good as the LMS algorithm, but requiring
much fewer multiplications. Indeed, in the computation of
their corresponding output signals during the steady-state,

FIGURE 2. MSE learning curves of the LMS and the LF-SG algorithms
considering the unknown systems in Scenario 1: (a) the narrowband
lowpass system wl

∗; (b) the block-lowpass system wb
∗ .

the LMS algorithm required 40 multiplication operations per
iteration, whereas the LF-SG algorithm realized only four
multiplications.

Therefore, in this scenario, we verified the competitive
MSE performance of the LF-SG algorithm, in compari-
son with the LMS algorithm, but the proposed algorithm
requires fewer multiplications to identify block-lowpass sys-
tems, as illustrated in Table 4.

TABLE 4. Number of required multiplication operations to compute the
output signals in the identification of systems wl

∗, wb
∗ , and RIR.

B. SCENARIO 2: MEASURED ROOM IMPULSE RESPONSE
In this scenario, we apply the LMS and the LF-SG algorithms
to identify a measured unknown system corresponding to the
room impulse response (RIR) provided in [28]. Such RIR,
sampled initially at 96 kHz, is downsampled to 8 kHz, thus
reducing the number of coefficients to 16, 000. The step-size
is µ = 10−5 for both algorithms, whereas ε = 5 × 10−5 <√

1
2µσ

2
n for the LF-SG algorithm.

Figures 3(a) and 3(b) depict the MSE learning curves
and the values of E[‖w(k)− w∗‖], respectively, for both
algorithms, considering that w∗ is the RIR to be identified.
Moreover, these curves have been smoothed using a box
filter of 100 samples length. In both figures, the curves
corresponding to the LMS and the LF-SG algorithms are
overlaid, thus illustrating that the LF-SG algorithm is capable
of achieving similar accuracy but requiring fewer multiplica-
tions than the LMS algorithm. During the steady-state, for
example, the LMS algorithm realized 16, 000 multiplications
to compute its output y(k), whereas the LF-SG algorithm
required about 7, 800 multiplications to compute ys(k).

C. SCENARIO 3: VERIFYING THEORETICAL MSE
In this scenario, we test the accuracy of the theoretical
steady-state MSE expression for the LF-SG algorithm given
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FIGURE 3. Results for the LMS and the LF-SG algorithms applied to the
identification of the measured RIR given in scenario 2: (a) MSE learning
curves; (b) E[‖w(k)−w∗‖].

in (14) versus the variations of the step-size µ and the
parameter ε. To compare the steady-state MSE performance
versus the variations of µ, we apply the LF-SG algorithm,
using the fixed ε = 0.02 and step-size values rang-
ing from 0.001 to 0.01, to identify two unknown systems
of order 19. Also, to verify the steady-state MSE perfor-
mance versus the variations of ε, the LF-SG algorithm has
been utilized with the fixed step-size µ = 0.01, while
ε ranging from 0 to 0.03. The first unknown system is
a narrowband lowpass system given by [wl∗0 · · · w

l
∗19

]T .
The second unknown system is a block-lowpass system given
by [0 · · · 0 wb∗10 · · · w

b
∗13

wb∗18 · · · w
b
∗25

0 · · · 0]T . The
experimental MSE results are obtained by implementing
the LF-SG algorithm for 2 × 104 iterations and averaging
the squared error e2s (k) over 100 independent runs in order
to produce the ensemble-average curve. Then we compute
the time average over the last 5, 000 iterations (all of these
iterations corresponding to the steady-state) and use it as the
experimental MSE.

FIGURE 4. MSE versus step-size for the LF-SG algorithm considering
scenario 3: (a) the narrowband lowpass system of order 19; (b) the
block-lowpass system of order 19.

Figures 4(a) and 4(b) depict the theoretical and the
experimental steady-state MSE values achieved by the
LF-SG algorithm, for different values of the step-size
µ, considering the identification of the narrowband low-
pass system and the block-lowpass system, respectively.

FIGURE 5. MSE versus ε for the LF-SG algorithm considering
Scenario 3: (a) the narrowband lowpass system of order 19;
(b) the block-lowpass system of order 19.

Also, Figures 5(a) and 5(b) illustrate the theoretical and the
experimental steady-state MSE values of the LF-SG algo-
rithm, for different values of ε, considering the identification
of the narrowband lowpass and the block-lowpass systems,
respectively. In these figures, we can observe that the the-
oretical curves match quite well the experimental curves,
especially in Figures 4(b) and 5(b). Observe that for the
narrowband lowpass system in Figures 4(a) and 5(a), all
coefficients are estimated using a single reference coefficient,
whereas, for the block-lowpass system, there are four refer-
ence coefficients (or equivalently, four nonzero blocks). This
means that for the case of the block-lowpass system we have
less ‘‘quantization effect’’, thus justifying the better agree-
ment between the theoretical and the experimental curves.

V. CONCLUSION
This work proposed a strategy to benefit computationally
from the hidden sparsity inherent to many practical systems
by means of the feature function. In particular, we proposed
the LF-SG algorithm for block-lowpass systems, but the algo-
rithm can easily be adapted to exploit other kinds of feature,
such as highpass and multi-bandpass systems. In compari-
son with the LMS algorithm, the LF-SG algorithm can sig-
nificantly decrease the number of multiplication operations
required to compute the adaptive filter output without impair-
ing its accuracy. Furthermore, we analyzed some properties
of the proposed algorithm, like its convergence in the mean
and steady-state MSE. Finally, the potential benefits of the
LF-SG algorithm in reducing computational requirements
were demonstrated considering the identification of both syn-
thetic and measured unknown systems.
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