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ABSTRACT Millimeter wave (mmWave) has been claimed to be the only viable solution for high-bandwidth
vehicular communications. However, frequent channel estimation and beamforming required to provide a
satisfactory quality of service limits mmWave for vehicular communications. In this paper, we propose a
novel channel estimation and beam tracking framework for mmWave communications in a vehicular network
setting. For channel estimation, we propose an algorithm termed robust adaptive multi-feedback (RAF) that
achieves comparable estimation performance as existing channel estimation algorithms, with a significantly
smaller number of feedback bits. We derive upper and lower bounds on the probability of estimation error
(PEE) of the RAF algorithm, given a number of channel estimations, whose accuracy is verified through
Monte Carlo simulations. For beam tracking, we propose a new practical model for mmWave vehicular
communications. In contrast to the prior works, the model is based on position, velocity, and channel
coefficient, which allows a significant improvement of the tracking performance. Focused on the new beam
tracking model, we re-derive the equations for Jacobian matrices, reducing the complexity for vehicular
communications. An extensive number of simulations is conducted to show the superiority of our proposed
channel estimation method and beam tracking algorithm in comparison with the existing algorithms and
models. Our simulations suggest that the RAF algorithm can achieve the desired PEE, while on average,
reducing the feedback overhead by 75.5% and the total channel estimation time by 14%. The beam tracking
algorithm is also shown to significantly improve beam tracking performance, allowing more room for data
transmission.

INDEX TERMS Beamforming, beam tracking, channel estimation, millimeter wave, multiple-input
multiple-output (MIMO).

I. INTRODUCTION
Millimeter wave1 wireless communications is one of the
primary candidates proposed to cater for the high data traffic
demand of 5G mobile network [2], [3]. The mmWave spec-
trum is considered to be from 30 to 300 GHz, which enables
high-rate data transmission. Current research in mmWave is
mostly focused on the 28 GHz, 38 GHz, and 60 GHz bands
as well as the E-band, consisting of 71-76 GHz and 81-
86 GHz [4]. Several standards have already been established
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2018 [1].

to regulate the use of mmWave, such as ECMA-387 [5],
IEEE 802.15.3.c [6], and more importantly, IEEE 802.11ad
[7], which is the first standard in the IEEE 802.11 family to
support a mmWave band, i.e., 60 GHz band.

Exploiting the high data rate of mmWave paves the way for
a number of exciting applications, such as mmWave cellular
systems, vehicle to vehicle (V2V) communications, and vehi-
cle to infrastructure (V2I) communications. Conventional
protocols for vehicular communications fail at providing the
high data rate required for many of its applications, e.g.,
high-resolutionmap downloads for navigation, collection and
distribution of aggregated sensor information from/to vehi-
cles for improved safety, clouding computing of the trans-
mitted data from vehicles, etc. For instance, dedicated short
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range communications (DSRC) provides only 2-6 Mb/s for
a range of 1000 m, and cellular communications offer at
most 100Mb/s in high-mobility scenarios. On the other hand,
the existence of line of sight (LoS) paths in vehicular com-
munications with high probability makes this high-bandwidth
technology more suitable. That is because the height of a base
station (BS) is usually much higher than that of vehicles with
embedded transceivers mounted on top. Moreover, the lim-
ited communication range provides an inherent security
feature.

It is worth noting that the use of mmWave for vehicular
communications is not a new concept [8]. However, it is
only in recent years that the advancements in CMOS tech-
nologies used in radio frequency integrated circuits have
made the concept practical. Nonetheless, the applications of
mmWave for vehicular communications still faces a number
of open challenges, e.g., high path loss, limited communi-
cation range, beam training and alignment overhead due to
the high mobility, etc. In this paper, we focus on the latter
challenge. To compensate for the high path loss, mmWave
is heavily dependent on establishing directional links with
high beamforming gains. This requires frequent and accurate
channel estimation and tracking reports. Moreover, having
large antenna arrays increases the complexity of channel
estimation as well as the number of required feedback bits.
On the other hand, the high mobility feature of vehicles leads
to a fast changing environment which increases the frequency
of channel estimation even further. Therefore, significantly
faster, more reliable and more robust techniques are required
to allow for sufficiently reliable and efficient data transfer
between transmitters and receivers in vehicular communica-
tions, compared to conventional and stationary applications.

In the rest of this section, we review the current state of art
approaches, and then, we briefly present our contributions in
this paper.

A. RELATED WORK
In general, channel estimation inmmWave is focused on find-
ing three parameters: the angle of arrival (AoA), the angle of
departure (AoD) and the channel coefficient (α). Recent mea-
surements have demonstrated a sparse nature of mmWave
communication channels [9]. Exploiting the sparsity, sev-
eral works such as [10] and [11] have shown the efficiency
of compressive sensing methods in decreasing the training
overhead required for channel estimation. Authors in [12]
proposed a hierarchical multi-resolution beamforming code-
book to estimate the channel. In [11], the authors developed
a multi-stage adaptive channel estimation algorithm. In each
stage, the possible AoA and AoD are divided into two sub-
spaces (K = 2), and the most likely subspaces are chosen for
further refinement in the next stage. The channel coefficient
is estimated after the best link has been found. However, com-
pressive sensing is well known to be non-adaptive technology.
In [13] authors followed the same approach with K = 3 to
improve performance while maintaining low complexity and
speed through using overlapped beam-patterns. One major

challenge is that if in any of the stages the estimated angle
is incorrect, the estimation in the following stages will also
be incorrect due to the error propagation effect. However,
if we have an insight into the probability of estimation error
(PEE) associated with each measurement, we can terminate
channel estimation when the PEE is below a predetermined
threshold, as with rate adaptive algorithm RACE developed
in [14]. Unfortunately, RACE requires a large number of
feedback bits, particularly in the low signal-to-noise ratio
(SNR) regime.

After channel estimation, to prolong the duration of com-
munication between the transmitter and receiver, fast beam
tracking methods are required. This is practical for mmWave
vehicular communications where vehicles are likely to move
at uniform speeds for sufficiently long periods of time.
Authors in [15] proposed a beamforming protocol for
60-GHz propagation channels. The method exploited train-
ing sequences to detect signal strengths. The evaluation of
the proposed algorithm was provided in [16]. The approach
required multiple beam training sequences. In [17], the focus
of the paper is on tracking the beams obtained by a full
scan of all possible beam directions. The proposed algorithm
applies the EKF to track paths. This method required a high
overhead of pilot transmission to attain the measurement
matrix. Moreover, the state model is based on angles only,
without considering given to the channel coefficient. In [18],
the authors improved the tracking by having a single mea-
surement instead of the full scan, which reduces the overall
overhead. However, as in [17], the change in angles was
modeled as a Gaussian noise with zero mean, which we will
show later is not valid for vehicular communications.

Garcia et al. [19] investigated the challenges associated
with the mmWave communications in the vehicular domain.
The authors proposed a location-aided beamforming strategy
and analyzed the resulting performance in terms of antenna
gain and latency. The outcome of experiments indicated the
significance of location information for the channel estima-
tion and beam tracking. Va et al. [20] considered beam align-
ment in mmWave communications of vehicular settings. This
paper proposed to use the vehicle’s position (e.g., available
via GPS) to query a multipath fingerprint database, which
provides prior knowledge of potential pointing directions
for reliable beam alignment. The approach is the inverse
of fingerprinting localization, where the measured multipath
signature is compared to the fingerprint database to retrieve
the most likely position. Gao et al. [21] focused on beam
selection in terahertz (THz) massive MIMO systems. The
authors proposed to utilize the obtained beamspace channels
in the previous time slots to predict the prior information
of the beamspace channel in the following time slot without
channel estimation.

B. MAIN CONTRIBUTIONS
This paper aims to propose a novel approach for channel
estimation and beam tracking in V2I mmWave communica-
tion systems to maximize the communication time of receiver
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(RX) and transmitter (TX). Our main contributions are sum-
marized as follows.
• We propose a new multi-stage adaptive algorithm
referred to as robust adaptive multi-feedback (RAF) for
mmWave channel estimation. Themain advantage of the
proposed algorithm is its low feedback overhead. Then,
we derive the closed-form expression for the minimum
number of feedback bits required for channel estimation,
under maximum likelihood decoding, for a given prob-
ability of estimation error (PEE) constraint. We show
that the estimation performance yielded by the RAF
algorithm performs close to that bound, at a significantly
reduced complexity.

• We derive upper and lower bounds on the PEE for the
proposed RAF algorithm. The accuracy of these bounds
is verified via Monte Carlo simulations.

• We show that the existing model used for beam track-
ing in mmWave using EKF recursion is not suitable
for vehicular communications. Accordingly, we propose
new evolution and observationmodels for beam tracking
using EKF recursion, with the derivation of closed-form
expressions for Jacobian matrices. The derived expres-
sions are shown to be of less complexity, especially in
the calculation of Jacobian matrices.

Notation: Capital bold-face letter (A) is used to denote
a matrix, a to denote a vector, a to denote a scalar and A
denotes a set. ||A||2 is the magnitude of A, |a| is the absolute
value of a, and determinant is shown by det(A). AT , AH

and A∗ are the transpose, conjugate transpose and conjugate
of A, respectively. For a square matrix A, A−1 represents
its inverse matrix. IN is the N × N identity matrix and d·e
denotes the ceiling function. The superscripts (.)R, (.)I return
real and imaginary parts of the complex number enclosed,
respectively. CN (m,R) is a complex Gaussian random vector
with mean m and covariance matrix R, and E[a] and Cov[a]
denote the expected value and covariance of a, respectively.

II. SYSTEM MODEL
A. MMWAVE V2I COMMUNICATION SYSTEM
1) OVERVIEW
We consider a BS that is installed on a cellular tower or build-
ing with a height of h, as depicted in Fig. 1. At any trans-
mission block j, the position of the vehicle is represented by
dj (point B), where dj is equal to the distance between the
vehicle and the perpendicular line connecting the antenna
array to the ground. Moreover, the speed of the vehicle is
denoted by vj, and its RX angle is denoted by θj. In the
following transmission block (j+ 1), the vehicle would have,
thus, moved to position dj+1 (point C). Similarly, its speed
and receiving angle are now vj+1 and θj+1, respectively. The
corresponding TX angles at BS are denoted by φj and φj+1.
The TX and RX angles are chosen to be the angles between
the positive x-axis and the line connecting the receiver to the
transmitter (BA). Furthermore, the receive antenna array is
mounted on the roof-top of the vehicle which results in a
dominant LoS path between the transceivers.

FIGURE 1. Schematic Diagram of V2I model considered in this paper.

FIGURE 2. Transmission scheme used for communications between the
TX and RX.

2) TRANSMISSION SCHEME
The communication protocol between the vehicle and the BS
is illustrated in Fig. 2. A beacon interval is defined as the
maximum time period before a new channel estimation is
required. We assume that the beacon interval is made up of
(m + 1) discrete transmission blocks (m = 0, . . . ,M ), with
an equal duration1t . Initial channel estimation takes place at
the beginning of the first block (m = 0), followed by channel
tracking in the rest of the transmission blocks of the beacon
(m = 1, . . . ,M ).
Channel tracking is necessary as channel estimation

requires a higher overhead of pilots and feedback bits, which
leads to a shorter duration for data transfer. Thus, at the
beginning of transmission blocks m = 1, . . . ,M , a sin-
gle pilot with a duration of the one time slot is transmit-
ted to track the estimated channel. Based on the literature,
we assume that the time dedicated to channel estimation and
tracking is negligible in comparison with that of data transfer.
Thus, the channel is considered to be static during this time
period [13], [14].
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FIGURE 3. Structure of beamformers.

3) STRUCTURE OF BEAMFORMERS
For the proposed framework, we focus on analog beamform-
ing. However, to further improve the performance, it can be
incorporated as part of hybrid beamforming. As proposed by
[22]–[24], in the hybrid structure, beamforming is divided
into a digital precoder followed by an analog precoder. The
design of the digital precoder for the specifications and code-
books used in our proposed algorithms can be found in [11].
Therefore, we focus on the analog structure shown in Fig. 3.
The proposed framework is explained for a single user for
simplicity. Hence, we assume a single RF chain at each node.
The mmWave communication system is considered to have
Nr antennas at the receiver and Nt antennas at the transmitter
(TX) without loss of generality.

B. CHANNEL ACQUISITION MODEL
The transmitted pilots are assumed to have unit power and
occupy one time slot. If pilot x is transmitted using TX
beamformer f (‖f ‖2 = 1) and power P, the transmitted signal
can be expressed as

s =
√
Pf x. (1)

The signal observed by the receiver can be expressed as

rm =
√
PHmf x + nm, (2)

where the subscript m represents the transmission block
number and nm is an additive white Gaussian noise (nm ∼
CN (0,N0I)) imposed on the received signal. Furthermore,
if the combining vector w is applied to received signal r,
the processed received signal can be written as

ym =
√
PwHHmf x + wHnm

=
√
PwHHmf x + nm. (3)

Since ‖w‖2 = 1, nm follows the same distribution as the
elements of the vector nm (nm ∼ CN (0,N0)).
The AoA and AoD of a single path in them-th transmission

block are denoted by θm and φm, respectively. Assuming
uniform linear array (ULA) at both ends of the transmission,

the receive and transmit array response vectors are given by

ar(θm) =
1
√
Nr

[1, e−j
2π
λ
d cos θm , . . . , e−j(Nr−1) 2πλ d cos θm ]T

(4)

at(φm) =
1
√
Nt

[1, e−j
2π
λ
d cosφm , . . . , e−j(Nt−1) 2πλ d cosφm ]T ,

(5)

with d and λ denoting the antenna spacing and the carrier
wavelength, respectively. For simplicity, we consider a two-
dimensional model, and hence, only azimuth angles are con-
sidered. In practice, ULA can be steered using phase shifters
via a progressive phase shift [25].

The channel between the RX and TX is denoted by an Nr×

Ntmatrix, i.e.,Hm. Thismatrix can bewrittenmathematically
as [10], [11], [18]

Hm =

L∑
l=1

α(l)m ar(θ
(l)
m )at (φ(l)m )H , (6)

where the index l implies the l-th path and α(l)m represents
the complex path gain of the path. Scattering in mmWave
induces more than 20 dB attenuation [26]. Hence, we con-
sider the LoS component as the target path for the channel
estimation and tracking of the vehicle. This is a reasonable
assumption as a LoS component has been shown to be the
only component, in most cases, that can provide the required
reliability for the high transmission rate in mmWave com-
munications [26], [27]. Moreover, recent measurements have
shown mmWave communication channels to be sparse in the
geometric domain [28]. Hence, paths are less likely to over-
lap, and we can assume that only one path lies within the main
beam direction [18], and the other paths fall into side lobes.
Therefore, we consider non-LoS paths to be negligible com-
pared to themore dominant LoS component. This assumption
becomes more accurate as the number of antennas increases
and the beam width grows narrower. Based on this assump-
tion, the observed signal from (3) can be written as

ym =
√
PαmwHar(θm)at(φm)H f x + nm. (7)

As our description of the framework focus on one beacon
interval, and the channel estimation occurs only once in a bea-
con at m = 0, we can simplify the notation by dropping the
subscript zero for the channel estimation. Then, the observed
pilot can be expressed as

y =
√
PαwHar(θ )at(φ)H f x + n. (8)

Starting from m = 1, transceivers will have the estimated
AoA and AoD. Therefore, the pointing direction of the beam-
formers is adjusted to these angles. Denoting pointing direc-
tions of the receiver combiner and the transmit beamformer
at the m-th transmission block by θm and φm, respectively,
the directed beamformers can be expressed as

w(θm) =
1
√
Nr

[1, e−j
2π
λ
d cos θm , . . . , e−j(Nr−1) 2πλ d cos θm ]T

(9)
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f (φm) =
1
√
Nt

[1, e−j
2π
λ
d cosφm , . . . , e−j(Nt−1) 2πλ d cosφm ]T .

(10)

Subsequently, the observed signal can be expressed as

ym =
√
Pαmw(θm)Har(θm)at(φm)H f (φm)x + nm. (11)

III. PROPOSED CHANNEL ESTIMATION ALGORITHM
In this section, we start by reviewing an extended version of
the binary search approach for channel estimation presented
in [11]. Then, we develop a sparse representation of the
system, based on maximum likelihood detection (MLD) of
the AoA and AoD, and derive a closed-form expression for
the optimal number of feedback bits required, subject to PEE
constraints. Finally, we explain the proposed RAF algorithm
and derive upper and lower bounds on the achievable PEE.

A. MULTI-STAGE CHANNEL ESTIMATION WITHOUT PEE
CONSTRAINTS
Extending the multi-stage approach in [11], we divide the
whole space for AoAs and AoDs into K subspaces creating
K 2 possible combinations in each stage. The target path that
we wish to estimate is located in one of the possible TX-
RX sub-spaces. After estimating the most probable TX-RX
subspace pair, they are further divided into another K sub-
spaces, followed by another round of estimation. The process
continues until AoD and AoA reach the specified resolution.
In the s-th stage, the beamforming vectors at the TX and RX
for the k-th subspace are represented by f sk and w

s
k .

To estimate the most likely TX-RX subspaces, a pilot sig-
nal (|x|2 = 1) is transmitted in each of the K 2 transmitter and
receiver angle combinations. Each combination corresponds
to one AoA subspace candidate at the receiver and one AoD
subspace candidate at the transmitter. As a result, the system
can be represented as

cs,K
2
=
√
Pxls,K

2
+ ns,K

2
, (12)

where superscripts represent the stage number s and the total
number ofmeasurementsK 2. Also, n is aK 2

×1 vector whose
elements are i.i.d. Gaussian random variables, and ls,K

2
is a

vector containing channel responses to all combinations of
the transmit and receive beamforming vectors that can be
expressed as

ls,K
2
=



(ws1)
HHf s1

(ws2)
HHf s1
...

(ws1)
HHf s2

(ws2)
HHf s2
...

(wsK )
HHf sK


. (13)

In order to find the desired beamforming vectors, we need the
dictionary matrix of all possible steering vectors of angles,

shown as

ADIC = [a(0), a(
2π
Nt

), . . . , a(
2π (Nt − 1)

Nt
)]. (14)

The beamforming vector for the k-th subspace at the TX can
be found by solving the following equation

AHDICf
s
k = zs,ki , (15)

where zs,ki is an Nt×1 vector, in which values included in the
intended transmit subspaces are equal to the constant Cs and
zero otherwise. This vector is mathematically defined as:

zs,ki =

Cs if
iπ
Nt
∈ kth subspace, i∈1, 2, ..,Nt−1

0, otherwise
(16)

The value of Cs is chosen to normalize the magnitude of
beamforming vectors to unity (i.e., ‖f ‖2 = 1). From (15),
f sk is calculated as

f sk = (ADICAHDIC)
−1ADICz

s,k
i . (17)

The same procedure is used to find the beamforming vectors
of the RX. After K 2 measurements, the RX will compare the
magnitude of K 2 received pilots and choose the one with the
largest magnitude. This TX-RX subspace pair would be the
most likely pair to include the transmission path.

The channel estimation algorithm above does not offer
any PEE guarantees. Therefore, we next extend this algo-
rithm such that the error in each stage is below the specified
threshold.

B. A SPARSE SYSTEM REPRESENTATION
The explained multi-stage channel estimation algorithm in
the previous section conducts K 2 measurements in every
stage s. By substituting H into (13), we therefore have

ls,K
2
= α



(ws1)
Har (θ )at (φ)H f s1

(ws2)
Har (θ )at (φ)H f s1

...

(ws1)
Har (θ )at (φ)H f s2

(ws2)
Har (θ )at (φ)H f s2

...

(wsK )
Har (θ )at (φ)H f sK


. (18)

The multiplication of (ws1)
Har(θ ) and at(φ)H f s1 is only non-

zero if the AoA and AoD are aligned to the beamforming
vectors [1], [11], [14]. Therefore, only one row of ls,K

2
is

non-zero [11]. In this context, we now define a new matrix
Gs,q that represents its initial state. It can be expressed as

Gs,q = Gs,K
2
= I2K×2K , (19)

where the index q denotes the number of measurements con-
ducted so far.

Finding the AoA and AoD is equivalent to finding aK 2
×1

vector v that is zero everywhere except the desired row of
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Gs,q, in which it is equal to one. Hence, ls,q and the observa-
tion vector cs,q can be written as

ls,q =
√
PxC2

s αG
s,qvT (20)

cs,q =
√
PxC2

s αG
s,qvT + nq. (21)

Assuming d−th element of v is equal to one, the estimated
AoA subspace k̂t and the AoD subspace k̂r can be expressed
as

k̂t = d
d
K
e, k̂r = d − K (k̂t − 1). (22)

The new presentation of the channel estimation system indi-
cates that the possible outcomes of the channel estimation are
equivalent to the rows of matrix Gs,q.

C. MULTI-STAGE CHANNEL ESTIMATION WITH PEE
CONSTRAINTS BY MAXIMUM LIKELIHOOD DETECTION
In our algorithm, the MLD method will be used for the
estimation of AoA and AoD. After q measurements, the dis-
tribution of the observation vector cs,q can be written as2

cs,q = CN (0,6v), (23)

where

6v = PC4
s G

s,qvvT (Gs,q)H + N0Iq. (24)

It can be seen that the received vector follows circularly
symmetric complex Gaussian (CSCG) distribution which has
the probability density function of

f (cs,q|v,Gs,q) =
1

πqdet(6v)
exp(−(cs,q)H6−1q cs,q). (25)

In order to get a better understanding of the probability
density, it is useful to inspect them in terms of probability.
Defining the set V as all legitimate K 2 outcomes of the vector
v, the probability can be written as

p(v|cs,q) =
f (cs,q|v)∑

j∈V
f (cs,q|j)

. (26)

We are looking for the vector j that results in maximum
probability by argmax

j∈V
p(v|cs,q), which, as explained in the

previous section, can be used to find the AoA and AoD. Upon
completion of any stage s, the estimated channel coefficient
can be expressed as

α̂ =
x(ws

k̂r
)HHf s

k̂t

C2
s

. (27)

In order to have a benchmark to compare the RAF algo-
rithm’s estimation performance, it is important to know what
the optimal number of feedback bits is. This value needs
to be large enough to ensure the desired PEE. In other
words, we are looking for the minimum implementable num-
ber of feedback bits that guarantees the desired PEE. From
information-theoretical perspective, the minimum number is

2The detailed derivation of (23) can be found in [13].

Algorithm 1An Algorithm That Determines the Optimal
Number of Feedback Bits

1 Input: Nt , Nr , K .
2 // Calculate:
3 {f sk} ∀k = 1, . . . ,K
4 {wsk} ∀k = 1, . . . ,K
5 for s < S do
6 for i = 1 to K do
7 for j = 1 to K do
8 Transmitter transmits using f si
9 Receiver measures using wsj

10 end
11 end
12 // After initial K 2 measurements
13 q← K 2

14 cs,q←
√
Pxls,q + ns,q

15 d ← argmax
j∈V

p(v|cs,q)

16 d← non-zero element of d

17 k̂t← d
d
K
e, k̂r← d − K (k̂t − 1)

18 while p(v|cs,q) < (1− 0) and q < qmax do
19 q++
20 Transmitter transmits using f S

k̂t
21 Receiver receives using wS

k̂r
22 // Update:
23 d ← argmax

j∈V
p(v|cs,q)

24 d ← non-zero element of d

25 k̂t← d
d
K
e, k̂r← d − K (k̂t − 1)

26 end
27 end

28 Output: α̂ =
x(wS

k̂r
)HHf S

k̂t
C2
s

, k̂t, k̂r.

one with a single feedback including dlog2(K )e bits [29].
We verify that this number is achievable by developing an
algorithm which only needs dlog2(K )e bits of feedback. The
cost of having the optimal number of feedback bits is a large
number of channel measurements. Therefore, this algorithm
is just used as a benchmark and can not be a realistic alter-
native in practice. Finding the AoA and AoD is equivalent to
finding a K 2

× 1 vector v that is zero everywhere except the
desired row of Gs,q, in which it is equal to one. Hence, ls,q

and the observation vector cs,q can be written as
We denote 0 as the probability of the event that a channel

estimation is incorrect. The algorithm starts by having the
initial K 2 measurements which result in the primary channel
estimation. The TX continues to send pilots using the same
sequence as the initial measurements. After each transmis-
sion, using MLD, the RX is capable of calculating p(v|cs,q).
As soon as reaching the desired PEE by p(v|cs,q) > (1− 0),
the RX will feedback dlog2(K )e bits to notify the TX about
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the estimated AoD. The process of adding a new measure-
ment for the TX subspace of k̂t and the RX subspace of k̂r can
be mathematically written as

cs,q+1 =
√
Px

[
lq

(ws
k̂r
)HHf s

k̂t

]
+

[
nq

(ws
k̂r
)Hn

]
, (28)

Note that there is always a probability of outage when the
channel power gain is close to zero. In order to prevent an
excessive number of measurements, we set a maximum to
the number of pilots that could be transmitted, denoted by
qmax. The formal representation of the algorithm is given in
Algorithm 1.

D. ROBUST ADAPTIVE MULTI-FEEDBACK ALGORITHM
Multi-stage channel estimation algorithms are mainly based
on a fixed number of channel estimations. As an example,
the authors in [11] used K 2 measurements in each stage to
estimate the channel. Although the proposed algorithms are
effective, they did not consider the performance in terms of
the PEE. If due to the additive noise, the detection of the
estimated AoA and AoD is incorrect in any of the stages,
the algorithms will not be able to estimate the channel cor-
rectly. Therefore, devising an algorithm to ensure the desired
PEE is crucial. The authors in [14], proposed a rate adaptive
algorithm (RACE) in order to reach the desired PEE. Unfor-
tunately, the algorithm requires a high number of channel
feedback bits even for K = 2, particularly at low SNR.
Therefore, it is not practical to use the algorithm in fast
changing environments, such as V2I scenarios. To this end,
we propose an algorithm called RAF. In contrary to the
existing algorithms, the RAF algorithm is based on exploiting
the estimated channel coefficient to estimate the channel. The
significance of using the channel coefficient is the entailed
information about the number of measurements required.
This helps to estimate the time to commence sending feed-
back bits and consequently requires a low number of feedback
bits as well as pilot transmissions.

Before explaining the algorithm, we use the rudiments of
information theory to find a lower bound on the number
of measurements. The channel estimation is equivalent to
finding a vector v that contains K 2 binary bits encoded into
q (number of pilots transmitted) symbols. Therefore, the sys-
tem has a transmission rate of C = K 2/q. According to the
Shannon-Hartley theorem, we can easily derive the relation
infra [29]

C =
K 2

q
≤ log2(1+ SNRs)

→ q ≥
K 2

log2(1+ SNRs)
, (29)

where SNRs (in stage s) can be written as

SNRs =
|α|2PK (2s−2)

N0
. (30)

Substituting (30) in (29), a lower bound can be found on
the number of measurements that is required in each stage

conditioned on the estimated value of α. After q measure-
ments (q ≥ K 2), if the mean of observations received in the
estimated AoA and AoD is denoted by λq, the value of α can
be estimated as

α̂ =
λq
√
PC2

s

. (31)

Therefore, we have a lower bound on the number of measure-
ments required.

In each stage, the RAF algorithm starts by conducting K 2

initial channel measurements. The MLD enables the system
to have an estimation of the AoA and AoD that can further be
used to estimate the value of channel coefficient (α). Having
the estimated α, the receiver can predict a lower bound for
the required number of measurements. Up to the point of
reaching the PEE threshold, the TX continues to send the
pilots as explained in the optimal feedback algorithm. As the
pilots are accumulated, the same process of MLD is used to
achieve a better estimation of α which results in obtaining a
more accurate lower bound. After reaching the PEE thresh-
old, the RX feeds back the estimated AoD. At this point,
the TX stops sending the pilots in the order of initial channel
estimation and only sends a pilot by the estimated AoD. The
RX knows the estimated AoA and utilizes the corresponding
combiner to receive the pilot. Following the same process
after receiving each pilot, the RX estimates the AoA and AoD
and feeds back the estimated AoD. The stage terminates as
soon as the required estimation precision is reached. In the
final transmission of feedback bits, an extra bit will be trans-
mitted to notify the transmitter to stop the transmission of
pilot signals. The RAF algorithm is represented formally in
Algorithm 2.

E. RAF PERFORMANCE ANALYSIS
To analyze the performance of RAF, in this section we pro-
ceed to derive upper and lower bounds on its achievable PEE.
Before doing so, we formally define PEE in Definition 1.
Definition 1 (Probability of estimation error (PEE)): At

any stage s, assuming all detections in previous stages have
been correct, we define PEE as

p(EE|Gs,q, v) = p(v 6= v̂), (32)

where by EE we refer to estimation error and p(v 6= v̂)
indicates the probability of an event in which the estimated
vector v̂ is not equal to the transmitted vector v.

From an information theoretic perspective, we are encod-
ing a vector v entailing K 2 bits over q measurements using a
generatormatrixGs,q. On the receiving side, we are observing
the signal cs,q fromwhich we estimate the transmitted symbol
(i.e., vector v). The PEE can be written in terms of the union
of possible outcomes as

p(v 6= v̂) =
⋃

v̂∈V,v 6=v̂
p(cs,q→ ĉs,q) (33)

where ĉs,q is the observation vector corresponding to v̂ and
the term p(cs,q → ĉs,q) indicates the probability of an event
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Algorithm 2 Robust Adaptive Multi-Feedback Algo-
rithm (RAF)
1 Input: Nt , Nr , K .
2 Initialization: .
3 // Calculate:
4 {f sk } ∀k = 1, . . . ,K
5 {wsk } ∀k = 1, . . . ,K
6 for s < S do
7 for i = 1 to K do
8 for j = 1 to K do
9 Transmitter transmits using f si
10 Receiver measures using wsj
11 end
12 end
13 // After initial K2 measurements
14 q← K2

15 cs,q ←
√
Pxls,q + ns,q

16 d ← argmax
j∈V

p(v|cs,q)

17 d ← non-zero element of d

18 k̂t ← d
d
K
e, k̂r ← d − K (k̂t − 1)

19 // Find a lower bound for the number of measurements
required

20 λq ← the mean of values in cs,q corresponding to k̂t and k̂r
21 α̂← λq

√
PC2

s

22 L ←
K2

log2(1+
|α̂|2PK (2s−2)

N0
)

23 for i = 1 to K do
24 for j = 1 to K do
25 q++
26 Transmitter transmits using f si
27 Receiver measures using wsj
28 Repeat lines 20 to 22
29 if q ≥ L then
30 Break;
31 end
32 end
33 if q ≥ L then
34 Break;
35 end
36 end
37 // Update:
38 Repeat lines 16 to 18
39 while p(v|cs,q) < (1− 0)
40 q < qmax do
41 q++
42 Transmitter transmits using f S

k̂t
43 Receiver receives using wS

k̂r
44 // Update:
45 Repeat lines 16 to 18
46 end
47 end

48 Output: α̂ =
x(wS

k̂r
)HHf S

k̂t
C2
s

, k̂t, k̂r.

in which ĉs,q is chosen as the outcome over cs,q. As we are
usingMLD to detect the received symbol, referencing to [30],
the pairwise probability of error estimation over the fading

channel with channel coefficient of α ∼ N (0,Q) can be
calculated as

p(cs,q→ ĉs,q) = 0.5−

√
�2

8+ 4�2 , (34)

where � is given by

� =

√
PQC4

s

2N0
‖Gs,q(v− v̂)‖2. (35)

Having the pairwise probability of error estimation and con-
ditioning on the transmitted vector v, PEE for the given
generator matrix can be written as

p(EE|Gs,q) =
∑
v∈V

p(v)p(EE|Gs,q, v)

=

∑
v∈V

p(v)
⋃

v̂∈V,v 6=v̂
p(cs,q→ ĉs,q)

=

∑
v∈V

p(v)
⋃

v̂∈V,v 6=v̂

(
1
2
−

√
�2

8+ 4�2

)
. (36)

An upper bound on (36) can be applied by replacing union
with summation, which results in

p(EE|Gs,q) ≤
∑
v∈V

∑
v̂∈V
v 6=v̂

p(v)
(
1
2
−

√
�2

8+ 4�2

)
. (37)

Based on (37), an upper bound for the PEE over all stages
1 to S can be calculated by

p(EE) = 1−
S∏
s=1

(1− p(EE|Gs,q))

≤

S∑
s=1

∑
v∈V

∑
v̂∈V
v 6=v̂

p(v)
(
.5−

√
�2

8+ 4�2

)
. (38)

Also, assuming that all possible realizations of the set V have
an equal probability, a lower bound on PEE can be derived as

p(EE|Gs,q) ≥
1
2
−

√
PQC4

s ‖(v− v̂)‖
2

16N0 + PQC4
s ‖(v− v̂)‖2

. (39)

IV. PROPOSED BEAM TRACKING ALGORITHM
In this section, the proposed system model for the EKF
algorithm is explained. First, the necessity for a new state
evolution model is demonstrated, followed by the proposed
model. Then, the observation model corresponding to the
state evolution model is derived, and finally, the EKF algo-
rithm is illustrated. The advantages of our proposed mmWave
channel tracking model for vehicular communications can be
summarized as:
• In contrast to the previous models, which are based on
the angles of arrival and departure, our proposed model
is based on position, velocity and channel coefficient,
resulting in a more practical approach for mmWave
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vehicular communications by increasing the tracking
performance and lowering the number of time channel
estimation is required.

• Based on the new model, we are able to consider fac-
tors such as the velocity of the vehicle, block duration,
etc. As addressed in this section, if angles are used as
state variables for the movement of vehicles, the state
evolution model is no longer a linear one. Such non-
linearity leads to high complexity in the calculation of
Jacobians, which cannot be easily implemented in prac-
tical mmWave vehicular networks. Hence, our proposed
model can avoid such problems.

• Our proposed linear model results in a much lower
complexity in the calculation of Jacobian matrices, as it
is will be shown by the derivation of closed-form expres-
sions for Jacobians.

A. STATE EVOLUTION MODEL
Previous attempts to apply the EKF algorithm on mmWave
beam tracking were based on using the AoA and AoD as
state variables [17], [18]. The existing state evolution models
are linear and assumed to evolve by a Gaussian noise with
zero mean. Also, the hypothetical noise is additive that highly
facilitates the processing of realistic scenarios. Unfortunately,
such modeling is not realistic for most of the vehicular com-
munication scenarios. This drawback becomes evident when
considering how actually the angles evolve as shown in Fig 1.
Lemma 1: If a vehicle moves from the transmit angle φj to

φj+1, the change in the transmit angle and similarly for the
receiving angle can be calculated by

φj+1 − φj = − cot−1(
h

cos2 φj(vj + wj)1t
− tanφj), (40)

where vj is the velocity of the vehicle at the first location and
wj is a Gaussian noise.

Proof: Considering Fig. 1 and denoting length of the
line AC by T , for simplicity, we apply the law of sines to
4

ABC and
4

ACD to yield the relations below:

1d
sin(1φ)

=
T

sin(90− φj)
(41)

and

T
sin(90)

=
h

sin(90− φj+1)
. (42)

Substituting T from (42) into (41), 1d is derived as

1d =
sin(1φ)h

cos(φj) cos(φj+1)
. (43)

Furthermore, cos(φj+1) can be written as

cos(φj+1) = cos(φj+1 − φj + φj)

= cos(1φ) cos(φj)+ sin(1φ) sin(φj) (44)

and by substituting it into (43), the Kinematic formula relat-
ing velocity to displacement is derived to be

1d = (vj + wj)1t

=
sin(1φ)h

cos(φj)(cos(1φ) cos(φj)+ sin(1φ) sin(φj))
. (45)

Solving (45) for 1φ directly results in (40). �
Recall that the main drawback of the EKF algorithm is

the complexity in its implementation. It can be seen that
(40) is non-linear with respect to the angle. Also, the hypo-
thetical noise that happens due to the change in velocity is
non-additive. These are the two main factors affecting the
complexity. Therefore, if we use the angles as state variables,
the calculation of the Jacobians for EKF algorithm is of high
complexity. To solve this problem, we propose to use the
position, velocity, and complex channel coefficient as the
state variables, which give a linear state model and hypothet-
ical additive noise for vehicular communications. As a result,
the state vector can be written as

xm = [dm, vm, αRm, α
I
m]

T , (47)

where dm and vm denote the position and velocity of the vehi-
cle at them-th transmission block, respectively. The Gaussian
coefficient is divided into a real part and an imaginary part,
i.e., αm = αRm + jα

I
m, which helps to have the state vector as

real numbers. αRm and αIm are assumed to follow the first order
Gauss-Markov model expressed by [18]

αRm+1 = ρα
R
m + ξm (48)

αIm+1 = ρα
I
m + ξ

′
m, (49)

where ρ is the correlation coefficient, ξm, ξ ′m ∼

N (0,
1− ρ2

2
), and ξ [−1], ξ ′[ − 1] ∼ N (0,

1
2
). The evolution

of position and velocity are thus formulated as

dm+1 = dm + vm1t + wm1t (50)

vm+1 = vm + wm, (51)

with wm denoting hypothetical noise that represents the
change in the speed of the vehicle. It is assumed to follow
the Gaussian distribution, i.e., wm ∼ N (0, σ 2

w). In summary,
the state evolution equation can be written as

xm+1 = Axm + um, (52)

where

A =


1 1t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (53)

and um ∼ N (0,6u) with

6u = diag( [ (1tσw)2, (σw)2, 1− ρ2, 1− ρ2 ] ). (54)
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B. OBSERVATION EXPRESSION
In order to complete the model for the EKF algorithm,
we need to derive the measurement function in terms of the
state variables. By substituting the (4,5,9,10) in (11), we have

ym =

√
Pαmx
NtNr

(
Nr−1∑
p=0

e−j
2π
λ
dp(cos θm−cos θm))

×(
Nt−1∑
q=0

ej
2π
λ
dq(cosφm−cosφm))+ nm

=

√
Pαm
NtNr

Nt−1∑
q=0

Nr−1∑
p=0

ej
2π
λ
d(−p cos θm+q cosφm+bpq)+nm, (55)

where

bpq = p cos θm − q cosφm. (56)

In Fig. 1, the AoA and AoD of the system can be measured
as

θm = atan2(
−h
−dm

) = atan2(
−h

−(dm−1 + vm−11t)
) (57)

φm = atan2(
h
dm

) = atan2(
h

dm−1 + vm−11t
). (58)

where atan2 is the four-quadrant inverse tangent. The cosine
of the angles are calculated as3

cos(θm) =
−(dm−1 + vm−11t)√
h2 + (dm−1 + vm−11t)2

(59)

cos(φm) =
(dm−1 + vm−11t)√

h2 + (dm−1 + vm−11t)2
(60)

Substituting equations (59), (60) into (55), we have the obser-
vation equation in terms of the state variables as

ym =

√
Pαmx
NtNr

×

Nt−1∑
q=0

Nr−1∑
p=0

e
j 2π
λ
d(

(p+ q)(dm−1 + vm−11t)√
h2 + (dm−1 + vm−11t)2

+bpq)

+nm = g(xm)+ nm. (61)

C. EKF-BASED BEAM TRACKING
In this subsection, we will present how to use the EKF
algorithm to track the vehicle. As the vehicle moves, the state
vector of the process evolves. Our aim is to match the θm and
φm to θm and φm, respectively.

3cos(atan2(
y
x
)) =

y√
x2 + y2

.

FIGURE 4. Flowchart of the EKF recursion.

EKF recursion procedure [31] is described in the Fig. 4.
For estimating the state at the (m+ 1)-th transmission block,
the algorithm starts by assigning the predicted values of
(m + 1)-th state estimate and its covariance to the values
of m-th transmission block. Then, the Kalman gain is cal-
culated based on the assigned values. Finally, obtaining a
new observation and using the values calculated for Kalman
gain, the (m + 1)-th state and its covariance are updated. In
Fig. 4, Cm+1 is the observation transition matrix defined by
the following Jacobian matrix

Cm+1 =
∂g
∂x

∣∣∣∣̂
xm+1|m

. (62)

The partial derivative with respect to position is given in (46),
as shown at the bottom of this page, and the partial derivative
with respect to velocity is calculated by

∂ym
∂vm
=
∂ym
∂dm
×1t. (63)

For the channel coefficient, calculation of the partial deriva-
tive is straightforward, which can be done by simply exclud-
ing the noise term and channel coefficient in (46). Note that,
in order to deal with real numbers in implementation of the

∂ym
∂dm
=

Nt−1∑
q=0

Nr−1∑
p=0

√
Pαmx
NtNr

j 2π
λ
dh2(p+ q)√

(h2 + (dm−1 + vm−11t)2)3
× e

j 2π
λ
d(bpq

√
h2 + (dm−1 + vm−11t)2 + (p+ q)(dm−1 + vm−11t))√

h2 + (dm−1 + vm−11t)2 (46)
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FIGURE 5. PEE performance of the RAF algorithm in comparison with the
algorithms in [14] and [11].

EKF algorithm, ym andCm are substituted by ỹm = [yRm, y
I
m]

T

and C̃m = [CR
m,C

I
m]

T in the equations used in the Fig. 4.

V. NUMERICAL RESULTS
A. SIMULATION CONFIGURATIONS
In simulations, the number of antennas at both the TX and
RX is set to be 64, with λ/2 spacing, the channel coefficient
is assumed to follow a Gaussian distribution with zero mean
and unit covariance, i.e., CN (0, 1), and the initial AoD and
AoA are set to −135 and 45 degrees. Furthermore, we set
the value of ρ to 0.995, 1t to 0.001 s, the initial speed of
vehicle to 60 km/h, and the variation in speed σw to 1.4 m/s.
Also, in order to compare our proposed channel estimation
approach to previously established methods in [11] and [14],
we set the value of K to two, the maximum number of
measurements qmax to 264, and the target PEE to 10−2.

B. ACHIEVABLE PEES
Achieving the target PEE is essential for guaranteeing a
reliable transmission between the TX and RX. Fig. 5 repre-
sents the PEE for different values of SNR. We have com-
pared our results with the current state of art algorithm
termed RACE, proposed in [14], and the fixed-rate algorithm
proposed in [11]. The fixed-rate algorithm only considers
channel estimation, without any constraints on PEE, and
expectedly, the algorithm is not able to maintain the PEE
below the predefined threshold of 10−2. As can be seen in
the figure, the RACE and RAF algorithms both result in a
comparable PEE performance achieving the desired PEEwith
a negligible difference. Note that the PEE performance of
both RAF and RACE algorithms are over the PEE threshold
in low SNRs. The reason behind this behavior is the existing
probability of outage in the simulated system.

To verify our analysis, we present the analytical and numer-
ical results in Fig. 6. As can be seen in the figure, numerical
results lie within the analytical lower and upper bounds,

FIGURE 6. Comparison of the numerical and analytical results for PEE.

which verifies the credibility of our simulations. Note that
the analytical lower bound is not very tight compared with
the numerical results due to the assumption in the calculation
of the lower bound that p(v) is uniformly distributed.

C. CHANNEL ESTIMATION TIME
The primary metric for measuring the effectiveness of chan-
nel estimation algorithms is the overall time required to esti-
mate the channel. In this subsection, we consider the overall
time required for the channel estimation and compare the
RAF algorithm with the previous approaches. Note that hav-
ing a lower channel estimation period is essential tomaximize
the time assigned for data transmission.

Transmitting a pilot or a feedback bit both require only one
time slot to be conducted. Therefore, the overall time needed
for the channel estimation can be calculated by the addition of
time slots assigned for pilot and feedback bit transmissions.
We study these two factors in the following.

Recall that algorithms are required to ensure a predeter-
mined PEE in addition to estimating the channel. For this
reason, we do not consider the fixed-rate algorithm, as it
provides no assurance for the required PEE. Fig. 7 exhibits
the overhead feedback performance of the RAF algorithm
compared with the RACE algorithm. The optimal feedback
bits required is also shown in the figure. Achieving a lower
number of feedback bits is desirable as it results in more time
for data transmission. It can be seen that the RAF algorithm
requires a significantly small number of feedback bits com-
pared with the RACE algorithm. The average feedback bits
needed is almost as low as the optimal number. The difference
between the algorithms becomes apparent, particularly in the
low SNR regime. Therefore, the RAF algorithm is considered
to be a viable option for dedicating time for data transmission
while ensuring that error probability is in an acceptable range.

The overall time required for channel estimation based
on the RAF and RACE algorithms is shown in Fig. 8.
This figure illustrates the superior performance of the RAF
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FIGURE 7. Feedback performance of the RAF algorithm compared to [14]
and the optimal number of feedback bits.

FIGURE 8. Comparison of the time required for the channel estimation in
each stage.

algorithm. On average, for SNRs ranging from −15 dB to
15 dB, the performance is improved by 14%. At low SNR,
the difference is more significant. For instance, in the SNR of
−15dB, the overall time required for the channel estimation
is reduced by 30% using the RAF algorithm. Therefore,
the RAF algorithm is able to increase the time assigned for
the data transmission significantly while maintaining the PEE
below the predefined threshold.

D. PERFORMANCE OF THE PROPOSED BEAM TRACKING
ALGORITHM
The main factors affecting the tracking performance are the
received SNR and the number of antennas used at the TX
and RX. The mean square error (MSE) performance of the
EKF tracking algorithm for various SNR settings over 3000
experiments is shown in Fig. 9. The performance is shown
for the AoD, and similarly, it can also be shown for the
AoA as they are both functions of the position. The valid

FIGURE 9. Effect of SNR on tracking performance of the EKF algorithm.

tracking threshold is chosen to be
√
E[|φm − φm|2] = BW/2

[18], where BW denotes the half-power beamwidth of the
antenna array. Therefore, we define that the tracking is lost
if the MSE is larger than the threshold. Such a threshold
is indicated by a horizontal line in this figure. Note that,
half-power beamwidth is a function of the beam direction,
it is in its maximum for the end-fire direction and minimum
for the broadside direction [32]. Logically, we choose the
broadside direction as our threshold so that our results stay
valid in generic scenarios. The broadside direction of the
beam happens when the vehicle is exactly below the antenna
array, and its value can be estimated as λ/(dN ).

1) SNR PERFORMANCE
Fig. 9 presents the performance of our proposed tracking
model for the SNRs of −5, 0, and 5 dB. As can in the
figure, the tracking performance crosses the threshold in 24,
31, and 38 transmission blocks for the SNRs of minus five,
zero and five, respectively. Note that each transmission block
corresponds to 1 ms, and the tracking time can be calculated
accordingly. The most imminent trend that can be observed
is that the valid duration of beam tracking becomes larger as
the SNR value increases. Therefore, expectedly, we are able
to track the vehicle for a more extended period of time.

The most relevant prior work to our scheme is the one
proposed in [18]. The authors used AoA, AoD, and the
channel coefficient as state variables. It was assumed that the
angles evolve using a hypothetical noise with zero mean and

variance of (
.5
180

π )2, which is unable to characterize how
a vehicle moves in the real environment. Moreover, to be
consistent with the results in [18], the number of antennas is
set to 16. The results of the comparison are shown in Fig. 10.

As can be seen in Fig. 10, our proposed model increases
the valid tracking duration from 85 transmission blocks to
105 transmission blocks. The reason for the improvement in
tracking performance is that our proposed model considers
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FIGURE 10. Comparison of the proposed model for vehicular
communications to the prior work presented in [18].

the dynamics of the system, such as the velocity of the
vehicle, block duration, etc. Moreover, as addressed in this
paper, if angles are used as state variables for the movement
of the vehicle, the state evolution model is no longer linear.
Such non-linearity leads to high complexity in the calculation
of Jacobians, which cannot be easily implemented in practical
mmWave vehicular networks.

2) EFFECT OF NUMBER OF ANTENNAS USED
Another critical factor that was not considered in prior works
is the number of antennas used at the transceivers. This
number was set to 16, irrespective of consequences that larger
antenna arrays may cause. In practice, mmWave communi-
cation systems are more likely to have large antenna arrays
to compensate for the path loss that is severe with shorter
wavelengths. Table 1 lists the valid tracking durations of the
previous work compared to our proposed model for various
numbers of antennas. It can be seen that increasing the num-
ber of antennas significantly shortens the valid duration of the
beam tracking. For instance, once equipping the transceivers
with 64 antennas, the previous model can only track the user
on average for four successive transmission blocks, whereas
our proposed model can extend the tracking duration on
average to 31 transmission blocks. To sum up, considering
the dynamics of vehicular communications, our proposed
model is able to considerably improve the tracking period in
comparison with the existing methods.

E. EFFECT OF CHANNEL ESTIMATION ON BEAM
TRACKING
After considering the performance of the RAF channel esti-
mation algorithm and the proposed model for beam tracking,
we investigate the impact of the channel estimation error on
the beam tracking performance of the vehicle. The results
in Table 2 demonstrates how having an inaccurate channel
estimation can lead to a decrease in the valid duration of beam

TABLE 1. Comparison of the valid tracking duration (in terms of
transmission blocks) for different number of antennas at SNR = 0 dB.

TABLE 2. Impact of channel estimation error on beam tracking
performance at SNR = 0 dB (in terms of transmission blocks).

tracking. For this experiment, the number of antennas is set to
16, and the channel estimation errors are chosen based on the

half-power, calculated as BW =
λ

dN
. The maximum possible

error (BW/2) is divided into four equal divisions, and the
result of 3000 runs of each is illustrated. It is evident from
the table that a larger estimation error directly deteriorates
the performance of the beam tracking. Therefore, having a
robust algorithm such as RAF is necessary to ensure that
the probability of estimation error is below an acceptable
threshold according to the system requirements.

VI. CONCLUSION
In this paper, we proposed a novel channel estimation and
beam tracking algorithm suitable for mmWave communica-
tions in V2I communications. The proposed channel estima-
tion algorithm, dubbed RAF, was shown to be capable of
significantly reducing the required channel estimation time
by 14% and the feedback overhead by 75.5% on average,
in comparison with the existing algorithms. We have also re-
investigated the implementation of the EKF beam tracking
for mmWave vehicular communications. Accordingly, new
state evolution and observation models have been proposed
considering the vehicle’s position and velocity as well as
channel coefficient. These models are shown to be more
practical for vehicular to infrastructure communications.
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