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ABSTRACT This paper proposes a novel technique for automated neural network based multiphysics
parametric modeling of microwave components. For the first time, we propose to utilize automated model
generation (AMG) algorithm in the field of electromagnetic (EM) centric multiphysics parametric model
development to improve the neural-based multiphysics modeling efficiency. All the subtasks in developing
a neural network based multiphysics parametric model, including EM centric multiphysics data generation,
neural network structure adaptation, training and testing, are integrated into one unified and automated
framework, thus converting the conventional human-based manual modeling into an automated computa-
tional process. In the proposed algorithm, automated EM centric multiphysics data generation is realized
by automatic driving of multiphysics simulation tools. Parallel computation technique is incorporated to
further speedup the data generation process by driving multiple EM centric multiphysics simulations on
parallel computers simultaneously. In addition, automated neural model structure adaptation algorithm for
multiphysics parametricmodeling is also proposed. In this way, the proposed technique automates the neural-
based multiphysics model development process and significantly reduces the intensive human effort and
modeling time demanded by the conventional manual multiphysics modeling methods. The achieved neural
model can be used to provide accurate and fast prediction of the EM centric multiphysics responses of
microwave components in high-level multiphysics design. Examples of multiphysics parametric modeling
of two microwave filters are presented to show the advantage of this work.

INDEX TERMS Design automation, multiphysics modeling, neural networks, parallel computation, para-
metric modeling.

I. INTRODUCTION
With the increasing accuracy requirements, electromag-
netic (EM) centric multiphysics parametric modeling is
becoming more and more important and necessary for
high performance microwave component and system design.
Besides the EM domain, other physics domains such as ther-
mal and structural mechanics are needed to be taken into con-
sideration in EM centric multiphysics parametric modeling,
to provide accurate EM behavior evaluation of microwave
components and systems in a real-world multiphysics
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environment [1]–[3]. The multiphysics model representing
not only EM domain but also other physics domains is essen-
tial for accurate microwave system analysis and design.

In recent years, many EM centric multiphysics model-
ing related researches have been done in microwave design
area. An innovative multiphysics model of a microstrip line
excited by high voltage is developed in [4]. The multi-
physics phenomenon is analyzed with the intrinsic interac-
tion between the electrical power and the heat dissipation,
and the multiphysics model is generated with the electrical,
temperature and microstrip line structure geometrical param-
eters. In [5], the electromagnetic-thermal characteristics of
interconnects are investigated based on appropriate thermal
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models which represent the thermal effects. In [6], space
mapping techniques are used to combine the computational
efficiency of EM single physics simulation with the accu-
racy of the multiphysics simulation in microwave compo-
nent modeling process. This technique can achieve good
accuracy for multiphysics parametric modeling with fewer
multiphysics data because of the embedded empirical models.
However, in case when empirical models are not available for
a multiphysics parametric modeling problem, the technique
in [6] is not directly applicable and new methods need to be
proposed.

In recent years, artificial neural networks (ANNs) have
been recognized as powerful tools in microwave modeling
and design [7]–[9], such as nonlinear microwave device
modeling [10]–[12], EM optimization [13], [14] and para-
metric modeling [15]–[17]. In parametric modeling area,
ANNs can represent general nonlinear relationship between
EM behavior of microwave components and the geometri-
cal parameters after a proper training process. The trained
ANNs can be used for high-level microwave system design
to provide fast and accurate solutions to the task they have
learned. In [18], neural network modeling is introduced to
multiphysics parametric modeling area. ANNs are trained
to learn the nonlinear relationship between EM behaviors
and multiphysics design variables, then provide effective
and fast prediction of EM responses with respect to the
multiphysics design parameters. The neural-based multi-
physics parametric modeling in [18] is a step-by-step man-
ual process, which involves sequential multiphysics data
generation, neural network selection, training and testing.
This multiphysics parametric modeling process is manu-
ally carried out and requires intensive human effort and
experience. In addition, because a multiphysics simula-
tion always includes multiple domains, coupling between
domains and structure deformation, the sequential data gen-
eration process in [18] is computationally expensive and
time-consuming.

This paper proposes a further advance over the work
of [18]. For the first time, we propose to use automated
model generation (AMG) techniques [17] in multiphysics
parametric modeling area to automate the neural-basedmulti-
physics parametric model development process and improve
the multiphysics modeling efficiency. All the subtasks in
developing a neural-based multiphysics parametric model,
including EM centric multiphysics data generation, neural
network structure adaptation, training and testing, are inte-
grated into one unified and automated framework. Since
the multiphysics simulations are typically computationally
expensive and time-consuming, we propose to use parallel
computation mechanism in the multiphysics data generation
process by automatically driving multiple multiphysics
simulations in multiple computers simultaneously. Thus,
the proposed algorithm automatically develops neural-based
multiphysics parametric models of microwave components,
and effectively shortens the model development time over the
existing manual neural modeling method in [18].

FIGURE 1. The proposed neural-based multiphysics parametric model
structure with both geometrical and non-geometrical design parameters
as input variables.

II. PROPOSED AUTOMATED NEURAL NETWORK BASED
MULTIPHYSICS PARAMETRIC MODELING ALGORITHM
The proposed automated neural network based multiphysics
parametric modeling algorithm proceeds in a stage-wise fash-
ion. The proposed algorithm performs parallel multiphysics
data generation in the first stage, then proceeds to ANN
structure adaptation in the following stages. During paral-
lel multiphysics data generation stage, the workload is dis-
tributed into multiple computers for parallel processing and
the multiphysics simulator on every computer is driven by
the proposed algorithm, thus speeding up the entire sampling
process. During ANN structure adaptation stages, the neural
network training and testing is carried out to determine the
most suitable model structure for a multiphysics parametric
modeling problem. Finally, a compact neural network model
with good accuracy is automatically and efficiently achieved.

A. PROPOSED NEURAL-BASED MULTIPHYSICS
PARAMETRIC MODEL STRUCTURE
The proposed neural-based multiphysics parametric model
structure is shown in Fig. 1. While an EM single physics
(EM only) domain parametric model has only geometrical
parameters as input variables, a multiphysics domain para-
metric model has not only geometrical parameters but also
other physics domain non-geometrical parameters (such as
thermal and structure mechanics domain parameters). Let
p represent a vector containing the multiphysics domain
geometrical parameters, and q represent a vector containing
multiphysics domain non-geometrical parameters. Both p and
q are the inputs of the neural-based multiphysics model.
We also define ω to represent the frequency parameter as
an extra input of the neural-based multiphysics model, and
y to represent a vector containing the outputs of the neural-
based multiphysics model, i.e., the responses of multiphysics
analysis for a microwave component. Let fANN be the neu-
ral network function. The input-output relationship of the
neural-based multiphysics parametric model in the proposed
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algorithm is represented as

y = fANN

([
pT qT ω

]T
,w
)

(1)

where w is a vector containing the neural network weights.

B. AUTOMATED PARALLEL MULTIPHYSICS DATA
GENERATION
The proposed automated neural-based multiphysics paramet-
ric modeling algorithm proceeds in a stage-by-stage manner.
Let k represent the number of stages during multiphysics
model development process. In the first stage (i.e., k = 1),
multiphysics data is generated for training and testing the
neural-based multiphysics model fANN . Let N represent
the total number of multiphysics data to be generated,
and d i represent the response of the microwave compo-
nent under consideration for the input sample

[
pTi q

T
i ω

]T ,
i = 1, 2, · · · ,N . In the proposed algorithm, we use design
of experiments (DoE) method [19] as the sampling method.
Training and testing data are generated through multiphysics
simulations to obtain the EM responses of the microwave
component with respect to different values of geometrical and
non-geometrical input parameters.

Because multiphyscis simulations involve multiple
domains and often deal with the deformed structure,
multiphysics data generation is the most computationally
expensive and time-consuming process in existing manual
multiphysics modeling methods. To improve the efficiency
of multiphysics data generation, we propose to use paral-
lel processing mechanism by driving multiple multiphysics
simulators simultaneously. Let M represent the number of
parallel computers performing multiphysics simulations. The
proposed parallel multiphysics data generation algorithm
firstly initializes the parallel environment, then divides the
N input samples intoM subsets. Let Lj represent the number
of input samples in the jth subset, j = 1, 2, · · · ,M , i.e.,

Lj =


⌊
N
M

⌋
, if 1 6 j 6 M − 1

N mod M , otherwise
(2)

These subsets are written into M files and distributed
to M computers for multiphysics data generation, respec-
tively. Then each computer reads the corresponding file
containing the input samples, and drives multiphysics sim-
ulators to obtain the responses d i of these samples, where
i = 1, 2, · · · ,N . The proposed algorithm has built-in mul-
tiphysics simulation drivers for facilitating the automated
multiphysics data generation process. After multiphysics
simulations finish in each computer, the proposed algorithm
collects all generated multiphysics data from all computers,
finally obtaining the training and testing data for neural-based
multiphysics model development.

We use the speedup factor S and the parallel efficiency
η to measure the performance of the parallel multiphysics
data generation process. Let S be the ratio between the mul-
tiphysics data generation time on one single computer and

that onM computers, and let η be equal to the speedup factor
divided by the number of the computers, i.e.,

S =
t + N · td

t +
(

max
16j6M

Lj

)
· td

(3)

and

η =
S
M
× 100% (4)

where t represents the overhead time during multiphysics
data generation process, and td represents the simulation time
for each multiphysics data generation on a single computer.
Since in multiphysics simulation, t is much smaller than td ,
a large speedup and high parallel efficiency of multiphysics
data generation can be achieved.

C. AUTOMATED MULTIPHYSICS PARAMETRIC MODEL
STRUCTURE ADAPTATION
After parallel multiphysics data generation, the proposed
automated multiphysics parametric modeling algorithm pro-
ceeds to the model structure adaptation stages. For different
multiphysics parametric modeling problems, the number of
hidden neurons of the neural network is usually different and
unknown in advance. Existingmanual multiphysics modeling
method of [18] uses a trial-and-error mechanism to manually
train neural networks with different numbers of hidden neu-
rons and determine the most suitable neural network structure
with designer’s experience. This process is time-consuming
and requires intensive human efforts. Here, we propose an
automated multiphysics parametric model structure adap-
tation algorithm to automatically determine the number of
hidden neurons in the multiphysics parametric model based
on neural-network learning phenomena (i.e., over-learning,
under-learning and good-learning).

LetH k represent the number of hidden neurons of the neu-
ral network in the kth stage of the proposed automated mul-
tiphysics parametric model development process. We define
Ektrain and E

k
test to represent the training error and testing error

of the neural-based multiphysics parametric model in the kth
stage respectively, formulated as

Ektrain =
1
2

N1∑
i=1

∥∥∥∥fANN ([pTi qTi ω]T ,wk)− d i∥∥∥∥2 (5)

and

Ektest =
1
2

N2∑
i=1

∥∥∥∥fANN ([pTi qTi ω]T ,wk)− d i∥∥∥∥2 (6)

whereN1 andN2 represent the number of training data and the
number of testing data respectively, andN = N1+N2.wk rep-
resents the vector containing the weights of the multiphysics
parametric model in the kth stage during automated model
development process. Besides, we define Ed to represent
the user-desired neural-based multiphysics parametric model
accuracy.
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In the proposed automated multiphysics model structure
adaptation algorithm, the initial guess of the number of hid-
den neurons can be flexible. In the kth stage, if Ektrain > Ed ,
under-learning is detected and the proposed algorithm will
automatically add hidden neurons by H k+1

= H k
+ δ,

where δ represents the number of newly added hidden neu-
rons, and the suggested range for δ is 10%–20% of H k .
If Ektrain 6 Ed and Ektest > Ed , over-learning is detected
and the proposed algorithm will automatically reduce hid-
den neurons by H k+1

= H k
− δ until good-learning (i.e.,

Ektest 6 Ed ) is achieved. When good-learning is detected,
the proposed algorithm will continue to recursively reduce
the number of hidden neurons until the testing error of the
reduced neural network starts to increase again. The purpose
of this additional procedure, after good-learning is detected,
is to minimize the number of hidden neurons on the premise
of satisfying the user-desire accuracy, thus making the final
neural-based multiphysics parametric model as compact as
possible.

In this way, the proposed multiphysics parametric model-
ing algorithm automatically determines the most suitable and
compact neural model structure for a multiphysics parametric
modeling problem, without any help of designer’s experience
and human efforts.

D. PROPOSED AUTOMATED MULTIPHYSICS PARAMETRIC
MODELING ALGORITHM
The proposed algorithm can be summarized as follows:

Step 1) Set k = 1. InitializeH1 and the parallel environment.
Step 2) Calculate Lj and divide the N input samples into M

subsets, so that the jth subset (j = 1, 2, · · · ,M )
contains Lj samples. Write these subsets intoM files
and distribute these files to M parallel computers,
respectively.

Step 3) Perform multiphysics simulations to generate the
responses of corresponding samples on M parallel
computer simultaneously.

Step 4) Collect all N generated multiphysics data from all
computers and divide these N multiphysics data into
two sets, i.e., one set containing N1 training data and
the other set containing N2 testing data.

Step 5) Set k = k + 1. Train the neural-based multiphysics
parametric model with H k hidden neurons.

Step 6) Test the model. If Ektrain > Ed (i.e. under-learning is
detected), add δ hidden neurons (i.e., H k+1

= H k
+

δ), and go back to Step 5). Else if Ektrain 6 Ed and
Ektest > Ed (i.e., over-learning is detected), reduce δ
hidden neurons (i.e., H k+1

= H k
− δ), and go back

to Step 5). Else, good-learning is detected and go to
Step 7).

Step 7) Reduce hidden neurons by H k+1
= H k

− δ.
If the model with H k+1 hidden neurons has not been
trained before, go back to Step 5). Else, the trained
model with H k hidden neurons is the final multi-
physics parametric model.

FIGURE 2. Flow diagram of the proposed automated neural-based
multiphysics parametric modeling algorithm with parallel multiphysics
data generation and multiphysics parametric model structure adaptation.

Step 8) Stop the neural-based multiphysics parametric mod-
eling process.

The proposed automated neural-based multiphysics para-
metric modeling algorithm with parallel multiphysics data
generation and multiphysics parametric model strcture adap-
tation is shown in Fig. 2. Using the proposed algorithm,
the neural-based multiphysics model can be automatically
produced with user-specified accuracy, without requiring the
user’s understanding of the neural-network issue, and the time
of multiphysics parametric model development can be greatly
shortened.

III. EXAMPLES
A. AUTOMATED MULTIPHYSICS PARAMETRIC MODEL
DEVELOPMENT OF TUNABLE EVANESCENT-MODE
CAVITY FILTER
In this example, we develop a multiphysics parametric
model for a tunable evanescent-mode cavity filter [18], [20],
as shown in Fig. 3. The displacement and deformation of
the piezoactuator in the filter can change the magnitude of
a small air gap which offers the tunability of the resonant
frequency. In this example, the multiphysics domain geomet-
rical input parameters of the model are p = [L W H ]T and
the multiphysics domain non-geometrical input parameter is
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FIGURE 3. The tunable evanescent mode cavity filter example.

FIGURE 4. Structural deformation in the tunable evanescent-mode cavity
filter caused by the input voltage.

TABLE 1. Training data and testing data for multiphysics parametric
modeling of the tunable evanescent-mode cavity filter example.

q = V , where L and W are the length and width of the
tuning post respectively, H is the gap between the top side
of the tuning post and the bottom side of the piezoactuator,
and V is the bias voltage applied across the piezoactuator,
causing the structure deformation and changing the responses
of the device. Fig. 4 shows the deformation information of the
cavity filter with multiphysics design parameters

[
pT q

]T
=

[15.2 14 124 − 200]T . We can see that with the negative
voltage, the piezoactuator deflects upward to the bottom.

The modeling ranges of these multiphysics domain geo-
metrical and non-geometrical input parameters are listed
in Table 1. For this example, 81 training data and 64 testing
data (i.e., N1 = 81, N2 = 64, N = N1 + N2 = 145) are used
for multiphysics parametric modeling. Frequency ω is an
additional input, and themodel output is themagnitude of S11.
The training data and testing data are generated by COMSOL
Multiphysics simulator at 25 frequency points between 3 and
3.06 GHz.

We perform the proposed automated multiphysics
parametric modeling algorithm to develop a neural-based

TABLE 2. Modeling results of the proposed automated multiphysics
parametric modeling algorithm using three neural networks with
different initial number of hidden neurons for the tunable
evanescent-mode cavity filter example.

FIGURE 5. Tunable evanescent-mode cavity filter: modeling results at two
different multiphysics geometrical and nongeometrical values
(a) [13.2 16 121 − 175]T and (b) [14.8 15.2 127 − 125]T . The solid line
and ‘‘o’’ in the figures represent the proposed multiphysics parametric
model response and the multiphysics simulation data, respectively.

multiphysics parametric model with 1.5% testing error for
the tunable evanescent-mode cavity filter. For this example,
M = 4 for parallel processing.We use C language to program
the proposed automated multiphysics parametric modeling
algorithm, including parallel multiphysics data generation
by driving COMSOL Multiphysics, and multiphysics model
structure adaptation by driving NeuroModelerPlus software
for neural network training and testing. For comparison
purpose, the proposed algorithm is performed 3 times by
starting with different initial numbers of hidden neurons in a
neural network. The modeling results are listed in Table 2 and
shown in Fig. 5 to demonstrate the flexibility of our proposed
automated multiphysics modeling algorithm. Whatever the
initial guess of the number of hidden neurons, the proposed
algorithm automatically adds or reduces the number of hid-
den neurons to finally achieve the most compact multiphysics
model structure with user-desired accuracy.

For comparison purpose, we also perform the existing
manual modeling method in [18] to manually develop multi-
physics parametricmodel with 1.5% testing error for the same
example. The comparison of the CPU time between our pro-
posed automatedmodeling algorithm and the existingmanual
modeling method is listed in Table 3. With parallel multi-
physics data generation and automated multiphysics model
structure adaptation, the proposed automated modeling algo-
rithm is about 3 times faster than existing manual method.
The time for 145 multiphysics data generation in parallel is
0.84 h in the proposed automated modeling algorithm, and
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TABLE 3. Comparison of the CPU time between proposed automated
modeling algorithm and the existing manual modeling method [18] for
the tunable evanescent-mode cavity filter example.

that for the sequential data generation is 2.75 h in existing
manual modeling method, which results in a speedup (S)
of 3.27 and a parallel efficiency (η) of about 81.75%. The
time for automated multiphysics model structure adaptation
is 0.15 h, and that for manual model structure selection is
0.3 h, which results in a speedup of 2. From the modeling
results, it is observed that the proposed modeling algorithm
can automatically develop multiphysics parametric model
with user-desire accuracy, and is more efficient than existing
manual modeling method.

B. AUTOMATED MULTIPHYSICS PARAMETRIC MODEL
DEVELOPMENT OF TUNABLE FOUR-POLE
WAVEGUIDE FILTER
In this example, we consider the multiphysics parametric
modeling of a tunable four-pole waveguide filter [6], [21]
with tuning elements as the posts of the square cross section
placed at the center of each cavity and each coupling win-
dow, as illustrated in Fig. 6. The piezoactuator will have
a geometric strain proportional to an applied electric field
through the piezoelectric effect. For this example, the mul-
tiphysics domain geometrical input parameters of the model
are p = [H1 H2 Hc1 Hc2]T and the multiphysics domain non-
geometrical input parameter is q = [V1 V2]T , where H1
and H2 are the heights of the tuning posts in the coupling
windows, Hc1 and Hc2 are the heights of the square cross
section placed in the center of the resonator cavities, V1 and
V2 are the voltages applied across the pieazoactuator, causing
the structure deformation of the piezoactuator and further
changing the responses of the device. Fig. 7 shows the defor-
mation information of the filter with multiphysics design
parameters

[
pT qT

]T
= [3.24 3.40 3.72 3.34 − 120 120]T .

With the negative voltage, the piezoactuator deflects upward
to the bottom, while with positive voltage the piezoactuator
deflects toward the bottom.

The ranges of the training data and testing data are listed
in Table 4. For this example, 81 training data and 64 testing
data (i.e., N1 = 81, N2 = 64, N = N1 + N2 = 145) are
used for multiphysics parametric modeling. Frequency ω is
an additional input, and the model output is the magnitude
of S11. In this example, the training data and testing data are
generated at 101 frequency points between 10 and 11 GHz.

FIGURE 6. The tunable four-pole waveguide filter example.

FIGURE 7. Structural deformation in the four-pole waveguide filter
caused by the input voltages.

TABLE 4. Training data and testing data for multiphysics parametric
modeling of the tunable four-pole waveguide filter example.

For comparison purpose, we perform the proposed auto-
mated multiphysics parametric modeling algorithm using
3 neural networks with different initial number of hidden neu-
rons to developmultiphysics parametric model for the waveg-
uide filter. The user-desired testing error of the model is 2%.
The modeling results are listed in Table 5 and shown in Fig. 8
to demonstrate the flexibility of our proposed automated
multiphysics modeling algorithm. Whatever the initial guess
of the number of hidden neurons, the proposed algorithm
can automatically adjust the number of hidden neurons to
achieve the most compact multiphysics model structure with
user-desired accuracy. In this way, the proposed automated
multiphysics parametric modeling algorithm is more flexible
than existing manual multiphysics modeling method.
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TABLE 5. Modeling results of the proposed automated multiphysics
parametric modeling algorithm using three neural networks with
different initial number of hidden neurons for the tunable four-pole
waveguide filter example.

FIGURE 8. Tunable four-pole waveguide filter: modeling results at two
different multiphysics geometrical and nongeometrical values
(a) [3.115 3.125 3.58 3.325 − 75 − 75]T and
(b) [3.265 3.125 3.7 3.415 15 15]T . The solid line and ‘‘o’’ in the
figures represent the proposed multiphysics parametric model response
and the multiphysics simulation data, respectively.

TABLE 6. Comparison of the CPU time between proposed automated
modeling algorithm and the existing manual modeling method [18] for
the tunable four-pole waveguide filter example.

We also compare the modeling results between the pro-
posed automatedmodeling algorithm and the existingmanual
modeling method in [18] for this waveguide filter example,
as shown in Table 6. For this example,M = 4 for parallel pro-
cessing during multiphysics data generation in the proposed
method. The time for 145multiphysics data generation in par-
allel is 13.6 h in the proposed automated modeling algorithm,
and that for the sequential data generation is 41.75 h in exist-
ing manual modeling method, which results in a speedup (S)
of 3.07 and a parallel efficiency (η) of about 76.74%. The
time for automated multiphysics model structure adaptation
is 0.36 h, and that for manual model structure selection is
1.2 h, which results in a speedup of 3.3. Therefore, the pro-
posed automated multiphysics modeling process is benefited

from the parallel multiphysics data generation and automated
multiphysics model structure adaptation. From Table 6, it is
observed the proposed automatedmodeling algorithm ismore
efficient formultiphysics parametricmodel development than
existing manual modeling method.

IV. CONCLUSION
In this paper, an automated neural network based multi-
physics parametric modeling algorithm has been proposed
to automate the multiphysics parametric modeling pro-
cess for the first time. The proposed algorithm can auto-
matically produce a neural-based multiphysics parametric
model with user-specified accuracy. Therefore, the inten-
sive human effort in existing manual multiphysics modeling
method is effectively reduced and the neural-based mutli-
physics modeling efficiency is greatly improved. Parallel
processing technique has been applied in the EM centric
multiphysics data generation process by driving multiple
multiphysics simulators in parallel. In this way, the proposed
algorithm can greatly reduce the multiphysics parametric
model development time than existing manual multiphysics
modeling methods. The proposed technique provides a sys-
tematic framework for automated neural-based multiphysics
modeling approach and can be incorporated into the overall
microwave computer aided design environment.

REFERENCES
[1] P. H. Aaen, J. Wood, D. Bridges, L. Zhang, E. Johnson, J. A. Pla,

T. Barbieri, C.M. Snowden, J. P. Everett, andM. J. Kearney, ‘‘Multiphysics
modeling of RF and microwave high-power transistors,’’ IEEE Trans.
Microw. Theory Techn., vol. 60, no. 12, pp. 4013–4023, Dec. 2012.

[2] X. Guan, N. Shu, B. Kang, Q. Yan, Z. Li, H. Li, and X. Wu, ‘‘Multi-
physics calculation and contact degradation mechanism evolution of GIB
connector under daily cyclic loading,’’ IEEE Trans. Magn., vol. 52, no. 3,
Mar. 2016, Art. no. 7401004.

[3] M. A. Sánchez-Soriano, M. Edwards, Y. Quéré, D. Andersson, S. cadiou,
and C. Quendo, ‘‘Mutiphysics study of RF/microwave planar devices:
Effect of the input signal power,’’ in Proc. 15th Int. Conf. Therm.,
Mech. Mulit-Phys. Simulation Exp. Microelectron. Microsyst. (EuroSimE),
Ghent, Belgium, Apr. 2014, pp. 1–7.

[4] B. Ravelo, ‘‘Multiphysics model of microstrip structure under high voltage
pulse excitation,’’ IEEEJ. Multiscale Multiphys. Comput. Techn., vol. 3,
pp. 88–96, Jul. 2018.

[5] W.-Y. Yin, K. Kang, and J.-F. Mao, ‘‘Electromagnetic-thermal characteri-
zation of on on-chip coupled (a)symmetrical interconnects,’’ IEEE Trans.
Adv. Packag., vol. 30, no. 4, pp. 851–863, Nov. 2007.

[6] W. Zhang, F. Feng, V.-M.-R. Gongal-Reddy, J. Zhang, S. Yan, J. Ma, and
Q.-J. Zhang, ‘‘Space mapping approach to electromagnetic centric mul-
tiphysics parametric modeling of microwave components,’’ IEEE Trans.
Microw. Theory Techn., vol. 66, no. 7, pp. 3169–3185, Jul. 2018.

[7] Q.-J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave
Design, Norwood, MA, USA: Artech House, 2000.

[8] H. Kabir, L. Zhang, M. Yu, P. H. Aaen, J. Wood, and Q.-J. Zhang, ‘‘Smart
modeling of microwave devices,’’ IEEE Microw. Mag., vol. 11, no. 3,
pp. 105–118, May 2010.

[9] J. E. Rayas-Sanchez, ‘‘EM-based optimization of microwave circuits using
artificial neural networks: The state-of-the-art,’’ IEEE Trans. Microw. The-
ory Techn., vol. 52, no. 1, pp. 420–435, Jan. 2004.

[10] D. E. Root, ‘‘Future device modeling trends,’’ IEEEMicrow. Mag., vol. 13,
no. 7, pp. 45–59, Nov./Dec. 2012.

[11] L. Zhu, Q. Zhang, K. Liu, Y. Ma, B. Peng, and S. Yan, ‘‘A novel dynamic
neuro-space mapping approach for nonlinear microwave device model-
ing,’’ IEEE Microw. Wireless Compon. Lett., vol. 26, no. 2, pp. 131–133,
Feb. 2016.

VOLUME 7, 2019 141159



W. Na et al.: Automated Neural Network-Based Multiphysics Parametric Modeling of Microwave Components

[12] W. Liu, W. Na, L. Zhu, J. Ma, and Q.-J. Zhang, ‘‘A wiener-
type dynamic neural network approach to the modeling of nonlinear
microwave devices,’’ IEEE Trans. Microw. Theory Techn., vol. 65, no. 6,
pp. 2043–2062, Feb. 2017.

[13] S. Koziel, J. W. Bandler, and K. Madsen, ‘‘Space mapping with adaptive
response correction for microwave design optimization,’’ IEEE Trans.
Microw. Theory Techn., vol. 57, no. 2, pp. 478–486, Feb. 2009.

[14] R. Ben-Ayed, J. Gong, S. Brisset, F. Gillon, and P. Brochet, ‘‘Three-level
output space mapping strategy for electromagnetic design optimization,’’
IEEE Trans. Magn., vol. 48, no. 2, pp. 671–674, Feb. 2012.

[15] H. Kabir, L. Zhang, and K. Kim, ‘‘Automatic parametric model devel-
opment technique for RFIC inductors with large modeling space,’’ in
IEEE MTT-S Int. Microw. Symp. Dig., Honololu, HI, USA, Jun. 2017,
pp. 551–554.

[16] F. Feng, V.-M.-R. Gongal-Reddy, C. Zhang, J. Ma, and Q.-J. Zhang, ‘‘Para-
metric modeling of microwave components using adjoint neural networks
and pole-residue transfer functions with EM sensitivity analysis,’’ IEEE
Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1955–1975, Jun. 2017.

[17] W. Na, F. Feng, C. Zhang, and Q.-J. Zhang, ‘‘A unified automated para-
metric modeling algorithm using knowledge-based neural network and
l1 optimization,’’ IEEE Trans. Microw. Theory Techn., vol. 65, no. 3,
pp. 729–745, Mar. 2017.

[18] S. Yan, Y. Zhang, X. Jin, W. Zhang, and W. Shi, ‘‘Multi-physics para-
metric modeling of microwave passive components using artificial neural
networks,’’ Prog. Electromagn. Res. M, vol. 72, pp. 79–88, Aug. 2018.

[19] S. R. Schmidt and R. G. Launsby, Understanding Industrial Designed
Experiments. Colorado Springs, CO, USA: Air Force Academy, 1992.

[20] X. Liu, L. Katehi, W. J. Chappell, and D. Peroulis, ‘‘Power handling of
electrostatic MEMS evanescent-mode (EVA) tunable bandpass filters,’’
IEEE Trans. Microw. Theory Techn., vol. 60, no. 2, pp. 270–283, Feb. 2012.

[21] C. Zhang, F. Feng, V.-M.-R. Gongal-Reddy, Q. J. Zhang, and
J. W. Bandler, ‘‘Cognition-driven formulation of space mapping for
equal-ripple optimization of microwave filters,’’ IEEE Trans. Microw.
Theory Techn., vol. 63, no. 7, pp. 2154–2165, Jul. 2015.

WEICONG NA received the B.Eng. degree from
Tianjin University, Tianjin, China, in 2012, and
the Ph.D. degrees from the School of Microelec-
tronics, Tianjin University, and the Department
of Electronics, Carleton University, Ottawa, ON,
Canada, in 2018.

She is currently a Lecturer with the Faculty
of Information Technology, Beijing University of
Technology, Beijing, China. Her research interests
include microwave circuit modeling and design,

automated neural networkmodel generation algorithm, EMfield knowledge-
based modeling and optimization, and deep neural network modeling for
microwave applications.

WANRONG ZHANG was born in Hebei, China,
in 1964. He received the B.S. and M.S. degrees in
microelectronics and solid-state electronics from
Lanzhou University, Lanzhou, China, in 1987 and
1990, respectively, and the Ph.D. degree in micro-
electronics and solid-state electronics from Xi’an
Jiaotong University, Xi’an, China, in 1996.

He is currently a Professor and a Ph.D. Super-
visor with the Faculty of Information Technol-
ogy, Beijing University of Technology, Beijing,

China. He has authored or coauthored over 130 publications. He has
also coauthored Semiconductor Device Electronics (Beijing: Publishing
House of Electronics Industry, 2005), Low Cost Flip Chip Technologies for
DCA, WLCSP, and PBGA Assemblies (Beijing: Chemical Industry House,
2006), and Power Semiconductor Device Theory and Applications (Beijing:
Chemical Industry House, 2005). His current research interests include
RF/microwave/millimeter-wave devices and circuits, mixed-signal circuits,
cryogenic electronics, device-to-circuit interactions, noise and linearity, reli-
ability physics, device-level simulation, and compact circuit modeling.

Dr. Zhang was selected to the Beijing Municipal Trans-Century Talent
Plan, in 1999, the Beijing Municipal Science and Technology New Star
Plan, China, in 1997, and the Beijing Municipal Pillar Teacher Plan, China,
in 2005. He is also serving as a member of the Editorial Board for the Journal
of Semiconductor and Power Electronics.

SHUXIA YAN received the B.Eng. degree in com-
munication engineering from Tianjin Polytechnic
University, Tianjin, China, in 2010, and the M.E.
and Ph.D. degrees in electromagnetic field and
microwave technology from Tianjin University,
Tianjin, in 2012 and 2015, respectively.

Since 2015, she has been with the School of
Electronics and Information Engineering, Tianjin
Polytechnic University. Her main research inter-
ests include neural-network-based methods for

microwave device modeling and circuit design and the development of a
neural-network-based circuit simulator.

FENG FENG received the B.Eng. degree from
Tianjin University, Tianjin, China, in 2012, and the
Ph.D. degree from the School of Microelectronics,
Tianjin University, and the Department of Elec-
tronics, Carleton University, Ottawa, ON, Canada,
in 2018.

He is currently a Postdoctoral Fellow with the
Department of Electronics, Carleton University.
His research interests include microwave circuit
design and modeling, optimization theory and

algorithms, space mapping and surrogate model optimization, and EM field
simulation and optimization.

WEI ZHANG was born in Qingdao, Shandong,
China, in September 1989. He received the B.Eng.
degree from Shandong University, Shandong,
in 2013. He is currently pursuing the cotutelle
Ph.D. degree with the School of Microelectronics,
Tianjin University, Tianjin, China, and the Depart-
ment of Electronics, Carleton University, Ottawa,
ON, Canada.

His research interests include microwave device
modeling, space mapping and surrogate modeling,

and multi-physics simulation and optimization.

YAOQIAN ZHANG is currently pursuing the
M.E. degree in electronic science and tech-
nology with Tianjin Polytechnic University,
Tianjin, China. Her research interest includes
neural-network-based methods for multi-physics
modeling.

141160 VOLUME 7, 2019


