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ABSTRACT Recent semantic segmentation networks mainly focus on how to fuse multi-level features from
classification networks to improve segmentation accuracy. Some researches evenly emphasize the correlation
of pixels in a global region, such as conditional random field (CRF). However, the strong correlation feature
of pixels in a limited region is less considered in the previous researches and the remedy ability of the
correlation of local pixels in semantic segmentation is severely ignored. To deal with this problem, we
introduce a hierarchical adjacency dependent network (HadNet), in which an adjacency dependency module
(ADM) is constructed by calculating and utilizing the impact fact of the pixel in different directions to classify
the pixel. We explored the correlation of adjacent pixels and feature coverage in different feature levels to
improve the segmentation accuracy. We evaluate our method on the popular Pascal VOC 2012 test set, and
achieve a comparable result of mIOU accuracy of 79.8% with the state of art methods, such as DeepLabv3+
and Exfuse. Further, we discuss and analyze the data distribution of COCO dataset for deeply understanding
the feature correlation and coverage in semantic segmentation.

INDEX TERMS Semantic segmentation, hierarchical adjacency dependent network, adjacency dependency

module.

I. INTRODUCTION

Semantic segmentation under deep learning is often consid-
ered as a pixel-level classification task. Since the introduction
of the fully convolutional network (FCN) [1] framework,
many innovative works [2]-[8] have made a great progress
based on the framework even though for web images, such
as [9]. As a typical encoding-decoding structure, at first, the
FCN-like architecture generates a higher semantic feature
map by an encoder and then decode it into a segmentation
result of the original resolution. In order to recover the miss-
ing details caused by convolution and pooling, many of the
latest works [10]-[14] enrich the spatial information in higher
semantic features by simply fusing a high-level feature layer
with a low-level one. However, there are still drawbacks in
that the prediction results are discontinuous, especially in
edges of segmentation. As shown in Fig. 1(a), it is very
easy for the human being to distinguish the wheel of the
bicycle from the grass background, but it is over segmented
apparently as shown in the figure. The car in Fig. 1(d) presents
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a regular metal texture, but the prediction result presents
an overlap of the background and the car. The proposed
experimental results show that these mispredicted pixels in
segmentation may be effectively remedied when considering
a major correlation of region features. It has been observed
that region features of objects are often similar and are also
semantically consistent. The features in a small region have
a very similar representation, such as color, edge, contrast
while texture, material and structure have a similar represen-
tation in a larger region. Pixels with similar representations
are more strongly related and therefore semantically tend to
be consistent. On the contrary, if the feature relationship of
the pixels is weaker and they are less affected by each other
so that it has higher possibility for them to belong to different
categories.

Based on the above observation, we propose a hierarchical
adjacency dependent network (HadNet), which is different
with previously simply mixing high and low features to
produce a discriminating feature. In order to avoid being
constrained by high-level errors but strong semantic features,
we abandon the introduction of the highest-level features and
select the coarser segmentation result directly from the end
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FIGURE 1. Examples of problematic semantic segmentation. The second
column is the prediction result of DeepLabv3+. The third column is the
prediction of our method.

of the encoder. Since the different stages of the convolu-
tional neural network has different semantic features, which
are related to the local representation of different ranges of
objects. We model the pixel relations of low-level features by
calculating the inter-pixel similarity so that some pixels with
error classification can be re-segmented correctly.

Our contributions are as follows:

« Unlike previous works, in order to balance the impact of
high-level semantics and low-level ones, we lower the
impact of the high-level features and try to use low-level
features to optimize segmentation results in the process
of decoding of the segmentation.

« We propose a new decoder network structure, HadNet, to
improve the segmentation result from a new perspective.

o The experimental results show that the proposed method
obtains a comparable improvement in mIOU accuracy
with 79.8% in Pascal VOC 2012 test set, compared
with the state-of-the-art methods, e.g. DeepLabv3+ and
Exfuse.

Il. RELATED WORKS

Inspired by the progressive deep neural network [15]-[18],
as a backbone network, the semantic segmentation task for
extracting advanced features has also made great progress.
Based on FCN, the model architecture of the fully connected
layer in the classification is replaced by a convolutional layer.
Many variants have also been derived from FCN. There are
two main kinds of classifications:

A. ENCODER-DECODER

Deep neural networks can encode different levels of features.
This type of model mainly utilizes the features of each level
to gradually recover the missing spatial information due to
pooling and convolution. Earlier SegNet [19] used saved
pooling indexes to recover the reduced spatial information.
U-Net [20] has a more regular network structure that splits
each layer of the encoder’s results into the corresponding
decoder layer using skip links for better results. Recently, it
has been considered that most of these types of methods are
only a gradual fusion of features at each stage, ignoring the
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differences in their representation. A channel attention block
has been proposed in [21] to change the weights of the fea-
tures on each stage to emphasize the consistency. ExFuse [22]
advocates the introduction of more semantic information into
low-level features and embeds more spatial information into
advanced features to bridge the gaps of semantic and resolu-
tion between low-level and high-level feature fusion, thereby
improving the efficiency of feature fusion.

B. PYRAMID SPATIAL POOLING

Inspired by capturing multi-scale contextual convolutional
features [23], enhanced multi-scale semantic segmentation by
using dense connected conditional random fields (CRF) [24],
spatial pyramid pooling [25], [26], DeepLabv2 proposes
ASPP [27], which concatenates convolutions of different
expansion rates in parallel to enhance multi-scale context
aggregation for final prediction. Image-level branches [28],
[29] are extended in DeepLabv3 [30] to further capture
the global context. Similarly, PSPNet [31] uses four spatial
pyramid pooling layers in parallel to aggregate information
from multiple scales, which are then assigned to each pixel
by upsampling to obtain a uniform resolution. Due to its
excellent multi-scale feature fusion capability, it is used as
an encoder in our network model.

However, most models treat semantic segmentation as
an independent classification task of pixels, and the only
connection between pixels is the overlap of its receptive
fields. In fact, they are highly correlated for pixels in the
image segmentation, and treating it as a purely independent
pixel prediction will make the prediction result too blunt.
Recently, more and more creatives for modeling the rela-
tionship between different pixels have been emerging. Ref-
erences [32], [33] proposes the self-attention mechanism to
establish a spatial-wise relationship and learns the pixel-by-
pixel global similarity map to estimate the target segmenta-
tion. Reference [34] proposes the concept of Adaptive Affin-
ity Fields (AAF) in order to introduce the structural reasoning
of labels directly into network modeling. The aforementioned
works consider the relation between pixels globally. How-
ever, based on our observation that both the global correlation
and local correlation between pixels have different impacts
in semantic segmentation. The tradeoff between the impacts
of global and local play an important role in different situa-
tions. Therefore, we firstly confirm that the loose constrains
in the higher-level semantic is almost good enough in the
semantic segmentation and then we pay more attention to
the correlation of the adjacent pixels in a local region using
the hierarchical feature of the network. We explore the adja-
cent dependencies in different levels of visual representation
from a local perspective.

lll. METHODS

In this section, we first introduce the proposed adjacency
dependency module in details, including how to learn the
adjacency correlation of features from different layers and
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FIGURE 2. Overview of Adjacency Dependent Modules. Input is the
extracted feature map. CONV is a 1x1 convolution kernel that specifies
different directions of influence. By cascading the results obtained, each
channel value at each point in space is a radiation value that affects the
fixed direction.

improve the coarse prediction results. Then, we describe the
complete encoder-decoder network architecture.

A. ADJACENCY DEPENDENT MODULE

The problem of predicting discontinuously is mainly due to
the fact that the final classification for each pixel have a wide
range of receptive fields. It is a comprehensive and abstract
expression of a wide region and it is impossible to notice local
detail representation. Especially in the junction situation,
different object pixels are similar or overlapped in that the
respective features are easily covered each other and thus lack
spatial discrimination. Therefore, we need to further improve
the spatial information through the local receptive domain.
Considering the strong correlation between adjacent pixels,
we utilize the feature outputs from different stages of the
network to calculate the relationship between the pixel and its
surround pixels in eight different directions. To determine that
in which direction the pixel has the strongest dependency, the
relationships in different directions can be calculated by using
different convolution kernels. The dependency relationship of
pixels in the entire image can be presented by a graph in which
the nodes represent pixels and the weighted edges between
the two nodes refer to the dependency between the two pixels.
All nodes are divided into groups with the largest weighted
edges inside a group and the smallest weighted edges between
the groups. It should be noted that there are two weighted
edges between two nodes and the edges has directions. We
take the value of the weighted edge from node A to node B as
the impact factor « of the pixel A on the pixel B. As shown
in Fig. 2, the final feature map is with a channel number of 8
and each pixel carries eight impact factors referring to eight
propagation directions.

Our Adjacency Dependent Module (ADM) aims to rem-
edy the image details by enhancing the correlation between
pixels. The final classification result of each pixel is obtained
by weighting its surrounding pixels and the impact factors of
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influence factor

FIGURE 3. Adjacent pixels with similar local attributes are often
consistent in the final classification. The numbers represent the
prediction possibilities for a certain class. The blue and red boxes
represent the types of predictions that are judged to be different.
The thickness of the arrow represents the size of the impact factor.

its specific directions. The formula is as follows:

Tige = Shis ()
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(3)

where, P € R™ "X is a rough segmentation result and the
number of channels is K, which represents a segmentation
prediction map of the K-type of objects. P_ _ ; refers to the
segmentation prediction map of the k — 1th type. a, b refer
to the spatial coordinates of a pixel. « € R™*"*¢ is the value
of each channel of a point on the space and it represents the
impact factor of the point on a point in a fixed direction. The
central pixel of (a, b) is affected by the surrounding 8 pixels.
Here we normalize these impact factors, such as Eq. 1, and
obtain the confidence value of the central pixel according
to Eq. 2, which is regarded as its impact factor on itself.
Finally, as shown in the Eq. 3, the impact factors are weighted
and summed with the spatially corresponding class prediction
values, thereby obtaining the updated prediction values. We
followed the steps of Eq. 3 for the prediction graphs of all
classes.

It can be observed from the above formula that adjacent
pixels with similar region features have large impact factors
and thus, the prediction results have higher similarity while
the pixel has less impact factor with others and it will main-
tain the original prediction result. The remedy result usually
happens in those ambiguous pixels as shown in Fig. 3.

In fact, the above procedures are only the comprehensive
evaluation results for each pixel in the range of 3x3 pixels. In
order to expand the range of influence of the propagation, it is
possible to repeat equation 3. Since all pixels are updated at
the same time, the range of influence propagation of the pixels
increases linearly with the number of iterations. However, it
should be noted that our starting point is based on the strong
correlation of pixels in the region, and an iteration more than
11 may generate downside effects.
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B. PROPOSED DECODER

The backbone network has different recognition capabilities
at different stages of extracting features. Just as humans’
visual understanding of the world is multi-layered, humans
not only recognize the whole objects immediately, but also
identify details such as parts, textures, and materials. Today’s
identification network is often divided into several stages
according to the size of the feature map, which can be consid-
ered as a multi-level perception of the entire picture, typically
such as Resnet. In the higher level layer, the receptive field
is large, the feature semantic is high, and the discrimination
is strong. However, due to downsampling and spatial invari-
ance, the prediction result is very coarse and abstract in spatial
structure. In the lower level, the feature encodes more detailed
attributes. Although the semantic feature is small due to the
smaller receptive field and cannot be directly used for pixel
classification, it contains more detailed spatial information
and adjacent pixels with similar detail attributes are often
consistent in the final classification, such as the continuous
wooden material of the table and chair, the skin texture
exposed on the human body and so on. In addition, since there
are different semantic meanings in different feature layers, the
parts and capabilities of remedying segmentation in different
layers are thus different. Therefore, we can improve the seg-
mentation accuracy by fusing features from layer to layer. In
general, the influence of the high-level features is large, and it
is better to be applied to remedy over-segmentation or under-
segmentation than the lower-layer ones. On the contrary, the
low-level features have a smaller influence range and are less
affected by feature coverage, which is more suitable to be
applied in details remedy. The remedy process of the whole
segmentation must be one of from global to local, from wide
to narrow and from coarse to details.

We follow the work of DeepLabv3+- [35] and the encoding
structure is unchanged. We also use Xception [36] pre-
trained on ImageNet [37] as the basic network, followed
by the ASPP module for extracting multi-layer features.
We re-designed the decoding structure and extract a num-
ber of low-level feature branches from different stages
of the network. Through the adjacency dependent module
introduced in Section 3.1, the coarse results after bilinear
interpolation upsampling are repaired in a top-down man-
ner. Several branches are “entry_flow/block2 /unit_1/conv”,
“middle_flow/block1/unit_16/conv”’  (before  striding),
which refer to feature maps of 1/4, 1/8 of the original size
respectively. The entire segmentation model architecture is
shown as Fig. 4.

IV. EXPERIMENTAL RESULTS

We evaluate our approach on the public PASCAL VOC 2012
semantic segmentation benchmark [38]. The original dataset
contains 20 object classes and one background, involving
1,464 images for training, 14, 456 images for validation and
1,456 images for testing. The dataset is augmented by [39],
resulting in 10,582 images for training.
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A. IMPLEMENTATION DETAILS
We follow the same training strategy as DeepLabv3+ during
training.

1) TRAINING PHASE

In order to improve training efficiency, the encoder part is
firstly trained. We apply output_stride = 16 to train the
encoder for 30K iterations with a batch size of 16 in the
augmented dataset to further speed the training up. Here, we
denote output_stride as the ratio of the input image spatial
resolution to the final output resolution. Then, we fix the
parameters of batch normalization and apply output_stride =
8 to the 30K iterations for the entire network training on
PASCAL VOC 2012 to make a refinement adjustment of
the uneven learning rate. Finally, make the training for 10K
iterations with a unified learning rate.

2) CROP SIZE

Zhao et al. [30] shows that large crop size is necessary to
maintain the validity of the parameters of the dilated convo-
lution using large rates without degrading its performance.
A batch size of 513 x 513 pixels has been adopted on the
training and the experimental results have shown that large
crop size does improve accuracy.

3) LEARNING RATE POLICY

A learning rate strategy as “polynomial” has been adopted
. power

: fad : _ iter

in the training, i.e Ir = base_Ir x (1 — max_fier . The

power is set to 0.9. The initial learning rate, base_Ir, is set to
0.007 in the first 30K iterations and 0.00005 in the last 30K
iterations. At the same time, the learning rate of the decoder
part is set to 140 times of the initial learning rate. The initial
learning rate for the last 1K iterations are 0.00005.

Data Augmentation: In order to augment the dataset dur-
ing the training, we randomly scale the input images from 0.5
to 2.0 and mirror the images from left to right.

B. ABLATION STUDY

1) SINGLE BRANCH

In order to verify the performance of the ADM module, we
have adopted the same encoder to extract low-level features
as DeepLabv3+. Difference from DeepLabv3+ is that the
simple cascade structure by combining high-level and low-
level features to fill the details to increase the discrimination
has been given up. Instead, a coarse segmentation result at
the end of the feature extraction network of DeepLabv3 is
directly output and then fused with the output of ADM as
shown in Fig. 2. That is because that the prediction result by
local correlation in low-level features is usually more reliable
than the roughness caused by feature coverage of high-level
semantic segmentation. This property that the low-level fea-
ture semantic is able to remedy the high-level segmentation
map is based on the fact that the local feature of a pixel is pre-
dictable by its neighboring feature distribution of the lower-
level features. Yu etc., [21] proposes that refinement residual
blocks (RRBs) not only unify the number of output channels
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FIGURE 4. Hierarchical adjacency dependent network architecture. The ADM module is shown in Fig. 2. Conv* is a 3x3 convolution, but is not trainable.
Initializes the value in the specified channel of the corresponding pixel in the ADM module. The blue line refers to the data flow direction in the feature
extraction network with a downsampling operation. The red line refers to the upsampling. The black line does not change the feature map size. Entry,
Middle, and Exit are the three parts of the Xception network. E.2, M.16 are the data streams derived in the 2nd and 16th units of the corresponding part,

respectively.

TABLE 1. Comparison of performances of backbone+E.2 with and
without RRB on VOC 2012 val set.

Method RRB mIOU
backbone+E.2 80.43%
backbone+E.2 v 80.94%

into a unified number, say 512, but also refine and capture the
multi-scale feature maps coming from their previous stages.
In our proposed design, the refined and unified feature maps
from RRBs can be directly input to the ADM modules for
predicting the weights of the adjacent pixels on the current
pixels. The performance is improved from 80.43% to 80.94%
as shown in Tab. 1.
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Furthermore, experiment shows that increasing the itera-
tions of remedy reasonably can further improve the segmen-
tation accuracy as Equation 3. The reason is that the pixels
remedied can be propagated in limited range. Appropriately
increasing the number of iterations can significantly achieve
better performance. In our experiment, the number “3” of
iterations has the optimum result as shown in Tab. 2.

2) MULTI-BRANCH

We explore the relationship at different levels of features. The
initials £ and M to represent the entry and middle parts of the
feature extraction network separately. The number refers to
the unit number of each part, for example, E.2 represents the
feature data from the second unit in the entry part. Since the
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TABLE 2. Effect of remedy times on VOC 2012 val set.

Times 1 2 3 4 5
mIlOU  80.43% 80.71% 80.94%  80.86%  80.84%

Performance of a single feature branch

0803 ~~" \
0.801 \
0799 d

E2 E3 M.2 M4 M6 M8 MI10 M12 MI14 M.16 before
aspp

FIGURE 5. Individual remedy performance curves for different layers.

correlation of inter-pixel and intra-pixels are from the seman-
tic correlation for different levels of features. High-level
features contain abstract semantic while low-level features
contain detailed semantics. It is apparent that it can improve
the accuracy of semantic segmentation by adding multiple
level features. However, the remedy capability of each layer
is different and it is not always a positive remedy for all pixels
due to the difference in the feature coding of each layer and
the feature coverage effect of the feature itself. The remedy of
each layer not only corrects some wrongly segmented pixels,
but also makes some pixels worse. Therefore, sometimes it
can not improve the segmentation accuracy only by simply
adding feature layers. Fig. 5 shows the performance evaluated
when each branch is utilized separately. The results obtained
at E.2 and M.16 are the best. It is because that the features
at E.2 are lower, such as textures and detailed features. Here,
the pixel representation is tight and the correlation is strong
in the local visual representation and therefore the credibility
is higher. At M.16 point, unlike other mediate levels, the
overall semantics of the various classes at this level are more
uniform and the feature coding is more compact. As for the
feature layer before ASPP, at this point, due to the multi-scale
representation at the top of the network, the feature coverage
is severe, the correlation reliability is not strong, and the effect
of segmentation remedy is not better. Fig. 7 presents some
examples of semantic segmentation results.

3) PERFORMANCE ON VOC 2012 VAL SET

A unsuccessful example is that the segmentation result was
not improved when we applied both E.2 and E.3 simultane-
ously. The reason is that their semantic features from E.2
and E.3 are closer. We also observe that the performance
is almost not improved even though the layers with similar
semantics are superimposed because of their similar remedy
ability and feature coverage. We also superimposed M.16
with the other middle layers. However, as shown in Tab. 3, we
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TABLE 3. Performance comparison of multi-feature layer fusion on VOC
2012 val set.

M.16 M.6 E3 E2 | mIOU
v 80.70%
v 80.49%
v 80.81%

v 80.94 %

v v 80.60%
v v 81.02%
v v 81.37%
v v 80.45%
v v v 80.82%
v v v 80.97%

TABLE 4. Performance comparison on VOC 2012 val set. MS: Adding
multi-scale inputs. Flip: Adding left-right flipped inputs. COCO: Pre-trained
on MS-COCO dataset. E.2, M.16 : The branch name used in decoder.

Decoder MS Flip
E2 M.16

COCO ‘ mIOU

79.64%
80.94%
82.22%
v 82.42%
80.70%
81.97%
v 82.24%
81.37%

v 84.86%
v 83.01%
86.03%

SNENEN

NN

N NN NN

ENENENEN
LN

did not find a particularly significant improvement. Finally,
we reached the best performance by combining M.16 and
E.2. This brings about an improvement of about 1.73% in
mlIOU compared with the only Resnet-like net used (79.64%
in mIOU). The entire network framework is shown in Fig. 4.
More evaluation details are shown in Tab. 4. We visualized the
effects of HadNet. Fig. 6 presents some examples of seman-
tic segmentation results. Obviously, our approach is more
effective in restoring details. We achieve mloU of 81.37%
when training with 10582 images from PASCAL VOC 2012.
In addition, we follow the procedure of pre-training on
MS-COCO dataset [40]. We also apply the multi-scale inputs
(with scales 0.5,0.75,1.0,1.5,1.75) and horizontally flip the
inputs to further improve the performance. We eventually
obtain a mIoU of 86.03% on PASCAL VOC 2012 validation
set, which is 2.45% better than DeepLabv3+ and 0.23% bet-
ter than Exfuse. Please find more detailed evaluation results
in Tab. 4.

4) PERFORMANCE ON VOC 2012 TEST SET

As for evaluation on test set of PASCAL VOC 2012, we use
the PASCAL VOC 2012 trainval set to further fine-tune our
proposed model. The performance of 87.9% with MS-COCO
fine-tuning has been achieved as shown in Tab. 5.

C. DISCUSSION

The reasons and phenomenon about the remedy capability
of the proposed method are very interesting and we have to
explore as the followings:
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image label Deeplabv3+ HadNet

FIGURE 6. Example results on the PASCAL VOC 2012 val set.

1) GRADUAL REMEDY EFFECT OF SEGMENTATION

OF BRANCHES

As described in Section. III-B, we consider the remedy capa-
bility of segmentation as a step-by-step process. We con-
vert the output of prediction probability at each branch into

150450

TABLE 5. Comparison of performances on PASCAL VOC 2012 test set.

Method mIOU

Large Kernel Matters [10]  83.6%
Multipath RefineNet [9] 84.2%
PSPNet [30] 85.4%
Deeplabv3 [29] 85.7%
SDN [13] 86.6%

DEN [20] 86.2%
Deeplabv3+ [34] 87.8%
Ours 87.9%

after ADM after ADM
at M.16 atE.2

rough result

FIGURE 7. Example of remedy process from stage to stage on PASCAL
VOC 2012 dataset.

heat maps as shown in Fig. 7. The stronger the color, the
larger the probability value of the pixel’s prediction as a non-
background category. We can find that there are often fuzzy
blocks inside or around the object, which have a lower predic-
tion probability. After being processed by the M.16 branch,
the prediction of the object tends to be more solid, which
helps to alleviate the phenomenon of over-segmentation or
under-segmentation. Furthmore, after the E.2 branch, the
details predicted have been significantly improved, especially
at the edges.

2) SEGMENTATION WITH MULTI-BRANCH FUSION

Although the increasing the times of remedy can improve the
segmentation accuracy according to Equation. 3, the infinite
increase of the number of iterations can NOT always improve
the accuracy and it will lower the segmentation accuracy since
some previously correctly segmented pixels have been drawn
back wrongly. Fig. 8 shows the statistics at each branch.
Obviously, the overall effect will gradually become saturated
as more branches are added. The blue, brown and green color
refer to the number of remedied pixels of M.16, M.6 and
E.2 separately and the yellow one refers to the sum of the
remedied pixels. Apparently, the final remedied number of
pixels is much lower than the sum of three when we applied
M.16, M.6 and E.2 to the module simultaneously.
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FIGURE 8. Example results in the stage-wise refinement process on
PASCAL VOC 2012 dataset.
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FIGURE 9. Comparison of segmentation accuracy of three random groups
in different feature layers.
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FIGURE 10. Comparison of segmentation accuracy of “people” and
“bicycle” in different feature layers.

3) DATA DISTRIBUTION vs. SEGMENTATION

In order to further explore the correlation between the remedy
capability and the data distribution, we randomly selected
three sets of data sets in the COCO, each group has 500
pictures and the distribution of each category is even. We use
the trained model to obtain the performance of each group as
shown in Fig. 9. The overall trend is also roughly similar to
Fig. 5. That means that the data distribution of VOC 2012 is
relatively even.

4) CATEGORIES vs. SEGMENTATION

Besides, we also evaluated the datasets for a single category.
Fig. 10 shows the performance evaluation curves of people
and bicycles separately. The curves trend is completely dif-
ferent from that of Fig. 5. It can be seen that the performance
improvement brought by each branch in Fig. 5 should be the
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result of the trade-offs of each category. The remedy capabil-
ity of multi-branch fusion is related to different categories of
datasets.

V. CONCLUSION

This paper proposes an efficient semantic segmentation net,
HadNet, which is different with previous encoder-decoder
structure. HadNet uses the DeepLabv3+- as the feature extrac-
tor to encode richer context information and directly out-
puts a coarse segmentation result. By the introduction of
ADM module, HadNet takes advantage of pixel correlation
in that the local feature correlation and the final prediction
distribution is often consistent, and the higher-level semantic
information can be remedied by the lower-level semantic
information. Besides, the paper also explored the ability
to remedy with multiple feature layers and the problem of
feature coverage. The experimental results show that the
proposed model outperforms most of the state of the art
methods [21], [35] of mIOU accuracy on the PASCAL VOC
2012 test set.
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